Peptide Receptor Radionuclide Therapy in Patients with Advanced, Recurrent or Progressive Meningioma: An Updated Systematic Review and Meta-Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Review Question, Working Group and Review Protocol
2.2. Search Strategy
2.3. Selection of Studies
2.4. Data Extraction and Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Literature Search
3.2. Risk of Bias Assessment
3.3. Qualitative Synthesis
3.4. Quantitative Synthesis (Meta-Analysis)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldbrunner, R.; Stavrinou, P.; Jenkinson, M.D.; Sahm, F.; Mawrin, C.; Weber, D.C.; Preusser, M.; Minniti, G.; Lund-Johansen, M.; Lefranc, F.; et al. EANO guideline on the diagnosis and management of meningiomas. Neuro Oncol. 2021, 23, 1821–1834. [Google Scholar] [CrossRef] [PubMed]
- Albert, N.L.; Preusser, M.; Traub-Weidinger, T.; Tolboom, N.; Law, I.; Palmer, J.D.; Guedj, E.; Furtner, J.; Fraioli, F.; Huang, R.Y.; et al. Joint EANM/EANO/RANO/SNMMI practice guideline/procedure standards for diagnostics and therapy (theranostics) of meningiomas using radiolabeled somatostatin receptor ligands: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 3662–3679. [Google Scholar] [CrossRef] [PubMed]
- Albert, N.L.; Preusser, M.; Galldiks, N.; Ivanidze, J. Theranostics for Meningioma on the Rise: New EANM/EANO/RANO/SNMMI Guidelines Pave the Way to Improved Patient Outcomes Using Radiolabeled Somatostatin Receptor Ligands. J. Nucl. Med. 2025, 66, 24–25. [Google Scholar] [CrossRef] [PubMed]
- Santo, G.; di Santo, G.; Cicone, F.; Virgolini, I. Peptide receptor radionuclide therapy with somatostatin analogs beyond gastroenteropancreatic neuroendocrine tumors. J. Neuroendocrinol. 2025, 37, e70013. [Google Scholar] [CrossRef]
- Yuen, C.A.; Zheng, M.; Saint-Germain, M.A.; Kamson, D.O. Meningioma: Novel Diagnostic and Therapeutic Approaches. Biomedicines 2025, 13, 659. [Google Scholar] [CrossRef]
- Mair, M.J.; Tabouret, E.; Johnson, D.R.; Sulman, E.P.; Wen, P.Y.; Preusser, M.; Albert, N.L. Radioligand therapies in meningioma: Evidence and future directions. Neuro Oncol. 2024, 26, S215–S228. [Google Scholar] [CrossRef]
- Albert, N.L.; Le Rhun, E.; Minniti, G.; Mair, M.J.; Galldiks, N.; Tolboom, N.; Jakola, A.S.; Niyazi, M.; Smits, M.; Verger, A.; et al. Translating the theranostic concept to neuro-oncology: Disrupting barriers. Lancet Oncol. 2024, 25, e441–e451. [Google Scholar] [CrossRef]
- Tolboom, N.; Verger, A.; Albert, N.L.; Fraioli, F.; Guedj, E.; Traub-Weidinger, T.; Morbelli, S.; Herrmann, K.; Zucchetta, P.; Plasschaert, S.L.; et al. Theranostics in Neurooncology: Heading Toward New Horizons. J. Nucl. Med. 2024, 65, 167–173. [Google Scholar] [CrossRef]
- Tollefsen, S.E.; Solheim, O.; Mjønes, P.; Torp, S.H. Meningiomas and Somatostatin Analogs: A Systematic Scoping Review on Current Insights and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 4793. [Google Scholar] [CrossRef]
- Urso, L.; Nieri, A.; Uccelli, L.; Castello, A.; Artioli, P.; Cittanti, C.; Marzola, M.C.; Florimonte, L.; Castellani, M.; Bissoli, S.; et al. Lutathera® Orphans: State of the Art and Future Application of Radioligand Therapy with 177Lu-DOTATATE. Pharmaceutics 2023, 15, 1110. [Google Scholar] [CrossRef]
- Benfante, V.; Vetrano, I.G.; Ali, M.; Purpura, P.; Gagliardo, C.; Feraco, P.; Longo, C.; Bartolotta, T.V.; Toia, P.; Calisto, O.; et al. An Update on DOTA-Peptides PET Imaging and Potential Advancements of Radioligand Therapy in Intracranial Meningiomas. Life 2025, 15, 617. [Google Scholar] [CrossRef]
- Mirian, C.; Duun-Henriksen, A.K.; Maier, A.D.; Pedersen, M.M.; Jensen, L.R.; Bashir, A.; Graillon, T.; Hrachova, M.; Bota, D.; van Essen, M.; et al. Somatostatin Receptor-Targeted Radiopeptide Therapy in Treatment-Refractory Meningioma: Individual Patient Data Meta-analysis. J. Nucl. Med. 2021, 62, 507–513. [Google Scholar] [CrossRef]
- Sadeghi, R.; Treglia, G. Systematic reviews and meta-analyses of diagnostic studies: A practical guideline. Clin. Transl. Imaging 2017, 5, 83–87. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Study Quality Assessment Tools. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 30 March 2025).
- Zhang, J.; Li, D.; Shi, M.; Jakobsson, V.; Jia, W.; Kulkarni, H.R.; Schuchardt, C.; Baum, R.P. Long-term Efficacy, Survival, and Toxicity of Peptide Receptor Radionuclide Therapy in Patients With Refractory Meningioma. Clin. Nucl. Med. 2025, 50, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Amerein, A.; Maurer, C.; Kircher, M.; Gäble, A.; Krebold, A.; Rinscheid, A.; Viering, O.; Pfob, C.H.; Bundschuh, R.A.; Behrens, L.; et al. Intraarterial Administration of Peptide Receptor Radionuclide Therapy in Patients with Advanced Meningioma: Initial Safety and Efficacy. J. Nucl. Med. 2024, 65, 1911–1916. [Google Scholar] [CrossRef]
- Eigler, C.; McDougall, L.; Bauman, A.; Bernhardt, P.; Hentschel, M.; Blackham, K.A.; Nicolas, G.; Fani, M.; Wild, D.; Cordier, D. Radiolabeled Somatostatin Receptor Antagonist Versus Agonist for Peptide Receptor Radionuclide Therapy in Patients with Therapy-Resistant Meningioma: PROMENADE Phase 0 Study. J. Nucl. Med. 2024, 65, 573–579. [Google Scholar] [CrossRef]
- Graillon, T.; Salgues, B.; Horowitz, T.; Padovani, L.; Appay, R.; Tabouret, E.; Guedj, E.; Chinot, O. Peptide radionuclide radiation therapy with Lutathera in multirecurrent nonanaplastic meningiomas: Antitumoral activity study by growth rate analysis. J. Neurooncol. 2024, 167, 427–436. [Google Scholar] [CrossRef]
- Puranik, A.D.; Dev, I.D.; Rangarajan, V.; Kulkarni, S.; Shetty, N.; Gala, K.; Sahu, A.; Bhattacharya, K.; Dasgupta, A.; Chatterjee, A.; et al. PRRT with Lu-177 DOTATATE in Treatment-Refractory Progressive Meningioma: Initial Experience from a Tertiary-Care Neuro-Oncology Center. Neurol. India 2024, 72, 278–284. [Google Scholar] [CrossRef]
- Severi, S.; Grassi, I.; Bongiovanni, A.; Nicolini, S.; Marini, I.; Arpa, D.; Ranallo, N.; Azzali, I.; Di Iorio, V.; Sarnelli, A.; et al. Peptide Receptor Radionuclide Therapy in Advanced Refractory Meningiomas: Efficacy and Toxicity in a Long Follow-up. J. Nucl. Med. 2024, 65, 1409–1415. [Google Scholar] [CrossRef]
- Kurz, S.C.; Zan, E.; Cordova, C.; Troxel, A.B.; Barbaro, M.; Silverman, J.S.; Snuderl, M.; Zagzag, D.; Kondziolka, D.; Golfinos, J.G.; et al. Evaluation of the SSTR2-targeted Radiopharmaceutical 177Lu-DOTATATE and SSTR2-specific 68Ga-DOTATATE PET as Imaging Biomarker in Patients with Intracranial Meningioma. Clin. Cancer Res. 2024, 30, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Minczeles, N.S.; Bos, E.M.; de Leeuw, R.C.; Kros, J.M.; Konijnenberg, M.W.; Bromberg, J.E.C.; de Herder, W.W.; Dirven, C.M.F.; Hofland, J.; Brabander, T. Efficacy and safety of peptide receptor radionuclide therapy with [177Lu]Lu-DOTA-TATE in 15 patients with progressive treatment-refractory meningioma. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1195–1204. [Google Scholar] [CrossRef] [PubMed]
- Salgues, B.; Graillon, T.; Horowitz, T.; Chinot, O.; Padovani, L.; Taïeb, D.; Guedj, E. Somatostatin Receptor Theranostics for Refractory Meningiomas. Curr. Oncol. 2022, 29, 5550–5565. [Google Scholar] [CrossRef] [PubMed]
- Kertels, O.; Breun, M.; Hänscheid, H.; Kircher, M.; Hartrampf, P.E.; Schirbel, A.; Monoranu, C.-M.; Ernestus, R.-I.; Buck, A.K.; Löhr, M.; et al. Peptide Receptor Radionuclide Therapy in Patients With Neurofibromatosis Type 2: Initial Experience. Clin. Nucl. Med. 2021, 46, e312–e316. [Google Scholar] [CrossRef]
- Müther, M.; Roll, W.; Brokinkel, B.; Zinnhardt, B.; Sporns, P.B.; Seifert, R.; Schäfers, M.; Weckesser, M.; Stegger, L.; Stummer, W.; et al. Response assessment of somatostatin receptor targeted radioligand therapies for progressive intracranial meningioma. Nuklearmedizin 2020, 59, 348–355. [Google Scholar] [CrossRef]
- Parghane, R.V.; Talole, S.; Basu, S. Prevalence of hitherto unknown brain meningioma detected on 68Ga-DOTATATE positron-emission tomography/computed tomography in patients with metastatic neuroendocrine tumor and exploring potential of 177Lu-DOTATATE peptide receptor radionuclide therapy as single-shot treatment approach targeting both tumors. World J. Nucl. Med. 2019, 18, 160–170. [Google Scholar] [CrossRef]
- Seystahl, K.; Stoecklein, V.; Schüller, U.; Rushing, E.; Nicolas, G.; Schäfer, N.; Ilhan, H.; Pangalu, A.; Weller, M.; Tonn, J.-C.; et al. Somatostatin receptor-targeted radionuclide therapy for progressive meningioma: Benefit linked to 68Ga-DOTATATE/-TOC uptake. Neuro Oncol. 2016, 18, 1538–1547. [Google Scholar] [CrossRef]
- Marincek, N.; Radojewski, P.; Dumont, R.A.; Brunner, P.; Müller-Brand, J.; Maecke, H.R.; Briel, M.; Walter, M.A. Somatostatin receptor-targeted radiopeptide therapy with 90Y-DOTATOC and 177Lu-DOTATOC in progressive meningioma: Long-term results of a phase II clinical trial. J. Nucl. Med. 2015, 56, 171–176. [Google Scholar] [CrossRef]
- Gerster-Gilliéron, K.; Forrer, F.; Maecke, H.; Mueller-Brand, J.; Merlo, A.; Cordier, D. 90Y-DOTATOC as a Therapeutic Option for Complex Recurrent or Progressive Meningiomas. J. Nucl. Med. 2015, 56, 1748–1751. [Google Scholar] [CrossRef]
- Minutoli, F.; Amato, E.; Sindoni, A.; Cardile, D.; Conti, A.; Herberg, A.; Baldari, S. Peptide receptor radionuclide therapy in patients with inoperable meningiomas: Our experience and review of the literature. Cancer Biother. Radiopharm. 2014, 29, 193–199. [Google Scholar] [CrossRef]
- Bartolomei, M.; Bodei, L.; De Cicco, C.; Grana, C.M.; Cremonesi, M.; Botteri, E.; Baio, S.M.; Aricò, D.; Sansovini, M.; Paganelli, G. Peptide receptor radionuclide therapy with (90)Y-DOTATOC in recurrent meningioma. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 1407–1416. [Google Scholar] [CrossRef]
- Van Essen, M.; Krenning, E.P.; Kooij, P.P.; Bakker, W.H.; Feelders, R.A.; de Herder, W.W.; Wolbers, J.G.; Kwekkeboom, D.J. Effects of therapy with [177Lu-DOTA0, Tyr3]octreotate in patients with paraganglioma, meningioma, small cell lung carcinoma, and melanoma. J. Nucl. Med. 2006, 47, 1599–1606. [Google Scholar] [PubMed]
- Hartrampf, P.E.; Hänscheid, H.; Kertels, O.; Schirbel, A.; Kreissl, M.C.; Flentje, M.; Sweeney, R.A.; Buck, A.K.; Polat, B.; Lapa, C. Long-term results of multimodal peptide receptor radionuclide therapy and fractionated external beam radiotherapy for treatment of advanced symptomatic meningioma. Clin. Transl. Radiat. Oncol. 2020, 22, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Kreissl, M.C.; Hänscheid, H.; Löhr, M.; Verburg, F.A.; Schiller, M.; Lassmann, M.; Reiners, C.; Samnick, S.S.; Buck, A.K.; Flentje, M.; et al. Combination of peptide receptor radionuclide therapy with fractionated external beam radiotherapy for treatment of advanced symptomatic meningioma. Radiat. Oncol. 2012, 7, 99. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.Y.; Bi, W.L.; Weller, M.; Kaley, T.; Blakeley, J.; Dunn, I.; Galanis, E.; Preusser, M.; McDermott, M.; Rogers, L.; et al. Proposed response assessment and endpoints for meningioma clinical trials: Report from the Response Assessment in Neuro-Oncology Working Group. Neuro Oncol. 2019, 21, 26–36. [Google Scholar] [CrossRef]
- Huang, R.Y.; Unadkat, P.; Bi, W.L.; George, E.; Preusser, M.; McCracken, J.D.; Keen, J.R.; Read, W.L.; Olson, J.J.; Seystahl, K.; et al. Response assessment of meningioma: 1D, 2D, and volumetric criteria for treatment response and tumor progression. Neuro Oncol. 2019, 21, 234–241. [Google Scholar] [CrossRef]
- Graillon, T.; Ferrer, L.; Siffre, J.; Sanson, M.; Peyre, M.; Peyrière, H.; Mougel, G.; Autran, D.; Tabouret, E.; Figarella-Branger, D.; et al. Role of 3D volume growth rate for drug activity evaluation in meningioma clinical trials: The example of the CEVOREM study. Neuro Oncol. 2021, 23, 1139–1147. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J. Nucl. Med. 2009, 50, 122S–150S. [Google Scholar] [CrossRef]
- Green, S.; Weiss, G.R. Southwest Oncology Group standard response criteria, endpoint definitions and toxicity criteria. Investig. New Drugs 1992, 10, 239–253. [Google Scholar] [CrossRef]
- Macdonald, D.R.; Cascino, T.L.; Schold, S.C., Jr.; Cairncross, J.G. Response criteria for phase II studies of supratentorial malignant glioma. J. Clin. Oncol. 1990, 8, 1277–1280. [Google Scholar] [CrossRef] [PubMed]
- Dadgar, H.; Pashazadeh, A.; Norouzbeigi, N.; Assadi, M.; Al-Balooshi, B.; Baum, R.P.; Al-Ibraheem, A.; Haidar, M.; Beheshti, M.; Geramifar, P.; et al. Targeted radioligand therapy: Physics and biology, internal dosimetry and other practical aspects during 177Lu/225Ac treatment in neuroendocrine tumors and metastatic prostate cancer. Theranostics 2025, 15, 4368–4397. [Google Scholar] [CrossRef] [PubMed]
- Muoio, B.; Espeli, V.; Treglia, G. Neuro-Oncology and Positron Emission Tomography: “Just Can’t Get Enough”. Cancers 2023, 15, 4739. [Google Scholar] [CrossRef] [PubMed]
- Cimini, A.; Ricci, M.; Russo, F.; Egidi, M.; Calabria, F.; Bagnato, A.; Schillaci, O.; Chiaravalloti, A. Peptide Receptor Radionuclide Therapy and Primary Brain Tumors: An Overview. Pharmaceuticals 2021, 14, 872. [Google Scholar] [CrossRef]
- Ritter, Z.; Oeltzschner, G.; Solnes, L.B.; Liu, G.; Kamson, D.O. Diagnostic and theranostic opportunities in Neuro-oncology. Adv. Oncol. 2024, 4, 111–124. [Google Scholar] [CrossRef]
- Mileva, M.; Van Bogaert, C.; Marin, G.I.; Danieli, R.M.; Artigas, C.; Levillain, H.; Ameye, L.; Taraji-Schiltz, L.M.; Stathopoulos, K.; Wimana, Z.; et al. 177 Lu-DOTATATE PRRT Safety and Organ-at-Risk Dosimetry in Patients With Gastroenteropancreatic Neuroendocrine Tumors: Data From the Prospective Phase 2 LUMEN Study. Clin. Nucl. Med. 2024, 49, 847–853. [Google Scholar] [CrossRef]
- Caruso, G.; Ferrarotto, R.; Curcio, A.; Metro, L.; Pasqualetti, F.; Gaviani, P.; Barresi, V.; Angileri, F.F.; Caffo, M. Novel Advances in Treatment of Meningiomas: Prognostic and Therapeutic Implications. Cancers 2023, 15, 4521. [Google Scholar] [CrossRef]
Authors | Year | Country | Number/Median Age/Sex Ratio (Male %) of Patients with Advanced Progressive Meningioma Treated with PRRT | WHO Classification of Meningiomas | Type of PRRT | Median Number of PRRT Cycles/Median Cumulative Activity | Patients with Disease Control After PRRT (%) | Serious Adverse Events | 12-Month PFS/OS |
---|---|---|---|---|---|---|---|---|---|
Zhang et al. [16] | 2025 | Singapore and Germany | 18/58 y/50% | G1 = 6; G2 = 10; G3 = 1; NR = 1 | Lu-177-DOTATATE or Y-90-DOTATOC | 2 cycles/10.9 GBq | 12 (85.7%)* | NR | NR/NR |
Amerein et al. [17] | 2024 | Germany | 13/65 y/38% | G1 = 4; G2 = 3; G3 = 1; NR = 5 | Lu-177-HA-DOTATATE | 4 cycles/25.7 GBq | 10 (76.9%) | transient grade 3 hematotoxicity (max 38.5%) and grade 4 hematotoxicity (7.7%) | 76.9%/84.6% |
Eigler et al. [18] | 2024 | Switzerland | 6/63 y/50% | G1 = 1; G2 = 4; G3 = 1 | Lu-177-DOTATOC + Lu-177-DOTA-JR11 | 1 + 2 or 3 cycles/7.1 + 9 GBq | 5 (83.3%) | transient grade 3 hematotoxicity (50%) | NR/NR |
Graillon et al. [19] | 2024 | France | 8/72 y/62% | G1 = 1; G2 = 7 | Lu-177-DOTATATE | 4 cycles/29.6 GBq | 5 (62.5%) | NR | 75%/87.5% |
Puranik et al. [20] | 2024 | India | 8/52 y/62% | G1 = 2; G2 = 5; G3 = 1 | Lu-177-DOTATATE | 3 cycles/22.3 GBq | 7 (87.5%) | NR | NR/NR |
Severi et al. [21] | 2024 | Italy | 42/64 y/52% | G1 = 11; G2 = 24; G3 = 4; NR = 3 | Y-90-DOTATOC or Lu-177-DOTATATE | 5 cycles/11.1 GBq or 4 cycles/22 GBq | 24 (57.1%) | grade 3 hematotoxicity (2.4%) | NR/NR |
Kurz et al. [22] | 2024 | USA | 14/63 y/21% | G1 = 2; G2 = 11; G3 = 1 | Lu-177-DOTATATE | 4 cycles/29.6 GBq | 9 (64.3%) | grade 3/4 events included hematotoxicity (15), electrolyte abnormalities (4), diarrhea (1), thromboembolic events (1), and cardiac arrhythmic events (2) | 43%/71% |
Minczeles et al. [23] | 2023 | Netherlands | 15/52 y/47% | G1 = 3; G2 = 5; G3 = 6; NR = 1 | Lu-177-DOTATATE | 4 cycles/28.9 GBq | 6 (40%) | grade 3 hepatic or hematological toxicity (53%) or grade 4 hepatic or haematological toxicity (7%) | NR/60% |
Salgues et al. [24] | 2022 | France | 8/72 y/62% | G2 = 8 | Lu-177-DOTATATE | 4 cycles/29.6 GBq | 7 (87.5%) | transient grade 3 hematotoxicity (37%) | 66.7%/NR |
Kertels et al. [25] | 2021 | Germany | 11/39 y/36% | G1 = 4; G2 = 6; G3 = 1 | Lu-177-DOTATATE | 4 cycles/29.6 GBq | 6 (54.5%) | transient grade 3 hematotoxicity (18%) | 45.4%/90.9% |
Müther et al. [26] | 2020 | Germany | 7/73 y/57% | G1 = 2; G2 = 5 | Lu-177-DOTATATE | 4 cycles/29.6 GBq | 2 (28.6%) | NR | NR/NR |
Parghane et al. [27] | 2019 | India | 5/45 y/50% | G1 = 2; G2 = 4 | Lu-177-DOTATATE | 4 cycles/19.9 GBq | 3 (60%) | NR | 60%/NR |
Seystahl et al. [28] | 2016 | Switzerland and Germany | 20/43 y/45% | G1 = 5; G2 = 7; G3 = 8 | Lu-177-DOTATATE or Y-90-DOTATOC | 3 cycles/20.1 GBq | 10 (50%) | grade 3 hematotoxicity (25%) and grade 4 hematotoxicity (5%) | NR/79% |
Marincek et al. [29] | 2015 | Switzerland | 37/61 y/26% | G1 = 5; G2 = 6; G3 = 3; NR = 23 | Lu-177-DOTATOC or Y-90-DOTATOC | NR | 23 (62.2%) | grade 3 hematotoxicity (8.8%) | NR/NR |
Gerster-Gilliéron et al. [30] | 2015 | Switzerland | 15/56 y/20% | G1 = 9; G2 = 2; G3 = 1; NR = 3 | Y-90-DOTATOC | 2 cycles/7.4 GBq/m2 | 13 (86.7%) | grade 3 hematotoxicity (33%) | 86.7%/93.3% |
Minutoli et al. [31] | 2014 | Italy | 8/58 y/25% | G1 = 5; G2 = 3 | In-111-pentetreotide | 3 cycles/21 GBq | 7 (87.5%) | NR | NR/NR |
Bartolomei et al. [32] | 2009 | Italy | 29/54 y/31% | G1 = 14; G2 = 9; G3 = 6 | Y-90-DOTATOC | 4 cycles/10 GBq | 19 (65.5%) | NR | 34.5%/75.8% |
van Essen et al. [33] | 2006 | Netherlands | 5/55 y/40% | G3 = 3; NR = 2 | Lu-177-DOTATOC | NR | 2 (40%) | NR | NR/NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muoio, B.; Iacovitti, C.M.; Bosetti, D.G.; Sansovini, M.; Cuzzocrea, M.; Paone, G.; Treglia, G. Peptide Receptor Radionuclide Therapy in Patients with Advanced, Recurrent or Progressive Meningioma: An Updated Systematic Review and Meta-Analysis. Cancers 2025, 17, 2039. https://doi.org/10.3390/cancers17122039
Muoio B, Iacovitti CM, Bosetti DG, Sansovini M, Cuzzocrea M, Paone G, Treglia G. Peptide Receptor Radionuclide Therapy in Patients with Advanced, Recurrent or Progressive Meningioma: An Updated Systematic Review and Meta-Analysis. Cancers. 2025; 17(12):2039. https://doi.org/10.3390/cancers17122039
Chicago/Turabian StyleMuoio, Barbara, Cesare Michele Iacovitti, Davide Giovanni Bosetti, Maddalena Sansovini, Marco Cuzzocrea, Gaetano Paone, and Giorgio Treglia. 2025. "Peptide Receptor Radionuclide Therapy in Patients with Advanced, Recurrent or Progressive Meningioma: An Updated Systematic Review and Meta-Analysis" Cancers 17, no. 12: 2039. https://doi.org/10.3390/cancers17122039
APA StyleMuoio, B., Iacovitti, C. M., Bosetti, D. G., Sansovini, M., Cuzzocrea, M., Paone, G., & Treglia, G. (2025). Peptide Receptor Radionuclide Therapy in Patients with Advanced, Recurrent or Progressive Meningioma: An Updated Systematic Review and Meta-Analysis. Cancers, 17(12), 2039. https://doi.org/10.3390/cancers17122039