Multiple or More Severe Grade Prevalent Vertebral Fractures Are Associated with Higher All-Cause Mortality in Men with Nonmetastatic Prostate Cancer Receiving Androgen Deprivation Therapy
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Bone Assessment and Blood Sampling
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shao, Y.; Moore, D.F.; Shih, W.; Lin, Y.; Jang, T.L.; Lu-Yao, G.L. Fracture after Androgen Deprivation Therapy among Men with a High Baseline Risk of Skeletal Complications. BJU Int. 2013, 111, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, D.; Kimura, T.; Yamashita, A.; Minowa, T.; Miura, K.; Mizushima, A. The Influence of Androgen Deprivation Therapy on Hip Geometric Properties and Bone Mineral Density in Japanese Men with Prostate Cancer and Its Relationship with the Visceral Fat Accumulation. Aging Male 2020, 23, 1158–1164. [Google Scholar] [CrossRef]
- Oefelein, M.G.; Ricchiuti, V.; Conrad, W.; Resnick, M.I. Skeletal Fractures Negatively Correlate With Overall Survival in Men With Prostate Cancer. J. Urol. 2002, 168, 1005–1007. [Google Scholar] [CrossRef]
- Burger, H.; Daele, P.L.A.V.; Grashuis, K.; Hofman, A.; Grobbee, D.E.; Schütte, H.E.; Birkenhäger, J.C.; Pols, H.A.P. Vertebral Deformities and Functional Impairment in Men and Women. J. Bone Miner. Res. 1997, 12, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Gold, D.T.; Smith, S.D.; Bales, C.W.; Lyles, K.W.; Westlund, R.E.; Drezner, M.K. Osteoporosis in Late Life: Does Health Locus of Control Affect Psychosocial Adaptation? J. Am. Geriatr. Soc. 1991, 39, 670–675. [Google Scholar] [CrossRef]
- Huang, C.; Ross, P.D.; Wasnich, R.D. Vertebral Fracture and Other Predictors of Physical Impairment and Health Care Utilization. Arch. Intern. Med. 1996, 156, 2469–2475. [Google Scholar] [CrossRef]
- Lyles, K.W.; Gold, D.T.; Shipp, K.M.; Pieper, C.F.; Martinez, S.; Mulhausen, P.L. Association of Osteoporotic Vertebral Compression Fractures with Impaired Functional Status. Am. J. Med. 1993, 94, 595–601. [Google Scholar] [CrossRef]
- Nevitt, M.C.; Ettinger, B.; Black, D.M.; Stone, K.; Jamal, S.A.; Ensrud, K.; Segal, M.; Genant, H.K.; Cummings, S.R. The Association of Radiographically Detected Vertebral Fractures with Back Pain and Function: A Prospective Study. Ann. Intern. Med. 1998, 128, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Ross, P.D.; Ettinger, B.; Davis, J.W.; Melton, L.J.; Wasnich, R.D. Evaluation of Adverse Health Outcomes Associated with Vertebral Fractures. Osteoporos. Int. 1991, 1, 134–140. [Google Scholar] [CrossRef]
- Crans, G.G.; Silverman, S.L.; Genant, H.K.; Glass, E.V.; Krege, J.H. Association of Severe Vertebral Fractures with Reduced Quality of Life: Reduction in the Incidence of Severe Vertebral Fractures by Teriparatide. Arthritis Rheumatol. 2004, 50, 4028–4034. [Google Scholar] [CrossRef]
- Wang, Y.; Jacobs, E.J.; Gapstur, S.M.; Maliniak, M.L.; Gansler, T.; McCullough, M.L.; Stevens, V.L.; Patel, A.V. Recreational Physical Activity in Relation to Prostate Cancer–Specific Mortality Among Men with Nonmetastatic Prostate Cancer. Eur. Urol. 2017, 72, 931–939. [Google Scholar] [CrossRef]
- Wu, C.Y.; Li, J.; Jergas, M.; Genant, H.K. Comparison of Semiquantitative and Quantitative Techniques for the Assessment of Prevalent and Incident Vertebral Fractures. Osteoporos. Int. 1995, 5, 354–370. [Google Scholar] [CrossRef]
- Fukumoto, S.; Soen, S.; Taguchi, T.; Ishikawa, T.; Matsushima, H.; Terauchi, M.; Horie, S.; Yoneda, T.; Sugimoto, T.; Matsumoto, T.; et al. Management Manual for Cancer Treatment-Induced Bone Loss (CTIBL): Position Statement of the JSBMR. J. Bone Miner. Metab. 2020, 38, 141–144. [Google Scholar] [CrossRef]
- Huang, S.; Wu, L.; Lin, S.; Cai, S.; Zhou, J. Analysis of Factors Related to Osteoporotic Vertebral Fracture in Prostate Cancer Patients. Discov. Oncol. 2024, 15, 34. [Google Scholar] [CrossRef]
- van Oostwaard, M.M.; van den Bergh, J.P.; van de Wouw, Y.; Janssen-Heijnen, M.; de Jong, M.; Wyers, C.E. High Prevalence of Vertebral Fractures at Initiation of Androgen Deprivation Therapy for Prostate Cancer. J. Bone Oncol. 2023, 38, 100465. [Google Scholar] [CrossRef] [PubMed]
- Yonou, H.; Aoyagi, Y.; Kanomata, N.; Kamijo, T.; Oda, T.; Yokose, T.; Hasebe, T.; Nagai, K.; Hatano, T.; Ogawa, Y.; et al. Prostate-Specific Antigen Induces Osteoplastic Changes by an Autonomous Mechanism. Biochem. Biophys. Res. Commun. 2001, 289, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-M.; Lin, C.; Stavre, Z.; Greenblatt, M.B.; Shim, J.-H. Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells 2020, 9, 2073. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jiang, P.; Wang, C. The Role of Prostate-Specific Antigen in the Osteoblastic Bone Metastasis of Prostate Cancer: A Literature Review. Front. Oncol. 2023, 13, 1127637. [Google Scholar] [CrossRef]
- Ehresman, J.; Schilling, A.; Yang, X.; Pennington, Z.; Ahmed, A.K.; Cottrill, E.; Lubelski, D.; Khan, M.; Moseley, K.F.; Sciubba, D.M. Vertebral Bone Quality Score Predicts Fragility Fractures Independently of Bone Mineral Density. Spine J. 2021, 21, 20–27. [Google Scholar] [CrossRef]
- Hussain, S.A.; Weston, R.; Stephenson, R.N.; George, E.; Parr, N.J. Immediate Dual Energy X-ray Absorptiometry Reveals a High Incidence of Osteoporosis in Patients with Advanced Prostate Cancer before Hormonal Manipulation. BJU Int. 2003, 92, 690–694. [Google Scholar] [CrossRef]
- Eriksson, A.L.; Movérare-Skrtic, S.; Ljunggren, Ö.; Karlsson, M.; Mellström, D.; Ohlsson, C. High-Sensitivity CRP Is an Independent Risk Factor for All Fractures and Vertebral Fractures in Elderly Men: The MrOS Sweden Study. J. Bone Miner. Res. 2014, 29, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.W.; Hinchliffe, R.F.; Briggs, C.; Macdougall, I.C.; Littlewood, T.; Cavill, I. Guideline for the Laboratory Diagnosis of Functional Iron Deficiency. Br. J. Haematol. 2013, 161, 639–648. [Google Scholar] [CrossRef]
- Haase, V.H. HIF-prolyl Hydroxylases as Therapeutic Targets in Erythropoiesis and Iron Metabolism. Hemodial. Int. 2017, 21, S110–S124. [Google Scholar] [CrossRef] [PubMed]
- McMillan, D.C. An Inflammation-Based Prognostic Score and Its Role in the Nutrition-Based Management of Patients with Cancer. Proc. Nutr. Soc. 2008, 67, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Goto, K.; Watanabe, D.; Kawae, N.; Nakamura, T.; Yanagida, K.; Yoshida, T.; Kajihara, H.; Mizushima, A. Relationship between Femoral Proximal Bone Quality Assessment by MRI IDEAL-IQ Sequence and Body Mass Index in Elderly Men. Tomography 2024, 10, 816–825. [Google Scholar] [CrossRef]
- Kim, J.; Jung, Y.; Sun, H.; Joseph, J.; Mishra, A.; Shiozawa, Y.; Wang, J.; Krebsbach, P.H.; Taichman, R.S. Erythropoietin Mediated Bone Formation Is Regulated by MTOR Signaling. J. Cell. Biochem. 2012, 113, 220–228. [Google Scholar] [CrossRef]
- Akeda, K.; Nakase, K.; Yamada, J.; Takegami, N.; Fujiwara, T.; Sudo, A. Progression of Vertebral Deformity of Prevalent Vertebral Fractures in the Elderly: A Population-Based Study. BMC Musculoskelet. Disord. 2024, 25, 110. [Google Scholar] [CrossRef]
- Zhang, Y.-K.; Wang, J.-X.; Ge, Y.-Z.; Wang, Z.-B.; Zhang, Z.-G.; Zhang, Z.-W.; Chang, F. The Global Burden of Vertebral Fractures Caused by Falls among Individuals Aged 55 and Older, 1990 to 2021. PLoS ONE 2025, 20, e0318494. [Google Scholar] [CrossRef]
- Freitas, S.S.; Barrett-Connor, E.; Ensrud, K.E.; Fink, H.A.; Bauer, D.C.; Cawthon, P.M.; Lambert, L.C.; Orwoll, E.S.; Osteoporotic Fractures in Men (MrOS) Research Group. Rate and Circumstances of Clinical Vertebral Fractures in Older Men. Osteoporos. Int. 2008, 19, 615–623. [Google Scholar] [CrossRef]
- Cawthon, P.M. Gender Differences in Osteoporosis and Fractures. Clin. Orthop. Relat. Res. 2011, 469, 1900–1905. [Google Scholar] [CrossRef]
- Duan, Y.; Turner, C.H.; Kim, B.; Seeman, E. Sexual Dimorphism in Vertebral Fragility Is More the Result of Gender Differences in Age-Related Bone Gain Than Bone Loss. J. Bone Miner. Res. 2009, 16, 2267–2275. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.-Y.; Xu, H.-W.; Chen, H.; Zhang, S.-B.; Yi, Y.-Y.; Ge, X.-Y.; Wang, S.-J. Association Between Poor Nutritional Status and Increased Risk for Subsequent Vertebral Fracture in Elderly People with Percutaneous Vertebroplasty. Clin. Interv. Aging 2023, 17, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, C.; Minisola, S.; Bilezikian, J.P.; Diacinti, D.; Colangelo, L.; Piazzolla, V.; Angelozzi, M.; Nieddu, L.; Pepe, J.; Diacinti, D. Vertebral Fracture Assessment in Postmenopausal Women With Postsurgical Hypoparathyroidism. J. Clin. Endocrinol. Metab. 2021, 106, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Amri, N.E.; Daldoul, C.; Lataoui, S.; Baccouche, K.; Belghali, S.; Zeglaoui, H.; Bouajina, E. Asymptomatic Vertebral Fracture in Tunisian Post-Menopausal Women at Risk: Prevalence and Risk Factors. Arch. Osteoporos. 2021, 16, 139. [Google Scholar] [CrossRef]
- Watanabe, D.; Takano, H.; Kimura, T.; Yamashita, A.; Minowa, T.; Mizushima, A. The Relationship of Diffuse Idiopathic Skeletal Hyperostosis, Visceral Fat Accumulation, and Other Age-Related Diseases with the Prevalent Vertebral Fractures in Elderly Men with Castration-Naïve Prostate Cancer. Aging Male 2020, 23, 1512–1517. [Google Scholar] [CrossRef]
Variables | Entire Cohort (n = 275) |
---|---|
Age at prostate biopsy, years | 73 (55–89) |
BMI, kg/m2 | 23.3 (14.3–35.7) |
initial PSA, ng/mL | 12.4 (4.37–716.5) |
Clinical T category, n (%) | |
T1c | 41 (14.9) |
T2a | 64 (23.3) |
T2b | 68 (24.7) |
T2c | 64 (23.3) |
T3a | 22 (8.0) |
T3b | 7 (2.5) |
T4 | 9 (3.3) |
Clinical N category, n (%) | |
N0 | 251 (91.3) |
N1 | 24 (8.7) |
Biopsy Gleason score, n (%) | |
6 | 35 (12.7) |
7 | 168 (61.1) |
8 | 44 (16.0) |
9 | 28 (10.2) |
PVF, n (%) | 54 (19.6) |
Severity of PVFs | |
Number of PVFs | |
0 | 221 (80.4) |
1 | 31 (11.3) |
≥2 | 23 (8.3) |
SQ grade of PVFs | |
SQ = 0 | 221 (80.4) |
SQ = 1 | 40 (14.5) |
SQ ≥ 2 | 14 (5.1) |
Primary treatment, n (%) | |
ADT | 115 (41.8) |
ADT/radical prostatectomy | 38 (13.8) |
ADT/radiation therapy | 122 (44.4) |
Follow-up, months | 55 (1–150) |
Outcomes, n (%) | |
Alive | 245 |
Death due to prostate cancer | 6 |
Death due to all causes | 30 |
Variables | HR | 95% CI | p Value |
---|---|---|---|
Age | 1.1 | 1.04–1.17 | 0.0018 |
BMI | 0.99 | 0.89–1.09 | 0.8341 |
Initial PSA | 1 | 0.99–1.00 | 0.0981 |
PVF | 4.07 | 1.96–8.37 | 0.0003 |
Number of PVFs | 0.0007 | ||
0 | 1 | reference | |
1 | 3.04 | 1.16–7.23 | |
≥2 | 5.49 | 2.21–12.7 | |
SQ grade of PVFs | 0.0006 | ||
SQ = 0 | 1 | reference | |
SQ = 1 | 3.34 | 1.45–7.37 | |
SQ ≥ 2 | 6.55 | 2.12–17.0 | |
Gleason score | 0.0225 | ||
6 | 1 | reference | |
7 | 1.97 | 0.55–12.5 | |
8 or 9 | 4.8 | 1.31–30.8 | |
Clinical T stage | 0.0459 | ||
T1c | 1 | reference | |
T2a–T2c | 3.02 | 0.88–18.9 | |
T3a–T4 | 5.66 | 1.41–37.7 | |
Clinical N stage | 0.0897 | ||
N0 | 1 | reference | |
N1 | 2.53 | 0.85–6.14 |
Variables | HR | 95% CI | p Value |
---|---|---|---|
Number of PVFs | |||
0 | 1 | reference | |
1 | |||
Model 1 | 2.75 | 1.04–6.57 | 0.0414 |
Model 2 | 2.37 | 0.89–5.75 | 0.0826 |
≥2 | |||
Model 1 | 3.81 | 1.45–9.37 | 0.008 |
Model 2 | 4.09 | 1.54–10.2 | 0.0057 |
SQ grade of PVFs | |||
SQ = 0 | 1 | reference | |
SQ = 1 | |||
Model 1 | 2.78 | 1.19–6.23 | 0.0194 |
Model 2 | 2.5 | 1.07–5.62 | 0.0355 |
SQ ≥ 2 | |||
Model 1 | 4.74 | 1.48–12.9 | 0.0115 |
Model 2 | 5.27 | 1.64–14.4 | 0.0074 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goto, K.; Watanabe, D.; Takano, H.; Yanagida, K.; Kawae, N.; Kajihara, H.; Mizushima, A. Multiple or More Severe Grade Prevalent Vertebral Fractures Are Associated with Higher All-Cause Mortality in Men with Nonmetastatic Prostate Cancer Receiving Androgen Deprivation Therapy. Cancers 2025, 17, 2131. https://doi.org/10.3390/cancers17132131
Goto K, Watanabe D, Takano H, Yanagida K, Kawae N, Kajihara H, Mizushima A. Multiple or More Severe Grade Prevalent Vertebral Fractures Are Associated with Higher All-Cause Mortality in Men with Nonmetastatic Prostate Cancer Receiving Androgen Deprivation Therapy. Cancers. 2025; 17(13):2131. https://doi.org/10.3390/cancers17132131
Chicago/Turabian StyleGoto, Kashia, Daisuke Watanabe, Hiromitsu Takano, Kazuki Yanagida, Norikazu Kawae, Hajime Kajihara, and Akio Mizushima. 2025. "Multiple or More Severe Grade Prevalent Vertebral Fractures Are Associated with Higher All-Cause Mortality in Men with Nonmetastatic Prostate Cancer Receiving Androgen Deprivation Therapy" Cancers 17, no. 13: 2131. https://doi.org/10.3390/cancers17132131
APA StyleGoto, K., Watanabe, D., Takano, H., Yanagida, K., Kawae, N., Kajihara, H., & Mizushima, A. (2025). Multiple or More Severe Grade Prevalent Vertebral Fractures Are Associated with Higher All-Cause Mortality in Men with Nonmetastatic Prostate Cancer Receiving Androgen Deprivation Therapy. Cancers, 17(13), 2131. https://doi.org/10.3390/cancers17132131