Artificial Intelligence for Prognosis of Gastro-Entero-Pancreatic Neuroendocrine Neoplasms
Simple Summary
Abstract
1. Introduction
2. Methods
3. AI-Driven Prognostic Models for GEP-NENs
3.1. Registry-Based Studies
3.2. Institutional Cohort Studies
3.3. Genetic and Molecular Data Studies
4. Challenges to Clinical Translation of AI in GEP-NENs
4.1. Heterogeneity and Potential Biases
4.2. Technical Limits of Current Models
4.3. Ethical and Financial Issues
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
GEP | Gastro-Entero-Pancreatic |
NEN | Neuroendocrine Neoplasm |
CT | Computed Tomography |
NET | Neuroendocrine Tumor |
NEC | Neuroendocrine Carcinoma |
ML | Machine Learning |
DL | Deep Learning |
SSTR | Somatostatin Receptor |
PET | Positron Emission Tomography |
SSA | Somatostatin Analog |
Pan | Pancreatic |
SEER | Surveillance, Epidemiology, and End Results |
LASSO | Least Absolute Shrinkage and Selection Operator |
AUC | Area Under the Curve |
OS | Overall Survival |
C-index | Concordance Index |
XGBoost | eXtreme Gradient Boosting |
SVC | C-Support Vector Classification |
GB | Gradient Boosting |
NB | Naïve Bayes |
NMLTR | Neural Multi-Task Logistic Regression |
WHO | World Health Organization |
DT | Decision Tree |
SVM | Support Vector Machine |
k-NN | k-Nearest Neighbor |
RFS | Recurrence-Free Survival |
PPV | Positive Predictive Value |
DSS | Disease-Specific Survival |
LNR | Lymph Node Ratio |
CS | Conditional Survival |
LODDS | Log Odds |
AJCC | American Joint Committee on Cancer |
HR | Hazard Ratio |
DLR | Deep Learning-Radiomics |
PFS | Progression-Free Survival |
CEUS | Contrast-Enhanced Ultrasound |
CNN | Convolutional Neural Network |
IHC | Immunohistochemistry |
MH | Morisita-Horn |
GBM | Gradient Boosting Machine |
References
- Nordstrand, M.A.; Lea, D.; Søreide, J.A. Incidence of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs): An updated systematic review of population-based reports from 2010 to 2023. J. Neuroendocr. 2025, 37, e70001. [Google Scholar] [CrossRef] [PubMed]
- WHO Classification of Endocrine and Neuroendocrine Tumours. In WHO Classification of Tumours Editorial Board (2022); IARC: Lyon, France, 2022.
- Merola, E.; Rinzivillo, M.; Cicchese, N.; Capurso, G.; Panzuto, F.; Delle Fave, G. Digestive neuroendocrine neoplasms: A 2016 overview. Dig. Liver Dis. 2016, 48, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Panzuto, F.; Merola, E.; Pavel, M.E.; Rinke, A.; Kump, P.; Partelli, S.; Rinzivillo, M.; Rodriguez-Laval, V.; Pape, U.F.; Lipp, R.; et al. Stage IV Gastro-Entero-Pancreatic Neuroendocrine Neoplasms: A Risk Score to Predict Clinical Outcome. Oncologist 2017, 22, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, V.; Kunikowska, J.; Baudin, E.; Bodei, L.; Bouvier, C.; Capdevila, J.; Cremonesi, M.; de Herder, W.W.; Dromain, C.; Falconi, M. Consensus on molecular imaging and theranostics in neuroendocrine neoplasms. Eur. J. Cancer 2021, 146, 56–73. [Google Scholar] [CrossRef]
- Santo, G.; di Santo, G.; Cicone, F.; Virgolini, I. Peptide receptor radionuclide therapy with somatostatin analogs beyond gastroenteropancreatic neuroendocrine tumors. J. Neuroendocr. 2025, 37, e70013. [Google Scholar] [CrossRef]
- Lamarca, A.; Bartsch, D.K.; Caplin, M.; Kos-Kudla, B.; Kjaer, A.; Partelli, S.; Rinke, A.; Janson, E.T.; Thirlwell, C.; van Velthuysen, M.F.; et al. European Neuroendocrine Tumor Society (ENETS) 2024 guidance paper for the management of well-differentiated small intestine neuroendocrine tumours. J. Neuroendocrinol 2024, 36, e13423. [Google Scholar] [CrossRef]
- Zandee, W.T.; Merola, E.; Poczkaj, K.; de Mestier, L.; Klümpen, H.; Geboes, K.; de Herder, W.W.; Munir, A. Evaluation of multidisciplinary team decisions in neuroendocrine neoplasms: Impact of expert centres. Eur. J. Cancer Care 2022, 31, e13639. [Google Scholar] [CrossRef]
- Facciorusso, A.; Crinò, S.F.; Ramai, D.; Madhu, D.; Fugazza, A.; Carrara, S.; Spadaccini, M.; Mangiavillano, B.; Gkolfakis, P.; Mohan, B.P.; et al. Comparative diagnostic performance of different techniques for EUS-guided fine-needle biopsy sampling of solid pancreatic masses: A network meta-analysis. Gastrointest. Endosc. 2023, 97, 839–848.e5. [Google Scholar] [CrossRef]
- Crinò, S.F.; Conti Bellocchi, M.C.; Di Mitri, R.; Inzani, F.; Rimbaș, M.; Lisotti, A.; Manfredi, G.; Teoh, A.Y.B.; Mangiavillano, B.; Sendino, O.; et al. Wet-suction versus slow-pull technique for endoscopic ultrasound-guided fine-needle biopsy: A multicenter, randomized, crossover trial. Endoscopy 2023, 55, 225–234. [Google Scholar] [CrossRef]
- Merola, E.; Michielan, A.; Gabbrielli, A. Commentary: Predicting histologic grades for pancreatic neuroendocrine tumors by radiologic image-based artificial intelligence: A systematic review and meta-analysis. Front. Oncol. 2025, 15, 1456557. [Google Scholar] [CrossRef]
- Wang, H.-N.; An, J.-H.; Zong, L. Estimating prognosis of gastric neuroendocrine neoplasms using machine learning: A step towards precision medicine. World J. Gastrointest. Oncol. 2024, 16, 4548–4552. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ramirez, F.; Yasrab, M.; Tixier, F.; Kawamoto, S.; Fishman, E.K.; Chu, L.C. The Role of AI in the Evaluation of Neuroendocrine Tumors: Current State of the Art. Semin. Nucl. Med. 2025, 55, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar]
- Li, J.; Huang, L.; Liao, C.; Liu, G.; Tian, Y.; Chen, S. Two machine learning-based nomogram to predict risk and prognostic factors for liver metastasis from pancreatic neuroendocrine tumors: A multicenter study. BMC Cancer 2023, 23, 529. [Google Scholar] [CrossRef]
- Liu, L.; Liu, W.; Jia, Z.; Li, Y.; Wu, H.; Qu, S.; Zhu, J.; Liu, X.; Xu, C. Application of machine learning algorithms to predict lymph node metastasis in gastric neuroendocrine neoplasms. Heliyon 2023, 9, e20928. [Google Scholar] [CrossRef]
- Clift, A.K.; Mahon, H.; Khan, G.; Boardman-Pretty, F.; Worker, A.; Marchini, E.; Buendia, O.; Fish, P.; Khan, M.S. Identifying patients with undiagnosed small intestinal neuroendocrine tumours in primary care using statistical and machine learning: Model development and validation study. Br. J. Cancer 2024, 131, 305–311. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Y.X.; Dai, B.; Chen, L. Development and Validation of a Novel Machine Learning Model to Predict the Survival of Patients with Gastrointestinal Neuroendocrine Neoplasms. Neuroendocrinology 2024, 114, 733–748. [Google Scholar] [CrossRef]
- Cheng, X.; Li, J.; Xu, T.; Li, K.; Li, J. Predicting Survival of Patients With Rectal Neuroendocrine Tumors Using Machine Learning: A SEER-Based Population Study. Front. Surg. 2021, 8, 745220. [Google Scholar] [CrossRef]
- Wu, R.; Chen, S.; He, Y.; Li, Y.; Mu, S.; Jin, A. Machine learning based predictive model and genetic mutation landscape for high-grade colorectal neuroendocrine carcinoma: A SEER database analysis with external validation. Front. Oncol. 2025, 15, 1509170. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, K.; Yan, L.; Yao, H.; Shi, H.; Lin, R. Predicting the survival of patients with pancreatic neuroendocrine neoplasms using deep learning: A study based on Surveillance, Epidemiology, and End Results database. Cancer Med. 2023, 12, 12413–12424. [Google Scholar] [CrossRef]
- Murakami, M.; Fujimori, N.; Nakata, K.; Nakamura, M.; Hashimoto, S.; Kurahara, H.; Nishihara, K.; Abe, T.; Hashigo, S.; Kugiyama, N.; et al. Machine learning-based model for prediction and feature analysis of recurrence in pancreatic neuroendocrine tumors G1/G2. J. Gastroenterol 2023, 58, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wu, H.Y.; Lin, J.X.; Qu, S.T.; Gu, Y.J.; Zhu, J.Z.; Xu, C.F. Combining lymph node ratio to develop prognostic models for postoperative gastric neuroendocrine neoplasm patients. World J. Gastrointest. Oncol. 2024, 16, 3507–3520. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.; Su, T.; Lu, Y.; Huang, L.; Wei, W.Y.; Feng, L.H. Random survival forest algorithm for risk stratification and survival prediction in gastric neuroendocrine neoplasms. Sci. Rep. 2024, 14, 26969. [Google Scholar] [CrossRef]
- Ding, F.; Zhuang, Y.; Chen, S. Machine Learning-Based Real-Time Survival Prediction for Gastric Neuroendocrine Carcinoma. Ann. Surg. Oncol. 2025, 32, 3372–3381. [Google Scholar] [CrossRef]
- Altaf, A.; Munir, M.M.; Endo, Y.; Khan, M.M.M.; Rashid, Z.; Khalil, M.; Guglielmi, A.; Aldrighetti, L.; Bauer, T.W.; Marques, H.P. Development of an artificial intelligence-based model to predict early recurrence of neuroendocrine liver metastasis after resection. J. Gastrointest. Surg. 2024, 28, 1828–1837. [Google Scholar] [CrossRef]
- Ma, M.; Gu, W.; Liang, Y.; Han, X.; Zhang, M.; Xu, M.; Gao, H.; Tang, W.; Huang, D. A novel model for predicting postoperative liver metastasis in R0 resected pancreatic neuroendocrine tumors: Integrating computational pathology and deep learning-radiomics. J. Transl. Med. 2024, 22, 768. [Google Scholar] [CrossRef]
- Centonze, G.; Maisonneuve, P.; Prinzi, N.; Pusceddu, S.; Albarello, L.; Pisa, E.; Barberis, M.; Vanoli, A.; Spaggiari, P.; Bossi, P.; et al. Prognostic Factors across Poorly Differentiated Neuroendocrine Neoplasms: A Pooled Analysis. Neuroendocrinology 2023, 113, 457–469. [Google Scholar] [CrossRef]
- Song, C.; Wang, M.; Luo, Y.; Chen, J.; Peng, Z.; Wang, Y.; Zhang, H.; Li, Z.P.; Shen, J.; Huang, B.; et al. Predicting the recurrence risk of pancreatic neuroendocrine neoplasms after radical resection using deep learning radiomics with preoperative computed tomography images. Ann. Transl. Med. 2021, 9, 833. [Google Scholar] [CrossRef]
- Yang, Z.; Han, Y.; Li, F.; Zhang, A.; Cheng, M.; Gao, J. Deep learning radiomics analysis based on computed tomography for survival prediction in gastric neuroendocrine neoplasm: A multicenter study. Quant. Imaging Med. Surg. 2023, 13, 8190–8203. [Google Scholar] [CrossRef]
- Huang, B.; Lin, X.; Shen, J.; Chen, X.; Chen, J.; Li, Z.P.; Wang, M.; Yuan, C.; Diao, X.F.; Luo, Y. Accurate and Feasible Deep Learning Based Semi-Automatic Segmentation in CT for Radiomics Analysis in Pancreatic Neuroendocrine Neoplasms. IEEE J. Biomed. Health Inform. 2021, 25, 3498–3506. [Google Scholar] [CrossRef]
- Hasic Telalovic, J.; Pillozzi, S.; Fabbri, R.; Laffi, A.; Lavacchi, D.; Rossi, V.; Dreoni, L.; Spada, F.; Fazio, N.; Amedei, A. A Machine Learning Decision Support System (DSS) for Neuroendocrine Tumor Patients Treated with Somatostatin Analog (SSA) Therapy. Diagnostics 2021, 11, 804. [Google Scholar] [CrossRef] [PubMed]
- Otto, R.; Detjen, K.M.; Riemer, P.; Fattohi, M.; Grotzinger, C.; Rindi, G.; Wiedenmann, B.; Sers, C.; Leser, U. Transcriptomic Deconvolution of Neuroendocrine Neoplasms Predicts Clinically Relevant Characteristics. Cancers 2023, 15, 936. [Google Scholar] [CrossRef] [PubMed]
- Padwal, M.K.; Basu, S.; Basu, B. Application of Machine Learning in Predicting Hepatic Metastasis or Primary Site in Gastroenteropancreatic Neuroendocrine Tumors. Curr. Oncol. 2023, 30, 9244–9261. [Google Scholar] [CrossRef]
- Greenberg, J.A.; Shah, Y.; Ivanov, N.A.; Marshall, T.; Kulm, S.; Williams, J.; Tran, C.; Scognamiglio, T.; Heymann, J.J.; Lee-Saxton, Y.J.; et al. Developing a Predictive Model for Metastatic Potential in Pancreatic Neuroendocrine Tumor. J. Clin. Endocrinol. Metab. 2024, 110, 263–274. [Google Scholar] [CrossRef]
- Kidd, M.; Drozdov, I.A.; Chirindel, A.; Nicolas, G.; Imagawa, D.; Gulati, A.; Tsuchikawa, T.; Prasad, V.; Halim, A.B.; Strosberg, J. NETest(R) 2.0—A decade of innovation in neuroendocrine tumor diagnostics. J. Neuroendocrinol. 2025, 37, e70002. [Google Scholar] [CrossRef]
- Gu, W.; Chen, Y.; Zhu, H.; Chen, H.; Yang, Z.; Mo, S.; Zhao, H.; Chen, L.; Nakajima, T.; Yu, X. Development and validation of CT-based radiomics deep learning signatures to predict lymph node metastasis in non-functional pancreatic neuroendocrine tumors: A multicohort study. EClinicalMedicine 2023, 65, 102269. [Google Scholar] [CrossRef]
- Smiley, A.; Reategui-Rivera, C.M.; Villarreal-Zegarra, D.; Escobar-Agreda, S.; Finkelstein, J. Exploring Artificial Intelligence Biases in Predictive Models for Cancer Diagnosis. Cancers 2025, 17, 407. [Google Scholar] [CrossRef]
- Chen, H.Y.; Pan, Y.; Chen, J.Y.; Chen, J.; Liu, L.L.; Yang, Y.B.; Li, K.; Ma, Q.; Shi, L.; Yu, R.S.; et al. Machine Learning Methods Based on CT Features Differentiate G1/G2 From G3 Pancreatic Neuroendocrine Tumors. Acad. Radiol. 2024, 31, 1898–1905. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Artificial Intelligence/Machine Learning-Enabled Device Software Functions: Draft Guidance for Industry and FDA Staff; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2025. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/artificial-intelligence-enabled-device-software-functions-lifecycle-management-and-marketing (accessed on 11 June 2025).
- European Parliament and Council of the European Union. Artificial Intelligence Act. Official Journal of the European Union; European Parliament and Council of the European Union: Strasbourg, France, 2024; Available online: https://artificialintelligenceact.eu/the-act/ (accessed on 11 June 2025).
- Carlsen, E.A.; Lindholm, K.; Hindsholm, A.; Gæde, M.; Ladefoged, C.N.; Loft, M.; Johnbeck, C.B.; Langer, S.W.; Oturai, P.; Knigge, U. A convolutional neural network for total tumor segmentation in [(64)Cu]Cu-DOTATATE PET/CT of patients with neuroendocrine neoplasms. EJNMMI Res. 2022, 12, 30. [Google Scholar] [CrossRef]
- Harishbhai Tilala, M.; Kumar Chenchala, P.; Choppadandi, A.; Kaur, J.; Naguri, S.; Saoji, R.; Devaguptapu, B. Ethical Considerations in the Use of Artificial Intelligence and Machine Learning in Health Care: A Comprehensive Review. Cureus 2024, 16, e62443. [Google Scholar] [CrossRef]
- Chew, B.H.; Ngiam, K.Y. Artificial intelligence tool development: What clinicians need to know? BMC Med. 2025, 23, 244. [Google Scholar] [CrossRef] [PubMed]
- Hill, H.; Roadevin, C.; Duffy, S.; Mandrik, O.; Brentnall, A. Cost-Effectiveness of AI for Risk-Stratified Breast Cancer Screening. JAMA Netw. Open 2024, 7, e2431715. [Google Scholar] [CrossRef]
Study | Aim | Overall Population | AI Technique | Variables Included in the Model | Key Results | Limitations |
---|---|---|---|---|---|---|
Cheng 2021 [19] | Prediction of 5-yr OS | SEER-based 10,580 rectal NETs + 68 Chinese cases | 6 ML algorithms (SVC, Nu-SVC, Random-Forest, AdaBoost, NB, XGBoost) | Gender, age, race, histologic type, tumor size, tumor number, summary stage, and surgical treatment | - Best performance by XGBoost - AUC: 0.86–0.90 | - Retrospective design - Limited external validation - No medical treatment details - No data on radiomics, genomics |
Jiang 2023 [21] | Prediction of 5- and 10-yr OS | SEER-based 3239 PanNENs | DeepSurv neural network vs. NMLTR, random survival forest, Cox model | Gender, age, marital status, race, primary site, grade, surgery, chemotherapy, tumor size, and tumor extension | - AUC: 0.87 (5-yr) 0.90 (10-yr) - Web calculator provided | - Retrospective design - Only registry data - No external validation - No treatment details - No data on radiomics, genomics |
Li 2023 [15] | Prediction of metastases and OS | SEER-based 1998 PanNETs + 245 Chinese cases | LASSO + Random-Forest feature selection → logistic and Cox nomogram models | Diagnostic model: grade, N-stage, surgery, chemotherapy, tumor size, bone metastasis Prognostic model: subtype, grade, surgery, age, brain metastases | - Nomogram outperforms TNM staging system - AUC: 0.88–0.89 - C-index: 0.76 | - Retrospective design - Limited WHO grading - No therapy details - Limited external validation - No data on radiomics, genomics |
Liu 2023 [16] | Prediction of lymph node metastases | SEER-based 1137 gastric NENs + 119 Chinese cases | 6 ML algorithms: logistic regression, random forest, DT, NB, SVM, and k-NN | Gender, primary site, tumor size, differentiation grade, T stage, M stage | - Best performance by Random Forest - AUC: 0.81 - Accuracy: 0.78 | - Mixed retrospective/prospective design - Limited external validation - No data on radiomics, genomics |
Murakami 2023 [22] | Prediction of RFS | Multicenter (Japanese registry), 371 PanNETs G1/G2 | Random Survival Forest vs. Cox model | Tumor size, Ki-67, residual tumor status, WHO grade, lymph node metastases | - Best performance by Random Survival Forest - AUC: 0.73–0.83 - C-index: 0.84 | - Retrospective design - No external validation - Long enrollment period (33 years) - No data on radiomics, genomics |
Clift 2024 [17] | Prediction of small bowel NET diagnosis in primary care | UK-registry-based 11.7 million patients, 382 small bowel NETs | Logistic regression, LASSO and ridge logistic models, XGBoost | Age, family history, symptoms or signs (e.g., abdominal pain), data for differential diagnoses (e.g., imaging or coeliac testing) | - Best performance by XGBoost - AUC: 0.87 - Calibration slope: 1.16 | - Retrospective design - Extreme rarity (0.003%) in the dataset with modest PPV - No data on radiomics, genomics |
Liao 2024 [24] | Prediction of OS | SEER-based 775 gastric NENs | 10 ML algorithms (LASSO, random survival forest, elastic net, Ridge, Cox boost, stepwise Cox, SVM, generalized boosted regression modeling, supervised principal component analysis, Cox partial least squares regression) | Gender, age, race, marital status, differentiation, stage, chemotherapy, radiation | - Best performance by random survival forest - AUC: 0.88–0.96 | - Retrospective design - No external validation - No data on radiomics, genomics |
Liu S. 2024 [18] | Prediction of OS | SEER-based 43,444 gastrointestinal NENs | 11 ML algorithms | Gender, age, race, histology, grade, metastases, size, site, tumor number, surgery, N stage, nodes metastases, and removed | - Best performance by Oblique Random Survival Forest - C-index: 0.86 - AUC: 0.87 | - Retrospective design - No external validation - No data on radiomics, genomics |
Liu W. 2024 [23] | Prediction of DSS after resection (role of LNR) | SEER-based 286 gastric NENs + 92 Chinese cases | Random Survival Forest vs. Cox model | Gender, age, race, marital status, primary site, histology, size, stage, LNR, surgery details, radiotherapy, chemotherapy | - Best performance by Random Survival Forest - C-index: 0.77 | - Retrospective design - Limited external validation - No data on radiomics, genomics |
Ding 2025 [25] | Prediction of CS | 654 SEER NECs | Random Survival Forest + LASSO-Cox nomogram | Age, grade, tumor stage, surgery, chemotherapy | - AUC: 0.87 at 5 years - 5-yr CS rise in 4 years (48– 94 %) | - Retrospective design - Missing data from the registry - No data on radiomics, genomics |
Wu 2025 [20] | Prediction of survival | SEER-based 714 colorectal NECs + external 47 Chinese cases | LASSO model, Random Forest, XGBoost feature selection | Gender, age, race, marital status, M stage, log odds of positive nodes, surgery, radiotherapy, chemotherapy, genetic mutations (including TP53) | - C-index: 0.65–0.83 - AUC ≈ 0.80 - Web calculator provided | - Retrospective design - Limited external validation - No data on radiomics |
Study | Aim | Overall Population | AI Technique | Variables Included in the Model | Key Results | Limitations |
---|---|---|---|---|---|---|
Song 2021 [29] | Prediction of 5-yr RFS | Multicenter, 74 Pan-NENs | U-Net segmentation + DL radiomics (SE-ResNeXt-50) + SVM | Arterial-phase DLR features + age, neuroendocrine symptoms | AUC: 0.77–0.83 | - Retrospective design - Small sample size - Limited external validation - No data on genomics |
Telalovic 2021 [32] | Prediction of PFS during SSA | Single-center, 74 metastatic GEP-NETs | 10 ML algorithms (logistic regression, DT, random forest, SVM, NB, multinomial NB, k-NN, GB, extremely randomized tree classifier, multilayer perceptron) | Gender, age, functioning NET, Ki-67/grading, primary site, metastatic sites, SSA type, adverse events | - Best performance by NB - Accuracy: 80% - Key drivers: age, primary site, number of metastatic sites | - Retrospective design - Small sample size - Limited external validation - No data on radiomics, genomics |
Huang 2022 [31] | Preoperative prediction of aggressiveness | Single-center, 104 PanNENs | DL probability from CEUS: Fine-tuned SE-ResNeXt-50 CNN + multivariate logistic nomogram | CEUS images, tumor size, arterial enhancement level | AUC: 0.85–0.97 | - Retrospective design - Small sample size - No external validation - Heterogeneous data (CEUS machines) - Surrogate aggressiveness definition (G3 or invasion) - No data on genomics |
Centonze 2023 [28] | Identification of prognostic factors | Multicenter, 422 NECs | Random Survival Forest (with Cox comparison) | Gender, age, pure neuroendocrine morphology or mixed, pathological tumor staging, IHC (Ki-67, SSTR2A, p53 and rb1), mutation analysis (TP53, RB1, KRAS and BRAF genes) | - HR: 5.5 (Ki-67 ≥ 55%) - Additional independent factors: morphology, stage III–IV, primary site (colorectal and gastro-oesophageal worst) | - Retrospective design - No external validation - No treatment details - Heterogeneous data (different primary sites) - No data on radiomics |
Yang 2023 [30] | Prediction of OS | Multicenter, 162 gastric NENs | DL radiomics (ResNet-50 DL feature extraction) + Cox nomogram | Arterial and venous DL signatures, Ki-67, tumor longest diameter, metastases | - C-index: 0.71–0.86 - HR: 3.12 (high risk) | - Retrospective design - Small sample size - Manual 2-D segmentation; - CT scanner heterogeneity - No data on genomics |
Altaf 2024 [26] | Prediction of early recurrence (≤12 mo) after resection of liver metastases | Multicenter, 473 metastatic NENs | Ensemble AI model | Gender, smoking status, tumor size, number of metastases, bilobar pattern, tumor differentiation, lymphovascular/perineural invasion | - AUC: 0.71–0.76 - Web calculator provided | - Retrospective design - Limited external validation - Long enrollment period (30 years) - No data on radiomics, genomics |
Ma 2024 [27] | Prediction of postoperative liver metastasis | Single-center, 163 PanNETs | Integrated nomogram (Pathomics logistic score + ResNet-based DLR + nerve infiltration) | Gender, age, tumor site in the pancreas, vascular/nerve infiltration, stage, ATRX/DAXX, Ki-67 hotspot index, MH index, DLR score | - AUC: 0.96–0.98 - C-index: 0.96 | - Retrospective design - Small sample - No external validation - Heterogeneous surgical scenarios - No data on genomics |
Study | Aim | Overall Population | AI Technique | Variables Included in the Model | Key Results | Limitations |
---|---|---|---|---|---|---|
Otto 2023 [33] | Prediction of grading, NEC/NET status, and disease-related survival | Multicenter, 513 GEP-NENs | ML for transcriptomic deconvolution (Bioinformatics) | Gene expression data, including MKI67 expression | - Accuracy: 81% (grading), 78% (NEC/NET) - r: 0.45 (survival) | - Retrospective design - No prospective clinical validation - Complex multi-step workflow - No data on radiomics |
Padwal 2023 [34] | Prediction of liver metastases or primary site | 214 GEP-NETs | 7 ML models (Linear Discriminant Analysis, Random Forest, Classification and Regression Tree, k-NN, SVM, XGBOOST, GBM) | Multiple gene panel (including ALB, SFRP2, PRRX2, LMO3, NKX2-3) | Accuracy: 93%–100% | - Retrospective design - No clinical data (including therapy details) - No data on radiomics |
Greenberg 2024 [35] | Prediction of metastases after resection | Multicenter, 95 PanNETs | ML applied to define a transcriptomic-based gene panel | Genes: SV2, chromogranin A and B, (TPH1), ARX, PDX1, UCHL1, novel 8-gene panel (AURKA, CDCA8, CPB2, MYT1L, NDC80, PAPPA2, SFMBT1, ZPLD1) | AUC: 0.88 | - Retrospective design - Small sample size - No external validation - No data on clinical status, radiomics |
Kidd 2025 [36] | Prediction of tumor progression | Multicenter, 1,336 patients (1,072 NENs) | Ensemble ML converting data from NETest into activity score | Expression levels of 51 neuroendocrine-related genes | AUC: 0.81 (1 yr) | - Proprietary algorithm - Limited public data - No data on radiomics |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merola, E.; Fanciulli, G.; Pes, G.M.; Dore, M.P. Artificial Intelligence for Prognosis of Gastro-Entero-Pancreatic Neuroendocrine Neoplasms. Cancers 2025, 17, 1981. https://doi.org/10.3390/cancers17121981
Merola E, Fanciulli G, Pes GM, Dore MP. Artificial Intelligence for Prognosis of Gastro-Entero-Pancreatic Neuroendocrine Neoplasms. Cancers. 2025; 17(12):1981. https://doi.org/10.3390/cancers17121981
Chicago/Turabian StyleMerola, Elettra, Giuseppe Fanciulli, Giovanni Mario Pes, and Maria Pina Dore. 2025. "Artificial Intelligence for Prognosis of Gastro-Entero-Pancreatic Neuroendocrine Neoplasms" Cancers 17, no. 12: 1981. https://doi.org/10.3390/cancers17121981
APA StyleMerola, E., Fanciulli, G., Pes, G. M., & Dore, M. P. (2025). Artificial Intelligence for Prognosis of Gastro-Entero-Pancreatic Neuroendocrine Neoplasms. Cancers, 17(12), 1981. https://doi.org/10.3390/cancers17121981