Preliminary Evaluation of Radiomics in Contrast-Enhanced Mammography for Prognostic Prediction of Breast Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- -
- Patients with suspicious lesions detected in screening examinations who underwent CEM before cytological/histological assessment;
- -
- Patients whose cytological/histological evaluation resulted in a diagnosis of breast cancer;
- -
- Patients with a single breast cancer lesion;
- -
- Patients who underwent breast surgery at the same institution.
- -
- Patients whose biopsy result, performed after CEM, indicated a benign condition;
- -
- Patients with more than one breast lesion;
- -
- Patients for whom follow-up data could not be retrieved;
- -
- Pregnant patients;
- -
- Patients with known allergies to iodinated contrast media.
2.1. Collected Data
2.2. CEM Protocol
2.3. Image Analysis
2.4. Feature Selection and Radiomic Score Calculation
2.5. Prognostic Models Comparison
3. Results
3.1. Radiomic Analysis
3.2. Overall Survival (OS)
3.3. Disease-Free Survival (DFS)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Subhan, A.; Parveen, F.; Shah, H.; Yalamarty, S.S.K.; Ataide, J.A.; Torchilin, V.P. Recent Advances with Precision Medicine Treatment for Breast Cancer including Triple-Negative Sub-Type. Cancers 2023, 15, 2204. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Dewanjee, S.; Li, Y.; Jha, N.K.; Chen, Z.-S.; Kumar, A.; Vishakha; Behl, T.; Jha, S.K.; Tang, H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol. Cancer 2023, 22, 105. [Google Scholar] [CrossRef] [PubMed]
- Sorlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 2001, 98, 10869–10874. [Google Scholar] [CrossRef] [PubMed]
- Sørlie, T.; Tibshirani, R.; Parker, J.; Hastie, T.; Marron, J.S.; Nobel, A.; Deng, S.; Johnsen, H.; Pesich, R.; Geisler, S.; et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA 2003, 100, 8418–8423. [Google Scholar] [CrossRef]
- Yersal, O.; Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J. Clin. Oncol. 2014, 5, 412–424. [Google Scholar] [CrossRef]
- Waks, A.G.; Winer, E.P. Breast Cancer Treatment: A Review. JAMA 2019, 321, 288–300. [Google Scholar] [CrossRef]
- Jorns, J.M. Breast Cancer Biomarkers: Challenges in Routine Estrogen Receptor, Progesterone Receptor, and HER2/neu Evaluation. Arch. Pathol. Lab. Med. 2019, 143, 1444–1449. [Google Scholar] [CrossRef]
- Barzegar, M.; Schiaffino, S. Editorial for “A Channel-Dimensional Feature-Reconstructed Deep Learning Model for Predicting Breast Cancer Molecular Subtypes on Overall b-Value Diffusion-Weighted MRI”. J. Magn. Reson. Imaging 2023, 59, 1436–1437. [Google Scholar] [CrossRef]
- Nicosia, L.; Pesapane, F.; Bozzini, A.C.; Latronico, A.; Rotili, A.; Ferrari, F.; Signorelli, G.; Raimondi, S.; Vignati, S.; Gaeta, A.; et al. Prediction of the Malignancy of a Breast Lesion Detected on Breast Ultrasound: Radiomics Applied to Clinical Practice. Cancers 2023, 15, 964. [Google Scholar] [CrossRef]
- Pesapane, F.; De Marco, P.; Rapino, A.; Lombardo, E.; Nicosia, L.; Tantrige, P.; Rotili, A.; Bozzini, A.C.; Penco, S.; Dominelli, V.; et al. How Radiomics Can Improve Breast Cancer Diagnosis and Treatment. J. Clin. Med. 2023, 12, 1372. [Google Scholar] [CrossRef]
- Park, H.; Lim, Y.; Ko, E.S.; Cho, H.-H.; Lee, J.E.; Han, B.-K.; Ko, E.Y.; Choi, J.S.; Park, K.W. Radiomics Signature on Magnetic Resonance Imaging: Association with Disease-Free Survival in Patients with Invasive Breast Cancer. Clin. Cancer Res. 2018, 24, 4705–4714. [Google Scholar] [CrossRef] [PubMed]
- Drukker, K.; Li, H.; Antropova, N.; Edwards, A.; Papaioannou, J.; Giger, M.L. Most-enhancing tumor volume by MRI radiomics predicts recurrence-free survival “early on” in neoadjuvant treatment of breast cancer. Cancer Imaging 2018, 18, 12. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, S.H.; Kim, Y.; Park, J.; Park, G.E.; Kang, B.J. Radiomics Nomogram: Prediction of 2-Year Disease-Free Survival in Young Age Breast Cancer. Cancers 2022, 14, 4461. [Google Scholar] [CrossRef]
- Yu, Y.; Ren, W.; He, Z.; Chen, Y.; Tan, Y.; Mao, L.; Ouyang, W.; Lu, N.; Ouyang, J.; Chen, K.; et al. Machine learning radiomics of magnetic resonance imaging predicts recurrence-free survival after surgery and correlation of LncRNAs in patients with breast cancer: A multicenter cohort study. Breast Cancer Res. 2023, 25, 132. [Google Scholar] [CrossRef]
- Ma, M.; Gan, L.; Liu, Y.; Jiang, Y.; Xin, L.; Liu, Y.; Qin, N.; Cheng, Y.; Liu, Q.; Xu, L.; et al. Radiomics features based on automatic segmented MRI images: Prognostic biomarkers for triple-negative breast cancer treated with neoadjuvant chemotherapy. Eur. J. Radiol. 2022, 146, 110095. [Google Scholar] [CrossRef]
- Pötsch, N.; Vatteroni, G.; Clauser, P.; Helbich, T.H.; Baltzer, P.A.T. Contrast-enhanced Mammography versus Contrast-enhanced Breast MRI: A Systematic Review and Meta-Analysis. Radiology 2022, 305, 94–103. [Google Scholar] [CrossRef]
- Neeter, L.M.F.H.; Robbe, M.Q.; van Nijnatten, T.J.; Jochelson, M.S.; Raat, H.; Wildberger, J.E.; Smidt, M.L.; Nelemans, P.J.; Lobbes, M.B.I. Comparing the Diagnostic Performance of Contrast-Enhanced Mammography and Breast MRI: A Systematic Review and Meta-Analysis. J. Cancer 2023, 14, 174–182. [Google Scholar] [CrossRef]
- Nicosia, L.; Bozzini, A.C.; Ballerini, D.; Palma, S.; Pesapane, F.; Raimondi, S.; Gaeta, A.; Bellerba, F.; Origgi, D.; De Marco, P.; et al. Radiomic Features Applied to Contrast Enhancement Spectral Mammography: Possibility to Predict Breast Cancer Molecular Subtypes in a Non-Invasive Manner. Int. J. Mol. Sci. 2022, 23, 15322. [Google Scholar] [CrossRef]
- La Forgia, D.; Fanizzi, A.; Campobasso, F.; Bellotti, R.; Didonna, V.; Lorusso, V.; Moschetta, M.; Massafra, R.; Tamborra, P.; Tangaro, S.; et al. Radiomic Analysis in Contrast-Enhanced Spectral Mammography for Predicting Breast Cancer Histological Outcome. Diagnostics 2020, 10, 708. [Google Scholar] [CrossRef]
- Sickles, E.A.; D’Orsi, C.J.; Bassett, L.W.; Appleton, C.M.; Berg, W.A.; Burnside, E.S. ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System; American College of Radiology: Reston, VA, USA, 2013. [Google Scholar]
- Lee, C.H.; Phillips, C.J.; Sung, J.S. ACR BI-RADS®. In ACR BI-RADS® CONTRAST ENHANCED MAMMOGRAPHY (CEM) A supplement to ACR BI-RADS® Mammography 2013 Atlas, Breast Imaging Reporting and Data System; American College of Radiology: Reston, VA, USA, 2022. [Google Scholar]
- Nioche, C.; Orlhac, F.; Boughdad, S.; Reuzé, S.; Goya-Outi, J.; Robert, C.; Pellot-Barakat, C.; Soussan, M.; Frouin, F.; Buvat, I. LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. Cancer Res. 2018, 78, 4786–4789. [Google Scholar] [CrossRef]
- Zhan, Y.; Song, F.; Zhang, W.; Gong, T.; Zhao, S.; Lv, F. Prediction of benign and malignant pulmonary nodules using preoperative CT features: Using PNI-GARS as a predictor. Front. Immunol. 2024, 15, 1446511. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yue, X.; Cui, J.; Huang, S.; Liu, W.; Qi, J.; He, K.; Li, T. An interpretable radiomics-based machine learning model for predicting reverse left ventricular remodeling in STEMI patients using late gadolinium enhancement of myocardial scar. Eur. Radiol. 2025; ahead of print. [Google Scholar]
- Harrell, F.E., Jr.; Lee, K.L.; Mark, D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Tan, T.; Li, Q.; Li, T. Revolutionizing HER-2 assessment: Multidimensional radiomics in breast cancer diagnosis. BMC Cancer 2025, 25, 265. [Google Scholar] [CrossRef]
- Chen, G.; Liu, W.; Lin, Y.; Zhang, J.; Huang, R.; Ye, D.; Huang, J.; Chen, J. Predicting bone metastasis risk of colorectal tumors using radiomics and deep learning ViT model. J. Bone Oncol. 2024, 51, 100659. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Mazurowski, M.A.; Saha, A.; Harowicz, M.R.; Cain, E.H.; Marks, J.R.; Marcom, P.K. Association of distant recurrence-free survival with algorithmically extracted MRI characteristics in breast cancer. J. Magn. Reson. Imaging 2019, 49, e231–e240. [Google Scholar] [CrossRef]
- Elahi, R.; Nazari, M. An updated overview of radiomics-based artificial intelligence (AI) methods in breast cancer screening and diagnosis. Radiol. Phys. Technol. 2024, 17, 795–818. [Google Scholar] [CrossRef]
- Nicosia, L.; Gnocchi, G.; Gorini, I.; Venturini, M.; Fontana, F.; Pesapane, F.; Abiuso, I.; Bozzini, A.C.; Pizzamiglio, M.; Latronico, A.; et al. History of Mammography: Analysis of Breast Imaging Diagnostic Achievements over the Last Century. Healthcare 2023, 11, 1596. [Google Scholar] [CrossRef]
- Cozzi, A.; Magni, V.; Zanardo, M.; Schiaffino, S.; Sardanelli, F. Contrast-enhanced Mammography: A Systematic Review and Meta-Analysis of Diagnostic Performance. Radiology 2022, 302, 568–581. [Google Scholar] [CrossRef] [PubMed]
- Nicosia, L.; Bozzini, A.C.; Palma, S.; Montesano, M.; Signorelli, G.; Pesapane, F.; Latronico, A.; Bagnardi, V.; Frassoni, S.; Sangalli, C.; et al. Contrast-Enhanced Spectral Mammography and tumor size assessment: A valuable tool for appropriate surgical management of breast lesions. La Radiol. Medica 2022, 127, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Nicosia, L.; Battaglia, O.; Venturini, M.; Fontana, F.; Minenna, M.; Pesenti, A.; Budascu, D.; Pesapane, F.; Bozzini, A.C.; Pizzamiglio, M.; et al. Contrast-enhanced mammography BI-RADS: A case-based approach to radiology reporting. Insights Imaging 2024, 15, 37. [Google Scholar] [CrossRef]
- Kaiyin, M.; Lingling, T.; Leilei, T.; Wenjia, L.; Bin, J. Head-to-head comparison of contrast-enhanced mammography and contrast-enhanced MRI for assessing pathological complete response to neoadjuvant therapy in patients with breast cancer: A meta-analysis. Breast Cancer Res. Treat. 2023, 202, 1–9. [Google Scholar] [CrossRef]
- Nicosia, L.; Bozzini, A.C.; Pesapane, F.; Rotili, A.; Marinucci, I.; Signorelli, G.; Frassoni, S.; Bagnardi, V.; Origgi, D.; De Marco, P.; et al. Breast Digital Tomosynthesis versus Contrast-Enhanced Mammography: Comparison of Diagnostic Application and Radiation Dose in a Screening Setting. Cancers 2023, 15, 2413. [Google Scholar] [CrossRef]
- Elder, K.; Matheson, J.; Nickson, C.; Box, G.; Ellis, J.; Mou, A.; Shadbolt, C.; Park, A.; Tay, J.; Rose, A.; et al. Contrast enhanced mammography in breast cancer surveillance. Breast Cancer Res. Treat. 2023, 199, 221–230. [Google Scholar] [CrossRef]
- Piccolo, C.L.; Sarli, M.; Pileri, M.; Tommasiello, M.; Rofena, A.; Guarrasi, V.; Soda, P.; Zobel, B.B. Radiomics for Predicting Prognostic Factors in Breast Cancer: Insights from Contrast-Enhanced Mammography (CEM). J. Clin. Med. 2024, 13, 6486. [Google Scholar] [CrossRef]
- Luo, Q.; Wang, J.; Zhao, W.; Peng, Z.; Liu, X.; Li, B.; Zhang, H.; Shan, B.; Zhang, C.; Duan, C. Vasculogenic mimicry in carcinogenesis and clinical applications. J. Hematol. Oncol. 2020, 13, 19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morales-Guadarrama, G.; García-Becerra, R.; Méndez-Pérez, E.A.; García-Quiroz, J.; Avila, E.; Díaz, L. Vasculogenic Mimicry in Breast Cancer: Clinical Relevance and Drivers. Cells 2021, 10, 1758. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, X.; Xie, T.; Luo, J.; Zhou, Z.; Yu, X.; Guo, X. Radiomics predicts the prognosis of patients with locally advanced breast cancer by reflecting the heterogeneity of tumor cells and the tumor microenvironment. Breast Cancer Res. 2022, 24, 20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, M.; Gan, L.; Jiang, Y.; Qin, N.; Li, C.; Zhang, Y.; Wang, X. Radiomics Analysis Based on Automatic Image Segmentation of DCE-MRI for Predicting Triple-Negative and Nontriple-Negative Breast Cancer. Comput. Math. Methods Med. 2021, 2021, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bos, P.; Brekel, M.W.v.D.; Taghavi, M.; Gouw, Z.A.; Al-Mamgani, A.; Waktola, S.; Aerts, H.J.; Beets-Tan, R.G.; Castelijns, J.A.; Jasperse, B. Simple delineations cannot substitute full 3d tumor delineations for MR-based radiomics prediction of locoregional control in oropharyngeal cancer. Eur. J. Radiol. 2022, 148, 110167. [Google Scholar] [CrossRef]
- Gong, J.; Bao, X.; Wang, T.; Liu, J.; Peng, W.; Shi, J.; Wu, F.; Gu, Y. A short-term follow-up CT based radiomics approach to predict response to immunotherapy in advanced non-small-cell lung cancer. OncoImmunology 2022, 11, 2028962. [Google Scholar] [CrossRef]
- Vanzulli, A.; Sciacqua, L.V.; Patti, F.; Drebot, R.; Montin, E.; Lattanzi, R.; Lozza, L.A.M.; Villa, S.; Scaramuzza, D. Radiomics to predict tumor response to combination chemoradiotherapy in squamous cell carcinoma of the anal canal: A preliminary investigation. Eur. Radiol. Exp. 2025, 9, 35. [Google Scholar] [CrossRef]
Characteristics | N = 126 1 |
---|---|
Lesion type | |
Mass | 120 (95%) |
Mass with microcalcifications | 2 (1.6%) |
Microcalcifications | 4 (3.2%) |
Breast density (ACR) | |
A | 1 (0.8%) |
B | 26 (21%) |
C | 84 (67%) |
D | 15 (12%) |
Background (minimal, mild, moderate, or marked) | |
Minimal | 78 (62%) |
Mild | 32 (25%) |
Moderate | 9 (7.1%) |
Marked | 7 (5.6%) |
Enhancement | |
Yes | 126 (100%) |
Lesion Conspicuity (mild, moderate, or marked) | |
Mild | 17 (13%) |
Moderate | 51 (40%) |
Marked | 58 (46%) |
Enhancement size | 18 (14, 32) |
Characteristics | N = 126 1 |
---|---|
T stage | |
pT1 | 72 (57%) |
pT2 | 37 (29%) |
pT3 | 13 (10%) |
pT4 | 1 (0.8%) |
yT1 | 3 (2.4%) |
N stage | |
pN0 | 59 (47%) |
pN1 | 35 (28%) |
pN2 | 11 (8.7%) |
pN3 | 16 (13%) |
pNX | 5 (4.0%) |
Stage | |
I | 52 (41%) |
II | 44 (35%) |
III | 30 (24%) |
Grading at biopsy | |
G1 | 16 (13%) |
G2 | 58 (46%) |
G3 | 48 (38%) |
Missing | 4 (3.2%) |
1 n (%); Range; Median (IQR) |
Characteristics | N = 126 1 |
---|---|
ER median (Q2, Q4) | 90 (70, 95) |
PgR median (Q2, Q4) | 70 (15, 90) |
Ki-67 median (Q2, Q4) | 22 (14, 28) |
HER2 | |
Absent | 59 (47%) |
Low | 48 (38%) |
High | 19 (15%) |
Molecular profile | |
HER2 | 16 (13%) |
Luminal A | 55 (44%) |
Luminal B | 43 (34%) |
TN | 12 (9.5%) |
Grading at surgery | |
G1 | 17 (13%) |
G2 | 57 (45%) |
G3 | 50 (40%) |
Missing | 2 (1.6%) |
1 n (%); Range; Median (IQR) |
Characteristics of Patients with Recurrence | N = 23/126 |
---|---|
Event type | |
Breast cancer metastasis | 15 |
Breast recurrence | 8 |
Histology of surgery at follow-up | |
Infiltrative ductal carcinoma | 6 |
Lobular intraepithelial neoplasia (LIN2) | 1 |
High-grade ductal carcinoma in situ (DIN3) | 1 |
N/A | 15 |
Molecular profile of surgery at follow-up | |
Er 0% Pgr 0%; Her 2+; Ki-67 18% | 1 |
Er 90% Pgr 0%; Her 2+; Ki-67 27% | 1 |
Er 90% Pgr 0%; Her 2 0; Ki-67 15% | 1 |
Er 90% Pgr 0%; Her 2+; Ki-67 2% | 1 |
Er 90% Pgr 0%; Her2 neg; Ki-67 22% | 1 |
Er 95% Pgr 3%; Her 2neg; Ki-67 30% | 1 |
Er 95% Pgr 90%; Her 2 neg; Ki-67 28% | 1 |
Er 90% Pgr 0%; Her 2 neg; Ki-67 35% | 1 |
N/A | 15 |
Site of metastasis | |
Ipsilateral axillary lymph node | 1 |
Bone at onset | 1 |
Ovary | 1 |
Bone and liver | 2 |
Lymph node and pleura (from gastric cancer) | 1 |
Lymph node, liver, and bone | 1 |
Lymph node, omentum, bowel, and liver | 1 |
Brain | 1 |
Brain, bone, liver, and lymph node | 1 |
Lymph node | 3 |
Pleura | 1 |
Uterus | 1 |
N/A | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicosia, L.; Mariano, L.; Gaeta, A.; Raimondi, S.; Pesapane, F.; Corso, G.; De Marco, P.; Origgi, D.; Sangalli, C.; Bianco, N.; et al. Preliminary Evaluation of Radiomics in Contrast-Enhanced Mammography for Prognostic Prediction of Breast Cancer. Cancers 2025, 17, 1926. https://doi.org/10.3390/cancers17121926
Nicosia L, Mariano L, Gaeta A, Raimondi S, Pesapane F, Corso G, De Marco P, Origgi D, Sangalli C, Bianco N, et al. Preliminary Evaluation of Radiomics in Contrast-Enhanced Mammography for Prognostic Prediction of Breast Cancer. Cancers. 2025; 17(12):1926. https://doi.org/10.3390/cancers17121926
Chicago/Turabian StyleNicosia, Luca, Luciano Mariano, Aurora Gaeta, Sara Raimondi, Filippo Pesapane, Giovanni Corso, Paolo De Marco, Daniela Origgi, Claudia Sangalli, Nadia Bianco, and et al. 2025. "Preliminary Evaluation of Radiomics in Contrast-Enhanced Mammography for Prognostic Prediction of Breast Cancer" Cancers 17, no. 12: 1926. https://doi.org/10.3390/cancers17121926
APA StyleNicosia, L., Mariano, L., Gaeta, A., Raimondi, S., Pesapane, F., Corso, G., De Marco, P., Origgi, D., Sangalli, C., Bianco, N., Carriero, S., Santicchia, S., & Cassano, E. (2025). Preliminary Evaluation of Radiomics in Contrast-Enhanced Mammography for Prognostic Prediction of Breast Cancer. Cancers, 17(12), 1926. https://doi.org/10.3390/cancers17121926