Robotic Versus Open Pancreaticoduodenectomy: A Single-Center Analysis of Safety and Efficacy Using Inverse Probability of Treatment Weighting
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Data Collection and Definitions
2.3. Surgical Technique
2.3.1. Open Pancreaticoduodenectomy
2.3.2. Robotic Pancreaticoduodenectomy
2.4. Statistical Analysis
3. Results
3.1. Patient Population and Baseline Characteristics
3.2. Covariate Balance Post-IPTW
3.3. Perioperative Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASA | American Society of Anesthesiologists |
BMI | Body Mass Index |
DGE | Delayed Gastric Emptying |
IPTW | Inverse Probability of Treatment Weighting |
ISGPS | International Study Group of Pancreatic Surgery |
LOS | Length of Stay |
PD | Pancreaticoduodenectomy |
POPF | Postoperative Pancreatic Fistula |
PPH | Post-Pancreatectomy Hemorrhage |
SMD | Standardized Mean Difference |
References
- Gagner, M.; Pomp, A. Laparoscopic pylorus-preserving pancreatoduodenectomy. Surg. Endosc. 1994, 8, 408–410. [Google Scholar] [CrossRef] [PubMed]
- Giulianotti, P.C.; Sbrana, F.; Bianco, F.M.; Elli, E.F.; Shah, G.; Addeo, P.; Caravaglios, G.; Coratti, A. Robot-assisted laparoscopic pancreatic surgery: Single-surgeon experience. Surg. Endosc. 2010, 24, 1646–1657. [Google Scholar] [CrossRef]
- Van Hilst, J.d.R.T.; Bosscha, K.; Brinkman, D.J.; Dijkgraaf, M.G.; Gerhards, M.F.; Karsten, T.M.; Lips, D.J.; Luyer, M.D.; Busch, O.R.; Festen, S.; et al. Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours (LEOPARD-2): A multicentre, patient-blinded, randomised controlled phase 2/3 trial. Lancet Gastroenterol. Hepatol. 2019, 4, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Boggi, U.; Signori, S.; De Lio, N.; Perrone, V.G.; Vistoli, F.; Belluomini, M.; Cappelli, C.; Amorese, G.; Mosca, F. Feasibility of robotic pancreaticoduodenectomy. J. Br. Surg. 2013, 100, 917–925. [Google Scholar] [CrossRef] [PubMed]
- De Graaf, N.; Zwart, M.J.W.; van Hilst, J.; Broek, B.v.D.; A Bonsing, B.; Busch, O.R.; O Coene, P.-P.L.; Daams, F.; van Dieren, S.; van Eijck, C.H.J.; et al. Early experience with robotic pancreatoduodenectomy versus open pancreatoduodenectomy: Nationwide propensity-score-matched analysis. Br. J. Surg. 2024, 111, znae043. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, L.; Xia, L.; Zhang, J.; Chen, R.; Zhou, R. Comparison of short-term outcomes of robotic versus open pancreaticoduodenectomy: A meta-analysis of randomized controlled trials and propensity-score-matched studies. Int. J. Surg. 2025, 111, 1214–1230. [Google Scholar] [CrossRef]
- Yan, Q.; Xu, L.-B.; Ren, Z.-F.; Liu, C. Robotic versus open pancreaticoduodenectomy: A meta-analysis of short-term outcomes. Surg. Endosc. 2020, 34, 501–509. [Google Scholar] [CrossRef]
- Tamburrino, D.; Partelli, S.; Crippa, S.; Manzoni, A.; Maurizi, A.; Falconi, M. Selection criteria in resectable pancreatic cancer: A biological and morphological approach. World J. Gastroenterol. 2014, 20, 11210–11215. [Google Scholar] [CrossRef]
- Birkmeyer, J.D.; Siewers, A.E.; Finlayson, E.V.; Stukel, T.A.; Lucas, F.L.; Batista, I.; Welch, H.G.; Wennberg, D.E. Hospital volume and surgical mortality in the united states. N. Engl. J. Med. 2002, 346, 1128–1137. [Google Scholar] [CrossRef]
- Gooiker, G.A.; van Gijn, W.; Wouters, M.W.J.M.; Post, P.N.; van de Velde, C.J.H.; Tollenaar, R.A.E.M. Systematic review and meta-analysis of the volume–outcome relationship in pancreatic surgery. Br. J. Surg. 2011, 98, 485–494. [Google Scholar] [CrossRef]
- Boone, B.A.; Zenati, M.; Hogg, M.E.; Steve, J.; Moser, A.J.; Bartlett, D.L.; Zeh, H.J.; Zureikat, A.H. Assessment of quality outcomes for robotic pancreaticoduodenectomy: Identification of the learning curve. JAMA Surg. 2015, 150, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Rice, M.K.; Hodges, J.C.; Bellon, J.; Borrebach, J.; Al Abbas, A.I.; Hamad, A.; Knab, L.M.; Moser, A.J.; Zureikat, A.H.; Zeh, H.J.; et al. Association of Mentorship and a Formal Robotic Proficiency Skills Curriculum with Subsequent Generations’ Learning Curve and Safety for Robotic Pancreaticoduodenectomy. JAMA Surg. 2020, 155, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, J.-Z.; Zhan, Q.; Deng, X.-X.; Shen, B.-Y.; Peng, C.-H.; Li, H.-W. Robot-assisted laparoscopic versus open pancreaticoduodenectomy: A prospective, matched, mid-term follow-up study. Surg. Endosc. 2015, 29, 3698–3711. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Abu Hilal, M.; Besselink, M.G.; Hackert, T.; Palanivelu, C.; Zhao, Y.; He, J.; Boggi, U.; Jang, J.-Y.; Panaro, F.; et al. International consensus guidelines on robotic pancreatic surgery in 2023. HepatoBiliary Surg. Nutr. 2024, 13, 89–104. [Google Scholar] [CrossRef]
- Wente, M.N.; Bassi, C.; Dervenis, C.; Fingerhut, A.; Gouma, D.J.; Izbicki, J.R.; Neoptolemos, J.P.; Padbury, R.T.; Sarr, M.G.; Traverso, L.W.; et al. Delayed gastric emptying (DGE) after pancreatic surgery: A suggested definition by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 2007, 142, 761–768. [Google Scholar] [CrossRef]
- Wente, M.N.; Veit, J.A.; Bassi, C.; Dervenis, C.; Fingerhut, A.; Gouma, D.J.; Izbicki, J.R.; Neoptolemos, J.P.; Padbury, R.T.; Sarr, M.G.; et al. Postpancreatectomy hemorrhage (PPH)–An International Study Group of Pancreatic Surgery (ISGPS) definition. Surgery 2007, 142, 20–25. [Google Scholar] [CrossRef]
- Bassi, C.; Marchegiani, G.; Dervenis, C.; Sarr, M.; Hilal, M.A.; Adham, M.; Allen, P.; Andersson, R.; Asbun, H.J.; Besselink, M.G.; et al. The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years After. Surgery 2017, 161, 584–591. [Google Scholar] [CrossRef]
- Balzano, G.; Guarneri, G.; Pecorelli, N.; Reni, M.; Capurso, G.; Falconi, M. A four-step method to centralize pancreatic surgery, accounting for volume, performance and access to care. HPB 2021, 23, 1095–1104. [Google Scholar] [CrossRef]
- Takagi, K.; Umeda, Y.; Yoshida, R.; Yagi, T.; Fujiwara, T.; Zureikat, A.H.; Hogg, M.E.; Koerkamp, B.G. Surgical training model and safe implementation of robotic pancreatoduodenectomy in Japan: A technical note. World J. Surg. Oncol. 2021, 19, 55. [Google Scholar] [CrossRef]
- Austin, P.C.; Stuart, E.A. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat. Med. 2015, 34, 3661–3679. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; White, I.R.; Carlin, J.B.; Spratt, M.; Royston, P.; Kenward, M.G.; Wood, A.M.; Carpenter, J.R. Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ 2009, 338, b2393. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Ross, C.; Raebel, M.A.; Shetterly, S.; Blanchette, C.; Smith, D. Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals. Value Health 2010, 13, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat. Med. 2009, 28, 3083–3107. [Google Scholar] [CrossRef] [PubMed]
- Klotz, R.; Mihaljevic, A.L.; Kulu, Y.; Sander, A.; Klose, C.; Behnisch, R.; Joos, M.C.; Kalkum, E.; Nickel, F.; Knebel, P.; et al. Robotic versus open partial pancreatoduodenectomy (EUROPA): A randomised controlled stage 2b trial. Lancet Reg. Health Eur. 2024, 39, 100864. [Google Scholar] [CrossRef]
- McMillan, M.T.; Zureikat, A.H.; Hogg, M.E.; Kowalsky, S.J.; Zeh, H.J.; Sprys, M.H.; Vollmer, C.M. A Propensity Score–Matched Analysis of Robotic vs Open Pancreatoduodenectomy on Incidence of Pancreatic Fistula. JAMA Surg. 2017, 152, 327–335. [Google Scholar] [CrossRef]
- Takagi, K.; Umeda, Y.; Fuji, T.; Yasui, K.; Yamada, M.; Kimura, J.; Fujiwara, T. Role of robotic surgery as an element of Enhanced Recovery After Surgery protocol in patients undergoing pancreatoduodenectomy. J. Gastrointest. Surg. 2024, 28, 220–225. [Google Scholar] [CrossRef]
- Shyr, B.-S.; Chen, S.-C.; Shyr, Y.-M.; Wang, S.-E. Propensity score-matched comparison of the oncological feasibility and survival outcomes for pancreatic adenocarcinoma with robotic and open pancreatoduodenectomy. Surg. Endosc. 2022, 36, 1507–1514. [Google Scholar] [CrossRef]
- Wang, S.-E.; Shyr, B.-U.; Chen, S.-C.; Shyr, Y.-M. Comparison between robotic and open pancreaticoduodenectomy with modified Blumgart pancreaticojejunostomy: A propensity score–matched study. Surgery 2018, 164, 1162–1167. [Google Scholar] [CrossRef]
- Jones, L.R.; Zwart, M.J.; de Graaf, N.; Wei, K.; Qu, L.; Jiabin, J.; Ningzhen, F.; Wang, S.-E.; Kim, H.; Kauffmann, E.F.; et al. Learning curve stratified outcomes after robotic pancreatoduodenectomy: International multicenter experience. Surgery 2024, 176, 1721–1729. [Google Scholar] [CrossRef]
- Mieog, J.S.D.; Bonsing, B.A.; Lips, D.J.; Abu, H.M.; Busch, O.R.; Saint-Marc, O.; Zeh, H.J.; Zureikat, A.; Hogg, M.E.; Koerkamp, B.G. The Feasibility, Proficiency, and Mastery Learning Curves in 635 Robotic Pancreatoduodenectomies Following a Multicenter Training Program. Ann. Surg. 2023, 278, e1232–e1241. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, X.-P.; Zhao, G.-D.; Zou, W.-B.; Zhao, Z.-M.; Hu, M.-G.; Gao, Y.-X.; Tan, X.-L.; Liu, Q.; Liu, R. Robotic versus open pancreaticoduodenectomy for distal cholangiocarcinoma: A multicenter propensity score-matched study. Surg. Endosc. 2022, 36, 8237–8248. [Google Scholar] [CrossRef] [PubMed]
- Lof, S.; Vissers, F.L.; Klompmaker, S.; Berti, S.; Boggi, U.; Coratti, A.; Dokmak, S.; Fara, R.; Festen, S.; D’hondt, M.; et al. Risk of conversion to open surgery during robotic and laparoscopic pancreatoduodenectomy and effect on outcomes: International propensity score-matched comparison study. Br. J. Surg. 2021, 108, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Velázquez, P.; Muller, X.; Malleo, G.; Park, J.-S.; Hwang, H.-K.; Napoli, N.; Javed, A.A.; Inoue, Y.; Beghdadi, N.; Kalisvaart, M.; et al. Benchmarks in Pancreatic Surgery: A Novel Tool for Unbiased Outcome Comparisons. Ann. Surg. 2019, 270, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Napoli, N.; Kauffmann, E.F.; Menonna, F.; Costa, F.; Iacopi, S.; Amorese, G.; Giorgi, S.; Baggiani, A.; Boggi, U. Robotic versus open pancreatoduodenectomy: A propensity score-matched analysis based on factors predictive of postoperative pancreatic fistula. Surg. Endosc. 2018, 32, 1234–1247. [Google Scholar] [CrossRef]
Overall | Open | Robotic | p | SMD | |
---|---|---|---|---|---|
Number of patients | 74 | 31 | 43 | ||
Age, years, median (IQR) | 65.72 (58.19, 71.96) | 66.00 (57.51, 72.96) | 65.00 (60.47, 71.91) | 0.653 | 0.124 |
Gender, female (%) | 24 (32.4) | 9 (29.0) | 15 (34.9) | 0.780 | 0.126 |
BMI, kg/m2, median (IQR) | 23.18 (21.65, 25.89) | 22.86 (21.84, 25.59) | 23.44 (21.63, 26.05) | 0.493 | 0.153 |
ASA category, n (%) | 0.315 | 0.451 | |||
1 | 3 (4.1) | 2 (6.5) | 1 (2.3) | ||
2 | 31 (41.9) | 15 (48.4) | 16 (37.2) | ||
3 | 35 (47.3) | 11 (35.5) | 24 (55.8) | ||
4 | 5 (6.8) | 3 (9.7) | 2 (4.7) | ||
Preoperative biliary drainage, n (%) | 38 (51.4) | 13 (41.9) | 25 (58.1) | 0.254 | 0.328 |
Diagnosis, n (%) | 0.074 | 0.969 | |||
Pancreatic ductal adenocarcinoma | 42 (56.8) | 17 (54.8) | 25 (58.1) | ||
Extrahepatic cholangiocarcinoma | 7 (9.5) | 6 (19.4) | 1 (2.3) | ||
Ampullary adenocarcinoma | 11 (14.9) | 2 (6.5) | 9 (20.9) | ||
Duodenal cancer | 2 (2.7) | 1 (3.2) | 1 (2.3) | ||
IPMN with worrisome features | 4 (5.4) | 1 (3.2) | 3 (7.0) | ||
Neuroendocrine tumour | 1 (1.4) | 1 (3.2) | 0 (0.0) | ||
Metastatic renal carcinoma | 1 (1.4) | 1 (3.2) | 0 (0.0) | ||
Chronic pancreatitis | 3 (4.1) | 2 (6.5) | 1 (2.3) | ||
Serous cystoadenoma | 3 (4.1) | 0 (0.0) | 3 (7.0) | ||
Malignant tumour, n (%) | 64 (86.5) | 28 (90.3) | 36 (83.7) | 0.635 | 0.197 |
Tumour primary site: pancreas, n (%) | 42 (56.8) | 17 (54.8) | 25 (58.1) | 0.964 | 0.067 |
Preoperative chemotherapy, n (%) | 13 (17.6) | 7 (22.6) | 6 (14.0) | 0.514 | 0.225 |
Vascular resection, n (%) | 7 (10.9) | 3 (13.6) | 4 (9.5) | 0.937 | 0.129 |
Fistula risk score, median (IQR) | 4 (2, 6) | 4 (2, 6) | 3 (2, 4.5) | 0.265 | 0.250 |
Before IPTW | After IPTW | |||||||
---|---|---|---|---|---|---|---|---|
Open | Robotic | p | SMD | Open | Robotic | p | SMD | |
Number of patients | 31 | 43 | 31.27 | 42.75 | ||||
Age, years (median [IQR]) | 66.00 (57.51, 72.96) | 65.00 (60.47, 71.91) | 0.653 | 0.124 | 65.31 (56.76, 69.97) | 64.63 (60.93, 71.89) | 0.987 | 0.006 |
Gender, female (%) | 9 (29.0) | 15 (34.9) | 0.780 | 0.126 | 10.6 (34.0) | 16.9 (39.4) | 0.678 | 0.112 |
BMI, kg/m2 (median [IQR]) | 22.86 (21.8, 25.59) | 23.44 (21.63, 26.05) | 0.493 | 0.153 | 22.86 (21.52, 25.61) | 23.22 (21.63, 25.87) | 0.758 | 0.049 |
ASA category, n (%) | 0.315 | 0.451 | 0.998 | 0.044 | ||||
1 | 2 (6.5) | 1 (2.3) | 1.2 (3.8) | 1.3 (3.1) | ||||
2 | 15 (48.4) | 16 (37.2) | 12.8 (40.9) | 17.8 (41.6) | ||||
3 | 11 (35.5) | 24 (55.8) | 15.1 (48.3) | 20.5 (47.9) | ||||
4 | 3 (9.7) | 2 (4.7) | 2.2 (6.9) | 3.2 (7.5) | ||||
Preoperative biliary drainage, n (%) | 13 (41.9) | 25 (58.1) | 0.254 | 0.328 | 12.0 (38.5) | 25.7 (60.1) | 0.089 | 0.442 |
Diagnosis, n (%) | 0.074 | 0.969 | 0.054 | 1.003 | ||||
Pancreatic ductal adenocarcinoma | 17 (54.8) | 25 (58.1) | 18.6 (59.6) | 25.1 (58.8) | ||||
Extrahepatic cholangiocarcinoma | 6 (19.4) | 1 (2.3) | 5.3 (17.0) | 0.9 (2.0) | ||||
Ampullary adenocarcinoma | 2 (6.5) | 9 (20.9) | 1.1 (3.6) | 9.9 (23.1) | ||||
Duodenal cancer | 1 (3.2) | 1 (2.3) | 0.6 (2.1) | 1.4 (3.2) | ||||
IPMN | 1 (3.2) | 3 (7.0) | 1.9 (6.1) | 2.5 (5.8) | ||||
Neuroendocrine tumour | 1 (3.2) | 0 (0.0) | 1.3 (4.2) | 0.0 (0.0) | ||||
Metastatic renal carcinoma | 1 (3.2) | 0 (0.0) | 0.7 (2.2) | 0.0 (0.0) | ||||
Chronic pancreatitis | 2 (6.5) | 1 (2.3) | 1.7 (5.4) | 0.7 (1.7) | ||||
Serous cystoadenoma | 0 (0.0) | 3 (7.0) | 0.0 (0.0) | 2.3 (5.5) | ||||
Malignant tumour, n (%) | 28 (90.3) | 36 (83.7) | 0.635 | 0.197 | 27.7 (88.5) | 37.2 (87.0) | 0.861 | 0.045 |
Tumour site: pancreas, n (%) | 17 (54.8) | 25 (58.1) | 0.964 | 0.067 | 18.6 (59.6) | 25.1 (58.8) | 0.948 | 0.016 |
Preoperative chemotherapy, n (%) | 7 (22.6) | 6 (14.0) | 0.514 | 0.225 | 5.6 (18.0) | 8.2 (19.2) | 0.908 | 0.029 |
Vascular resection, n (%) | 3 (13.6) | 4 (9.5) | 0.937 | 0.129 | 2.6 (12.3) | 3.4 (8.3) | 0.597 | 0.133 |
Before IPTW | After IPTW | |||||
---|---|---|---|---|---|---|
Open | Robotic | p | Open | Robotic | p | |
Number of patients | 31 | 43 | 31.27 | 42.75 | ||
Operative time, min, median (IQR) | 480.00 (385.00, 525.00) | 540.00 (480.00, 600.00) | 0.004 | 479.40 (393.18, 498.00) | 540.00 (471.10, 600.00) | 0.009 |
Estimated blood loss, ml, median (IQR) | 250.00 (125.00, 375.00) | 200.00 (150.00, 500.00) | 0.679 | 250.00 (100.00, 303.52) | 200.00 (150.00, 450.00) | 0.631 |
Delayed gastric emptying (grade B/C), n (%) | 4 (12.9) | 9 (20.9) | 0.558 | 4.1 (13.0) | 8.5 (19.9) | 0.464 |
Clinically relevant POPF (grade B/C), n (%) | 8 (25.8) | 8 (18.6) | 0.648 | 7.1 (22.7) | 8.0 (18.6) | 0.675 |
Biliary leak, n (%) | 1 (3.2) | 4 (9.3) | 0.577 | 1.0 (3.1) | 3.7 (8.6) | 0.334 |
Post-pancreatectomy hemorrhage (grade C), n (%) | 3 (9.7) | 5 (11.6) | 1.000 | 2.5 (8.0) | 4.1 (9.6) | 0.797 |
Reoperation, n (%) | 5 (16.1) | 8 (18.6) | 1.000 | 4.3 (13.8) | 7.3 (17.0) | 0.708 |
Patients with complications Grade ≥ IIIa, n (%) | 10 (32.3) | 14 (32.6) | 1.000 | 9.0 (28.9) | 13.1 (30.6) | 0.880 |
90 days mortality (%) | 1 (3.2) | 2 (4.7) | 1.000 | 1.5 (4.9) | 2.1 (4.9) | 0.998 |
Length of hospital stay, days, median (IQR) | 20.00 (14.00, 29.00) | 20.00 (12.50, 32.00) | 0.960 | 20.00 (14.00, 28.66) | 17.00 (11.96, 30.47) | 0.686 |
Readmission, n (%) | 7 (24.1) | 4 (10.0) | 0.211 | 7.2 (25.1) | 3.7 (9.4) | 0.095 |
Lymph nodes retrieved, median (IQR) | 20.00 (14.50, 27.50) | 20.00 (13.00, 27.50) | 0.709 | 20.00 (14.37, 28.30) | 20.00 (13.06, 27.05) | 0.579 |
R status, n (%) | 0.550 | 0.588 | ||||
R0 | 26 (83.9) | 34 (79.1) | 25.1 (80.2) | 35.5 (83) | ||
R1 | 2 (6.5) | 1 (2.3) | 2.6 (8.4) | 1 (2.3) | ||
R2 | 0 | 1 (2.3) | 0 | 0.8 (1.8) | ||
NA | 3 (9.7) | 7 (16.3) | 3.6 (11.5) | 5.5 (13) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giglio, M.C.; Campanile, S.; Rompianesi, G.; Loiaco, G.; Nasto, R.A.; Montalti, R.; Troisi, R.I. Robotic Versus Open Pancreaticoduodenectomy: A Single-Center Analysis of Safety and Efficacy Using Inverse Probability of Treatment Weighting. Cancers 2025, 17, 1916. https://doi.org/10.3390/cancers17121916
Giglio MC, Campanile S, Rompianesi G, Loiaco G, Nasto RA, Montalti R, Troisi RI. Robotic Versus Open Pancreaticoduodenectomy: A Single-Center Analysis of Safety and Efficacy Using Inverse Probability of Treatment Weighting. Cancers. 2025; 17(12):1916. https://doi.org/10.3390/cancers17121916
Chicago/Turabian StyleGiglio, Mariano Cesare, Silvia Campanile, Gianluca Rompianesi, Giuseppe Loiaco, Riccardo Aurelio Nasto, Roberto Montalti, and Roberto Ivan Troisi. 2025. "Robotic Versus Open Pancreaticoduodenectomy: A Single-Center Analysis of Safety and Efficacy Using Inverse Probability of Treatment Weighting" Cancers 17, no. 12: 1916. https://doi.org/10.3390/cancers17121916
APA StyleGiglio, M. C., Campanile, S., Rompianesi, G., Loiaco, G., Nasto, R. A., Montalti, R., & Troisi, R. I. (2025). Robotic Versus Open Pancreaticoduodenectomy: A Single-Center Analysis of Safety and Efficacy Using Inverse Probability of Treatment Weighting. Cancers, 17(12), 1916. https://doi.org/10.3390/cancers17121916