From Seeing to Healing: The Clinical Potential of Radiotracers in Pediatric Neuro-Oncology
Simple Summary
Abstract
1. Introduction
2. Clinically Established Radiotracers in Pediatric Oncology: Applications and Limitations in CNS Tumors
3. Emerging Alternative Radiotracers in Pediatric Neuro-Oncology
Mechanism | Target | Imaging Modality | Targeting Compound | Clinical Status in Pediatric Neuro-Oncology | Evaluated Tumor Type | Clinical Utility | References |
---|---|---|---|---|---|---|---|
Metabolism-based | Amino-acid uptake via LAT1/LAT2 | PET scan | 11C-MET | In clinic (increasing) | DMG, HGG, LGG, | Recurrence detection; biopsy guidance; prognosis correlation | [37,38,39,40] |
18F-DOPA | In clinic (routine) | DAT, recurrent glioma, DMG, HGG, LGG, NB | H3K27M status distinguishment; survival prognostication; treatment response monitoring; pseudoprogression differentiation | [41,42,43,44,45,46,47,48] | |||
18F-FET | In clinic (routine) | DMG, astrocytomas, GBM, MB | High specificity for tumor vs. post-treatment changes; treatment plans modification; biopsy guidance | [49,50,51,52,53,54,55] | |||
Choline transport and phospholipid synthesis | PET scan | 18F-Cho | Early clinical (Pilot studies) | astrocytic tumors, HGG, MB, NGGCT | Treatment response monitoring; biopsy guidance | [45,56,57] | |
Norepinephrine uptake via NET | PET scan | 18F-mFBG | Early clinical (Phase II) | NB | Staging; avoiding sedation; early treatment evaluation | [58,59,60,61,62,63,64,65] | |
124I-mIBG | Early clinical (Pilot study) | NB | Improved lesion detection and coverage; superior to SPECT/CT; dosimetry planning | [66] | |||
DNA synthesis via TK-1 | PET scan | 18F-FLT | Early clinical (Phase II) | CNS tumors | Recurrence assessment; early treatment response monitoring | [67,68] | |
Copper uptake via CTR1 | PET scan | 64CuCl2 | Early clinical (Pilot study) | HGG, DMG | Necrosis alignment; theranostic potential | [69] | |
Kynurenine pathway | PET scan | 1-L-18F-FETrp | Preclinical study | MB (mouse model) | Potential diagnostic role | [70,71] | |
Peptide receptor-based | SSTR2 | PET scan | 68Ga-DOTATATE | In clinic (increasing, off-label use) | NB, CNS metastasis | Lesion detection improvement in SSTR2+ NB; PRRT candidate identification; CNS metastases detection | [72,73,74,75] |
SPECT scan | 177Lu-DOTATATE | Early clinical (Phase II) | NB | PRRT in refractory SSTR2+ NB | [76,77,78,79,80,81] | ||
SSTR2/3/5 | PET scan | 68Ga-DOTANOC | Case reports | MB | SSTR+ metastasis detection; Treatment response monitoring | [82,83] | |
GRPR | PET scan | 68Ga-NOTA-Aca-BBN(7–14) | Early clinical | OPG | Surgical planning assistance | [84] | |
TSPO | PET scan | 18F-DPA-714 | Preclinical studies | DMG (rat model) | Potential diagnostic role | [85] | |
Integrin-αvβ3 | SPECT scan | 99mTc-RAFT-RGD | Preclinical studies | MB (mouse model) | Potential diagnostic role | [86] | |
Antibody-based | B7-H3 (CD276) | PET scan, PRRT | 124I-omburtamab | Early clinical (Phase I) | DMG, NB | Lesion detection; Dosimetry; PRRT candidate identification | [87,88,89,90] |
SPECT scan | 131I-omburtamab | Early clinical (Phase I) | NB, MB, ependymoma, ETMR, | Dosimetry, cRIT in leptomeningeal disease | [91,92,93] | ||
GD2 | PET scan | 89Zr-dinutuximab | Preclinical studies | NB (mouse model) | Potential for patient stratification for anti-GD2 therapy | [94] | |
PET scan | 64Cu-dinutuximab beta | Early clinical (Pilot study) | NB | Patient stratification for anti-GD2 therapy | [95] | ||
VEGF | PET scan | 89Zr-bevacizumab | Early clinical (Pilot study) | DMG | Reveals intratumoral heterogeneity; anti-VEGF therapy candidate selection | [96,97] |
3.1. Molecular Imaging with Metabolism-Based Radiotracers
3.1.1. C-MET
3.1.2. 18F-DOPA
3.1.3. 18F-FET
3.1.4. 18F-Cho
3.1.5. 18F-mFBG and 124I-mIBG
3.1.6. Additional Metabolism-Based Radiotracers
3.2. Molecular Imaging and Targeted Radiotherapy with Peptide Receptor-Based Radiotracers
3.2.1. 68Ga- and 177Lu-DOTATATE
3.2.2. 68Ga-DOTANOC
3.2.3. Additional Peptide Receptor-Based Radiotracers
3.3. Molecular Imaging and Targeted Radiotherapy with Antibody-Based Radiotracers
3.3.1. 124I- and 131I-Omburtamab
3.3.2. 89Zr-Dinutuximab and 64Cu-Dinutuximab-Beta
3.3.3. 89Zr-Bevacizumab
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
APT-CEST | Amide proton transfer–chemical exchange saturation transfer |
ASL | Arterial spin labeling |
GBM | Glioblastoma Multiforme |
CED | Convection-Enhanced Delivery |
CSF | Cerebrospinal fluid |
CNS | Central Nervous System |
CRIT | Combined Radioimmunotherapy |
CT | Computed Tomography |
cRIT | Compartmental Radioimmunotherapy |
DAT | Diffuse astrocytic tumors |
DIPG | Diffuse Intrinsic Pontine Glioma |
DMP | Diffuse Midline Glioma with H3K27M Mutation |
DWI | Diffusion-weighted imaging |
EMA | European Medicines Agency |
ETMR | Embryonal Tumor with Multilayered Rosettes |
FDG | Fluorodeoxyglucose |
FET | Fluoroethyl-L-tyrosine |
HGG | High-Grade Glioma |
LGG | Low-Grade Glioma |
LAFOV | Long-axial-field-of-view |
MB | Medulloblastoma |
mIBG | Meta-Iodobenzylguanidine |
MRI | Magnetic Resonance Imaging |
MTV | Metabolic Tumor Volume |
NB | Neuroblastoma |
NETs | Neuroendocrine Tumors |
NGGCT | Non-Germinomatous Germ Cell Tumor |
OPG | Optic Pathway Glioma |
OS | Overall Survival |
PET | Positron Emission Tomography |
PFS | Progression-Free Survival |
SPECT | Single Photon Emission Computed Tomography |
SSTR2 | Somatostatin Receptor Type 2 |
TYA | Teen and Young Adult |
VEGF | Vascular Endothelial Growth Factor. |
References
- Williams, L.A.; Hubbard, A.K.; Scheurer, M.E.; Spector, L.G.; Poynter, J.N. Trends in Paediatric Central Nervous System Tumour Incidence by Global Region from 1988 to 2012. Int. J. Epidemiol. 2021, 50, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Price, M.; Ryan, K.; Edelson, J.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Pediatric Brain Tumor Foundation Childhood and Adolescent Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro-Oncology 2022, 24, iii1–iii38. [Google Scholar] [CrossRef] [PubMed]
- Power, P.; Straehla, J.P.; Fangusaro, J.; Bandopadhayay, P.; Manoharan, N. Pediatric Neuro-Oncology: Highlights of the Last Quarter-Century. Neoplasia 2025, 59, 101098. [Google Scholar] [CrossRef]
- Lutz, K.; Jünger, S.T.; Messing-Jünger, M. Essential Management of Pediatric Brain Tumors. Children 2022, 9, 498. [Google Scholar] [CrossRef]
- Damodharan, S.; Lara-Velazquez, M.; Williamsen, B.C.; Helgager, J.; Dey, M. Diffuse Intrinsic Pontine Glioma: Molecular Landscape, Evolving Treatment Strategies and Emerging Clinical Trials. J. Pers. Med. 2022, 12, 840. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Ward, Z.J.; Yeh, J.M.; Bhakta, N.; Frazier, A.L.; Atun, R. Estimating the Total Incidence of Global Childhood Cancer: A Simulation-Based Analysis. Lancet Oncol. 2019, 20, 483–493. [Google Scholar] [CrossRef]
- Nabavizadeh, A.; Barkovich, M.J.; Mian, A.; Ngo, V.; Kazerooni, A.F.; Villanueva-Meyer, J.E. Current State of Pediatric Neuro-Oncology Imaging, Challenges and Future Directions. Neoplasia 2023, 37, 100886. [Google Scholar] [CrossRef] [PubMed]
- Thust, S.C.; van den Bent, M.J.; Smits, M. Pseudoprogression of Brain Tumors. J. Magn. Reson. Imaging 2018, 48, 571–589. [Google Scholar] [CrossRef]
- Smits, M. Update on Neuroimaging in Brain Tumours. Curr. Opin. Neurol. 2021, 34, 497. [Google Scholar] [CrossRef]
- Zhang, J.; Traylor, K.S.; Mountz, J.M. PET and SPECT Imaging of Brain Tumors. Semin. Ultrasound CT MRI 2020, 41, 530–540. [Google Scholar] [CrossRef]
- Munjal, A.; Gupta, N. Radiopharmaceuticals. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Tolboom, N.; Verger, A.; Albert, N.L.; Fraioli, F.; Guedj, E.; Traub-Weidinger, T.; Morbelli, S.; Herrmann, K.; Zucchetta, P.; Plasschaert, S.L.A.; et al. Theranostics in Neurooncology: Heading Toward New Horizons. J. Nucl. Med. 2024, 65, 167–173. [Google Scholar] [CrossRef] [PubMed]
- García-Figueiras, R.; Baleato-González, S.; Padhani, A.R.; Luna-Alcalá, A.; Vallejo-Casas, J.A.; Sala, E.; Vilanova, J.C.; Koh, D.-M.; Herranz-Carnero, M.; Vargas, H.A. How Clinical Imaging Can Assess Cancer Biology. Insights Imaging 2019, 10, 28. [Google Scholar] [CrossRef]
- Motamedi, N.; Revheim, M.-E.; Werner, T.; Alavi, A.; Torigian, D.; Raynor, W. PET Imaging in Pediatric Oncology: A Narrative Review. J. Nucl. Med. 2023, 64, P1179. [Google Scholar]
- Derenoncourt, P.-R.; Ponisio, M. Applications of Pet/Mri in Pediatric Patients. J. Nucl. Med. 2021, 62, 2001. [Google Scholar]
- Pedersen, C.; Aboian, M.; McConathy, J.E.; Daldrup-Link, H.; Franceschi, A.M. PET/MRI in Pediatric Neuroimaging: Primer for Clinical Practice. AJNR Am. J. Neuroradiol. 2022, 43, 938–943. [Google Scholar] [CrossRef]
- Jung, A.Y. Basics for Pediatric Brain Tumor Imaging: Techniques and Protocol Recommendations. Brain Tumor Res. Treat. 2024, 12, 1–13. [Google Scholar] [CrossRef]
- States, L.J.; Voss, S.D. PET/CT in Pediatric Oncology. In Imaging in Pediatric Oncology; Voss, S.D., McHugh, K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 29–61. ISBN 978-3-030-03777-2. [Google Scholar]
- Biermann, M.; Schwarzlmüller, T.; Fasmer, K.E.; Reitan, B.C.; Johnsen, B.; Rosendahl, K. Is There a Role for PET-CT and SPECT-CT in Pediatric Oncology? Acta Radiol. 2013, 54, 1037–1045. [Google Scholar] [CrossRef]
- Vali, R.; Alessio, A.; Balza, R.; Borgwardt, L.; Bar-Sever, Z.; Czachowski, M.; Jehanno, N.; Kurch, L.; Pandit-Taskar, N.; Parisi, M.; et al. SNMMI Procedure Standard/EANM Practice Guideline on Pediatric 18F-FDG PET/CT for Oncology 1.0. J. Nucl. Med. 2021, 62, 99–110. [Google Scholar] [CrossRef]
- Siegel, B.I.; Patil, P.; Prakash, A.; Klawinski, D.M.; Hwang, E.I. Targeted Therapy in Pediatric Central Nervous System Tumors: A Review from the National Pediatric Cancer Foundation. Front. Oncol. 2025, 15, 1504803. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Goyal, A. Fludeoxyglucose (18F). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Zukotynski, K.; Fahey, F.; Kocak, M.; Kun, L.; Boyett, J.; Fouladi, M.; Vajapeyam, S.; Treves, T.; Poussaint, T.Y. 18F-FDG PET and MR Imaging Associations across a Spectrum of Pediatric Brain Tumors: A Report from the Pediatric Brain Tumor Consortium. J. Nucl. Med. 2014, 55, 1473–1480. [Google Scholar] [CrossRef]
- Uslu, L.; Donig, J.; Link, M.; Rosenberg, J.; Quon, A.; Daldrup-Link, H.E. Value of 18F-FDG PET and PET/CT for Evaluation of Pediatric Malignancies. J. Nucl. Med. 2015, 56, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Cistaro, A.; Albano, D.; Alongi, P.; Laudicella, R.; Pizzuto, D.A.; Formica, G.; Romagnolo, C.; Stracuzzi, F.; Frantellizzi, V.; Piccardo, A.; et al. The Role of PET in Supratentorial and Infratentorial Pediatric Brain Tumors. Curr. Oncol. 2021, 28, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, S.-H.; Hwang, H.S.; Kim, S.J.; Yun, M. Recent Update on PET/CT Radiotracers for Imaging Cerebral Glioma. Nucl. Med. Mol. Imaging 2024, 58, 237–245. [Google Scholar] [CrossRef]
- Streby, K.A.; Shah, N.; Ranalli, M.A.; Kunkler, A.; Cripe, T.P. Nothing but NET: A Review of Norepinephrine Transporter Expression and Efficacy of 131I-mIBG Therapy. Pediatr Blood Cancer 2015, 62, 5–11. [Google Scholar] [CrossRef]
- Bar-Sever, Z.; Biassoni, L.; Shulkin, B.; Kong, G.; Hofman, M.S.; Lopci, E.; Manea, I.; Koziorowski, J.; Castellani, R.; Boubaker, A.; et al. Guidelines on Nuclear Medicine Imaging in Neuroblastoma. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2009–2024. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.-C.; Peng, C.-L.; Chen, C.-T.; Shih, Y.-H.; Chen, J.-H.; Tai, Y.-J.; Chiang, Y.-C. Iodine-123 Metaiodobenzylguanidine (I-123 MIBG) in Clinical Applications: A Comprehensive Review. Pharmaceuticals 2024, 17, 1563. [Google Scholar] [CrossRef]
- Mastronuzzi, A.; Colafati, G.S.; Carai, A.; D’Egidio, M.; Fabozzi, F.; Del Bufalo, F.; Villani, M.F.; Del Baldo, G.; Vennarini, S.; Canino, C.; et al. Central Nervous System Metastasis in Neuroblastoma: From Three Decades Clinical Experience to New Considerations in the Immunotherapy Era. Cancers 2022, 14, 6249. [Google Scholar] [CrossRef]
- Fleck, S.; Marx, S.; Bobak, C.; Richter, V.; Nowak, S.; Rafaee, E.E.; Siebert, N.; Ehlert, K.; Schroeder, H.W.S.; Lode, H.N. Neuroblastoma with Intracerebral Metastases and the Need for Neurosurgery: A Single-Center Experience. J. Neurosurg. Pediatr. PED 2019, 25, 51–56. [Google Scholar] [CrossRef]
- Liu, Y.; Huo, L.; Zhang, J.; Liu, Y. Intracranial Metastases Tend to Be Overt and Predict Poor Prognosis in Children with Neuroblastoma. Front. Pediatr. 2021, 9, 716880. [Google Scholar] [CrossRef]
- Matthay, K.K.; Brisse, H.; Couanet, D.; Couturier, J.; Bénard, J.; Mosseri, V.; Edeline, V.; Lumbroso, J.; Valteau-Couanet, D.; Michon, J. Central Nervous System Metastases in Neuroblastoma. Cancer 2003, 98, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Li, S.; Wang, C.; Yang, J. Current Status and Future Perspective on Molecular Imaging and Treatment of Neuroblastoma. Semin. Nucl. Med. 2023, 53, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.C.; Bhatla, D.; Osman, M.M. 123I-MIBG Scintigraphy and 18F-FDG PET in Neuroblastoma. J. Nucl. Med. 2010, 51, 330–331. [Google Scholar] [CrossRef] [PubMed]
- Tinkle, C.L.; Duncan, E.C.; Doubrovin, M.; Han, Y.; Li, Y.; Kim, H.; Broniscer, A.; Snyder, S.E.; Merchant, T.E.; Shulkin, B.L. Evaluation of 11C-Methionine PET and Anatomic MRI Associations in Diffuse Intrinsic Pontine Glioma. J. Nucl. Med. 2019, 60, 312–319. [Google Scholar] [CrossRef]
- Zhao, X.; Li, D.; Qiao, Z.; Wang, K.; Chen, Q.; Pan, C.; Wu, Y.; Xiao, D.; Xi, T.; Zhang, L.; et al. 11C-Methionine PET Imaging Characteristics in Children with Diffuse Intrinsic Pontine Gliomas and Relationship to Survival and H3 K27M Mutation Status. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1709–1719. [Google Scholar] [CrossRef]
- Bag, A.K.; Wing, M.N.; Sabin, N.D.; Hwang, S.N.; Armstrong, G.T.; Han, Y.; Li, Y.; Snyder, S.E.; Robinson, G.W.; Qaddoumi, I.; et al. 11C-Methionine PET for Identification of Pediatric High-Grade Glioma Recurrence. J. Nucl. Med. 2022, 63, 664–671. [Google Scholar] [CrossRef]
- Kim, E.Y.; Vavere, A.L.; Snyder, S.E.; Chiang, J.; Li, Y.; Patni, T.; Qaddoumi, I.; Merchant, T.E.; Robinson, G.W.; Holtrop, J.L.; et al. [11C]-Methionine Positron Emission Tomography in the Evaluation of Pediatric Low-Grade Gliomas. Neurooncol. Adv. 2024, 6, vdae056. [Google Scholar] [CrossRef]
- Morana, G.; Piccardo, A.; Tortora, D.; Puntoni, M.; Severino, M.; Nozza, P.; Ravegnani, M.; Consales, A.; Mascelli, S.; Raso, A.; et al. Grading and Outcome Prediction of Pediatric Diffuse Astrocytic Tumors with Diffusion and Arterial Spin Labeling Perfusion MRI in Comparison with 18F-DOPA PET. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 2084–2093. [Google Scholar] [CrossRef]
- Gauvain, K.; Ponisio, M.R.; Barone, A.; Grimaldi, M.; Parent, E.; Leeds, H.; Goyal, M.; Rubin, J.; McConathy, J. 18F-FDOPA PET/MRI for Monitoring Early Response to Bevacizumab in Children with Recurrent Brain Tumors. Neurooncol. Pract. 2018, 5, 28–36. [Google Scholar] [CrossRef]
- Piccardo, A.; Tortora, D.; Mascelli, S.; Severino, M.; Piatelli, G.; Consales, A.; Pescetto, M.; Biassoni, V.; Schiavello, E.; Massollo, M.; et al. Advanced MR Imaging and 18F-DOPA PET Characteristics of H3K27M-Mutant and Wild-Type Pediatric Diffuse Midline Gliomas. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1685–1694. [Google Scholar] [CrossRef]
- Morana, G.; Tortora, D.; Bottoni, G.; Puntoni, M.; Piatelli, G.; Garibotto, F.; Barra, S.; Giannelli, F.; Cistaro, A.; Severino, M.; et al. Correlation of Multimodal 18F-DOPA PET and Conventional MRI with Treatment Response and Survival in Children with Diffuse Intrinsic Pontine Gliomas. Theranostics 2020, 10, 11881–11891. [Google Scholar] [CrossRef] [PubMed]
- Shankar, A.; Bomanji, J.; Hyare, H. Hybrid PET-MRI Imaging in Paediatric and TYA Brain Tumours: Clinical Applications and Challenges. J. Pers. Med. 2020, 10, 218. [Google Scholar] [CrossRef]
- Ko, K.-Y.; Yen, R.-F.; Ko, C.-L.; Chou, S.-W.; Chang, H.-H.; Yang, Y.-L.; Jou, S.-T.; Hsu, W.-M.; Lu, M.-Y. Prognostic Value of Interim 18F-DOPA and 18F-FDG PET/CT Findings in Stage 3–4 Pediatric Neuroblastoma. Clin. Nucl. Med. 2022, 47, 21–25. [Google Scholar] [CrossRef]
- Peira, E.; Sensi, F.; Rei, L.; Gianeri, R.; Tortora, D.; Fiz, F.; Piccardo, A.; Bottoni, G.; Morana, G.; Chincarini, A. Towards an Automated Approach to the Semi-Quantification of [18F]F-DOPA PET in Pediatric-Type Diffuse Gliomas. J. Clin. Med. 2023, 12, 2765. [Google Scholar] [CrossRef] [PubMed]
- Mureddu, M.; Funck, T.; Morana, G.; Rossi, A.; Ramaglia, A.; Milanaccio, C.; Verrico, A.; Bottoni, G.; Fiz, F.; Piccardo, A.; et al. A New Tool for Extracting Static and Dynamic Parameters from [18F]F-DOPA PET/CT in Pediatric Gliomas. J. Clin. Med. 2024, 13, 6252. [Google Scholar] [CrossRef]
- Marner, L.; Lundemann, M.; Sehested, A.; Nysom, K.; Borgwardt, L.; Mathiasen, R.; Wehner, P.S.; Henriksen, O.M.; Thomsen, C.; Skjøth-Rasmussen, J.; et al. Diagnostic Accuracy and Clinical Impact of [18F]FET PET in Childhood CNS Tumors. Neuro-Oncology 2021, 23, 2107–2116. [Google Scholar] [CrossRef]
- Kertels, O.; Krauß, J.; Monoranu, C.M.; Samnick, S.; Dierks, A.; Kircher, M.; Mihovilovic, M.I.; Pham, M.; Buck, A.K.; Eyrich, M.; et al. [18F]FET-PET in Children and Adolescents with Central Nervous System Tumors: Does It Support Difficult Clinical Decision-Making? Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1699–1708. [Google Scholar] [CrossRef] [PubMed]
- Kertels, O.; KrauB, J.; Monoranu, C.; Samnick, S.; Dierks, A.; Buck, A.; Bison, B.; Lapa, C. Clinical Value of [18F]FET-PET/CT in Pediatric Patients with Primary Central Nervous Sytem Tumors. J. Nucl. Med. 2020, 61, 1550. [Google Scholar]
- Marner, L.; Nysom, K.; Sehested, A.; Borgwardt, L.; Mathiasen, R.; Henriksen, O.M.; Lundemann, M.; af Rosenschöld, P.M.; Thomsen, C.; Bøgeskov, L.; et al. Early Postoperative 18F-FET PET/MRI for Pediatric Brain and Spinal Cord Tumors. J. Nucl. Med. 2019, 60, 1053–1058. [Google Scholar] [CrossRef]
- Misch, M.; Guggemos, A.; Driever, P.H.; Koch, A.; Grosse, F.; Steffen, I.G.; Plotkin, M.; Thomale, U.-W. (18)F-FET-PET Guided Surgical Biopsy and Resection in Children and Adolescence with Brain Tumors. Childs Nerv. Syst. 2015, 31, 261–267. [Google Scholar] [CrossRef]
- Grosse, F.; Wedel, F.; Thomale, U.-W.; Steffen, I.; Koch, A.; Brenner, W.; Plotkin, M.; Driever, P.H. Benefit of Static FET PET in Pretreated Pediatric Brain Tumor Patients with Equivocal Conventional MRI Results. Klin. Padiatr. 2021, 233, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Ladefoged, C.N.; Henriksen, O.M.; Mathiasen, R.; Schmiegelow, K.; Andersen, F.L.; Højgaard, L.; Borgwardt, L.; Law, I.; Marner, L. Automatic Detection and Delineation of Pediatric Gliomas on Combined [18F]FET PET and MRI. Front. Nucl. Med. 2022, 2, 960820. [Google Scholar] [CrossRef]
- Fraioli, F.; Shankar, A.; Hargrave, D.; Hyare, H.; Gaze, M.N.; Groves, A.M.; Alongi, P.; Stoneham, S.; Michopoulou, S.; Syed, R.; et al. 18F-Fluoroethylcholine (18F-Cho) PET/MRI Functional Parameters in Pediatric Astrocytic Brain Tumors. Clin. Nucl. Med. 2015, 40, e40–e45. [Google Scholar] [CrossRef]
- Rega, M.; Torrealdea, F.; Hearle, J.; Zaiss, M.; Cavalho, A.; Afaq, A.; Punwani, S.; Golay, X.; Dickson, J.; Shankar, A.; et al. RADI-06. Correlation Between APT-Cest and 18F-Choline Pet in Glioma at 3T. Neuro-Oncology 2018, 20, i170–i171. [Google Scholar] [CrossRef]
- Pandit-Taskar, N.; Zanzonico, P.; Staton, K.D.; Carrasquillo, J.A.; Reidy-Lagunes, D.; Lyashchenko, S.; Burnazi, E.; Zhang, H.; Lewis, J.S.; Blasberg, R.; et al. Biodistribution and Dosimetry of 18F-Meta-Fluorobenzylguanidine: A First-in-Human PET/CT Imaging Study of Patients with Neuroendocrine Malignancies. J. Nucl. Med. 2018, 59, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Pandit-Taskar, N.; Basu, E.; Balquin, E.; Mozley, P.D.; Jacobson, A.F.; Modak, S. Safety Observations in Neuroblastoma Patients Undergoing 18 F- m FBG PET. Nucl. Med. Commun. 2025, 46, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Memorial Sloan Kettering Cancer Center. A Phase I/II A Study of 18F-MFBG Imaging for Evaluation of Neuroendocrine Malignancies; Clinicaltrials.gov: Bethesda, MD, USA, 2025. [Google Scholar]
- Samim, A.; Blom, T.; Poot, A.J.; Windhorst, A.D.; Fiocco, M.; Tolboom, N.; Braat, A.J.A.T.; Viol, S.L.M.; van Rooij, R.; van Noesel, M.M.; et al. [18F]mFBG PET-CT for Detection and Localisation of Neuroblastoma: A Prospective Pilot Study. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1146–1157. [Google Scholar] [CrossRef]
- Modak, S.; Mauguen, A.; Basu, E.M.; Price, A.; Behr, G.; Min, R.; Lyashchenko, S.K.; Schwartz, J.; Pandit-Taskar, N. 18F-MFBG PET Imaging in Patients with Neuroblastoma: Lesion Targeting and Comparison with MIBG. J. Clin. Oncol. 2023, 41, 10046. [Google Scholar] [CrossRef]
- Wang, P.; Li, T.; Liu, Z.; Jin, M.; Su, Y.; Zhang, J.; Jing, H.; Zhuang, H.; Li, F. [18F]MFBG PET/CT Outperforming [123I]MIBG SPECT/CT in the Evaluation of Neuroblastoma. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 3097–3106. [Google Scholar] [CrossRef]
- Borgwardt, L.; Brok, J.; Andersen, K.F.; Madsen, J.; Gillings, N.; Fosbøl, M.Ø.; Denholt, C.L.; Petersen, I.N.; Sørensen, L.S.; Enevoldsen, L.H.; et al. Performing [18F]MFBG Long-Axial-Field-of-View PET/CT Without Sedation or General Anesthesia for Imaging of Children with Neuroblastoma. J. Nucl. Med. 2024, 65, 1286–1292. [Google Scholar] [CrossRef]
- Innervate Radiopharmaceuticals LLC (Formerly: Illumina Radiopharmaceuticals LLC). A Prospective Phase 3 Multi-Center Study to Assess the Efficacy and Safety of 18F-mFBG PET Imaging in Subjects with Neuroblastoma; Clinicaltrials.gov: Bethesda, MD, USA, 2024. [Google Scholar]
- Aboian, M.S.; Huang, S.-Y.; Hernandez-Pampaloni, M.; Hawkins, R.A.; VanBrocklin, H.F.; Huh, Y.; Vo, K.T.; Gustafson, W.C.; Matthay, K.K.; Seo, Y. 124I-MIBG PET/CT to Monitor Metastatic Disease in Children with Relapsed Neuroblastoma. J. Nucl. Med. 2021, 62, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Grant, F.; Sexton-Stallone, B.; Falone, A.; Brown, D.; Zurakowski, D.; Onar, A.; Dunkel, I.; Poussaint, T.; Fahey, F.; Treves, S.T. [18F] FLT PET Predicts Cellular Proliferation in Pediatric Brain Tumors. J. Nucl. Med. 2019, 60, 156. [Google Scholar]
- Grant, F.D. Phase 2 Study of [18F]FLT for PET Imaging of Brain Tumors in Children; Clinicaltrials.gov: Bethesda, MD, USA, 2024. [Google Scholar]
- Fiz, F.; Bottoni, G.; Ugolini, M.; Righi, S.; Cirone, A.; Garganese, M.C.; Verrico, A.; Rossi, A.; Milanaccio, C.; Ramaglia, A.; et al. Diagnostic and Dosimetry Features of [64Cu]CuCl2 in High-Grade Paediatric Infiltrative Gliomas. Mol. Imaging Biol. 2023, 25, 391–400. [Google Scholar] [CrossRef]
- Yue, X.; Xin, Y.; Zhang, S.; Li, H.; Choudhary, A.; Langhans, S. Comparison of 1-(2-[18F]Fluoroethyl)-L-Tryptophan and FDG for the Detection of Medulloblastoma in a Transgenic Mouse Model. J. Nucl. Med. 2019, 60, 545. [Google Scholar]
- Xin, Y.; Yue, X.; Li, H.; Li, Z.; Cai, H.; Choudhary, A.K.; Zhang, S.; Chugani, D.C.; Langhans, S.A. PET Imaging of Medulloblastoma with an 18F-Labeled Tryptophan Analogue in a Transgenic Mouse Model. Sci. Rep. 2020, 10, 3800. [Google Scholar] [CrossRef]
- Gains, J.E.; Aldridge, M.D.; Mattoli, M.V.; Bomanji, J.B.; Biassoni, L.; Shankar, A.; Gaze, M.N. 68Ga-DOTATATE and 123I-mIBG as Imaging Biomarkers of Disease Localisation in Metastatic Neuroblastoma: Implications for Molecular Radiotherapy. Nucl. Med. Commun. 2020, 41, 1169. [Google Scholar] [CrossRef]
- AlSadi, R.; Maaz, A.U.R.; Bouhali, O.; Djekidel, M. 68Ga-DOTATATE PET in Restaging and Response to Therapy in Neuroblastoma: A Case Series and a Mini Review. J. Nucl. Med. Technol. 2023, 51, 140–146. [Google Scholar] [CrossRef]
- Qiao, H.; Li, S.; Xu, Y.; Wang, W.; Yang, J. Concurrent Intracranial and Spinal Dural Metastases Demonstrated by 68 Ga-DOTATATE PET/CT with Negative 123 I-MIBG SPECT/CT in a Pediatric Neuroblastoma Patient. Clin. Nucl. Med. 2025, 50, 91–93. [Google Scholar] [CrossRef]
- Zheng, L.; Li, S.; Xu, Y.; Wang, W.; Yang, J. 68 Ga-DOTATATE PET/CT Demonstrated More Lesions of Leptomeningeal Metastases Compared with 123 I-MIBG SPECT/CT in a Pediatric Neuroblastoma Patient. Clin. Nucl. Med. 2025, 50, 346–348. [Google Scholar] [CrossRef]
- Kong, G.; Hofman, M.S.; Murray, W.K.; Wilson, S.; Wood, P.; Downie, P.; Super, L.; Hogg, A.; Eu, P.; Hicks, R.J. Initial Experience with Gallium-68 DOTA-Octreotate PET/CT and Peptide Receptor Radionuclide Therapy for Pediatric Patients with Refractory Metastatic Neuroblastoma. J. Pediatr. Hematol./Oncol. 2016, 38, 87. [Google Scholar] [CrossRef]
- Fathpour, G.; Jafari, E.; Hashemi, A.; Dadgar, H.; Shahriari, M.; Zareifar, S.; Jenabzade, A.R.; Vali, R.; Ahmadzadehfar, H.; Assadi, M. Feasibility and Therapeutic Potential of Combined Peptide Receptor Radionuclide Therapy with Intensive Chemotherapy for Pediatric Patients with Relapsed or Refractory Metastatic Neuroblastoma. Clin. Nucl. Med. 2021, 46, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, Y.; Lu, X.; Wang, W.; Yang, J. A False-Negative 123I-MIBG SPECT/CT with True-Positive 68Ga-DOTATATE PET/CT in a Patient with Neuroblastoma Following 177Lu-DOTATATE Therapy. Clin. Nucl. Med. 2025, 50, 72. [Google Scholar] [CrossRef] [PubMed]
- Gains, J.E.; Moroz, V.; Aldridge, M.D.; Wan, S.; Wheatley, K.; Laidler, J.; Peet, C.; Bomanji, J.B.; Gaze, M.N. A Phase IIa Trial of Molecular Radiotherapy with 177-Lutetium DOTATATE in Children with Primary Refractory or Relapsed High-Risk Neuroblastoma. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2348–2357. [Google Scholar] [CrossRef]
- Malcolm, J.C.; Falzone, N.; Gains, J.E.; Aldridge, M.D.; Mirando, D.; Lee, B.Q.; Gaze, M.N.; Vallis, K.A. Impact of Cyclic Changes in Pharmacokinetics and Absorbed Dose in Pediatric Neuroblastoma Patients Receiving [177Lu]Lu-DOTATATE. EJNMMI Phys. 2022, 9, 24. [Google Scholar] [CrossRef]
- Sundquist, F.; Georgantzi, K.; Jarvis, K.B.; Brok, J.; Koskenvuo, M.; Rascon, J.; van Noesel, M.; Grybäck, P.; Nilsson, J.; Braat, A.; et al. A Phase II Trial of a Personalized, Dose-Intense Administration Schedule of 177Lutetium-DOTATATE in Children with Primary Refractory or Relapsed High-Risk Neuroblastoma–LuDO-N. Front. Pediatr. 2022, 10, 836230. [Google Scholar] [CrossRef] [PubMed]
- Arunraj, S.T.; Parida, G.K.; Damle, N.A.; Arora, S.; Reddy, S.; Chakraborty, D.; Prabhu, M.; Tripathi, M.; Bal, C. 68Ga-DOTANOC PET/CT in Medulloblastoma. Clin. Nucl. Med. 2018, 43, e145–e146. [Google Scholar] [CrossRef]
- ArunRaj, S.T.; Kumar, A.; Kp, H.; Mohan, N.; Gupta, S.; Tripathi, M.; Bal, C. Metastatic Medulloblastoma: 18F-FDG and 68Ga-DOTANOC PET/CT in Response Evaluation. Clin. Nucl. Med. 2021, 46, e262–e263. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, Y.; Li, D.; Niu, G.; Lang, L.; Li, F.; Liu, Y.; Zhu, Z.; Chen, X. 68Ga-NOTA-Aca-BBN(7-14) PET Imaging of GRPR in Children with Optic Pathway Glioma. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2152–2162. [Google Scholar] [CrossRef]
- Chevaleyre, C.; Kereselidze, D.; Caillé, F.; Tournier, N.; Olaciregui, N.G.; Winkeler, A.; Declèves, X.; Jego, B.; Cisternino, S.; Auvity, S.; et al. TSPO PET Imaging as a Potent Non-Invasive Biomarker for Diffuse Intrinsic Pontine Glioma in a Patient-Derived Orthotopic Rat Model. Int. J. Mol. Sci. 2022, 23, 12476. [Google Scholar] [CrossRef]
- Echavidre, W.; Durivault, J.; Gotorbe, C.; Blanchard, T.; Pagnuzzi, M.; Vial, V.; Raes, F.; Broisat, A.; Villeneuve, R.; Amblard, R.; et al. Integrin-Avβ3 Is a Therapeutically Targetable Fundamental Factor in Medulloblastoma Tumorigenicity and Radioresistance. Cancer Res. Commun. 2023, 3, 2483–2496. [Google Scholar] [CrossRef]
- Souweidane, M.M.; Kramer, K.; Pandit-Taskar, N.; Zhou, Z.; Haque, S.; Zanzonico, P.; Carrasquillo, J.A.; Lyashchenko, S.K.; Thakur, S.B.; Donzelli, M.; et al. Convection-Enhanced Delivery for Diffuse Intrinsic Pontine Glioma: A Single-Centre, Dose-Escalation, Phase 1 Trial. Lancet Oncol. 2018, 19, 1040–1050. [Google Scholar] [CrossRef]
- Pandit-Taskar, N.; Zanzonico, P.B.; Grkovski, M.; Donzelli, M.; Vietri, S.M.; Horan, C.; Serencsits, B.; Prasad, K.; Lyashchenko, S.; Kramer, K.; et al. Theranostic Intratumoral Convection-Enhanced Delivery of 124I-Omburtamab in Patients with Diffuse Intrinsic Pontine Glioma: Pharmacokinetics and Lesion Dosimetry. J. Nucl. Med. 2024, 65, 1364–1370. [Google Scholar] [CrossRef] [PubMed]
- Souweidane, M.M.; Bander, E.D.; Zanzonico, P.; Reiner, A.S.; Manino, N.; Haque, S.; Carrasquillo, J.A.; Lyashchenko, S.K.; Thakur, S.B.; Lewis, J.S.; et al. Phase 1 Dose-Escalation Trial Using Convection-Enhanced Delivery (CED) of Radio-Immunotheranostic 124I-Omburtamab for Diffuse Intrinsic Pontine Glioma (DIPG). Neuro-Oncology 2025, noaf039. [Google Scholar] [CrossRef]
- Pandit-Taskar, N.; Zanzonico, P.B.; Kramer, K.; Grkovski, M.; Fung, E.K.; Shi, W.; Zhang, Z.; Lyashchenko, S.K.; Fung, A.M.; Pentlow, K.S.; et al. Biodistribution and Dosimetry of Intraventricularly Administered 124I-Omburtamab in Patients with Metastatic Leptomeningeal Tumors. J. Nucl. Med. 2019, 60, 1794–1801. [Google Scholar] [CrossRef] [PubMed]
- Pandit-Taskar, N.; Grkovski, M.; Zanzonico, P.B.; Pentlow, K.S.; Modak, S.; Kramer, K.; Humm, J.L. Radioimmunoscintigraphy and Pretreatment Dosimetry of 131I-Omburtamab for Planning Treatment of Leptomeningeal Disease. J. Nucl. Med. 2023, 64, 946–950. [Google Scholar] [CrossRef]
- Tringale, K.R.; Wolden, S.L.; Karajannis, M.; Haque, S.; Pasquini, L.; Yildirim, O.; Rosenblum, M.; Benhamida, J.K.; Cheung, N.-K.; Souweidane, M.; et al. Outcomes of Intraventricular 131-I-Omburtamab and External Beam Radiotherapy in Patients with Recurrent Medulloblastoma and Ependymoma. J. Neurooncol. 2023, 162, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Bailey, K.; Pandit-Taskar, N.; Humm, J.L.; Zanzonico, P.; Gilheeney, S.; Cheung, N.-K.V.; Kramer, K. Targeted Radioimmunotherapy for Embryonal Tumor with Multilayered Rosettes. J. Neurooncol. 2019, 143, 101–106. [Google Scholar] [CrossRef]
- Butch, E.; Mishra, J.; Amador-Diaz, V.; Vavere, A.; Snyder, S. Selective Detection of GD2-Positive Pediatric Solid Tumors Using 89Zr-Dinutuximab PET to Facilitate Anti-GD2 Immunotherapy. J. Nucl. Med. 2018, 59, 170. [Google Scholar]
- Schmitt, J.; Schwenck, J.; Maurer, A.; Przybille, M.; Sonanini, D.; Reischl, G.; Wehrmüller, J.E.; Quintanilla-Martinez, L.; Gillies, S.D.; Krueger, M.A.; et al. Translational immunoPET Imaging Using a Radiolabeled GD2-Specific Antibody in Neuroblastoma. Theranostics 2022, 12, 5615–5630. [Google Scholar] [CrossRef]
- Jansen, M.H.; van Zanten, S.E.M.V.; van Vuurden, D.G.; Huisman, M.C.; Vugts, D.J.; Hoekstra, O.S.; van Dongen, G.A.; Kaspers, G.-J.L. Molecular Drug Imaging: 89Zr-Bevacizumab PET in Children with Diffuse Intrinsic Pontine Glioma. J. Nucl. Med. 2017, 58, 711–716. [Google Scholar] [CrossRef]
- Van Zanten, S.E.M.V.; Sewing, A.C.P.; van Lingen, A.; Hoekstra, O.S.; Wesseling, P.; Meel, M.H.; van Vuurden, D.G.; Kaspers, G.J.L.; Hulleman, E.; Bugiani, M. Multiregional Tumor Drug-Uptake Imaging by PET and Microvascular Morphology in End-Stage Diffuse Intrinsic Pontine Glioma. J. Nucl. Med. 2018, 59, 612–615. [Google Scholar] [CrossRef] [PubMed]
- Glaudemans, A.W.J.M.; Enting, R.H.; Heesters, M.A.A.M.; Dierckx, R.A.J.O.; van Rheenen, R.W.J.; Walenkamp, A.M.E.; Slart, R.H.J.A. Value of 11C-Methionine PET in Imaging Brain Tumours and Metastases. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 615–635. [Google Scholar] [CrossRef] [PubMed]
- Galldiks, N.; Lohmann, P.; Fink, G.R.; Langen, K.-J. Amino Acid PET in Neurooncology. J. Nucl. Med. 2023, 64, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Debreczeni-Máté, Z.; Freihat, O.; Törő, I.; Simon, M.; Kovács, Á.; Sipos, D. Value of 11C-Methionine PET Imaging in High-Grade Gliomas: A Narrative Review. Cancers 2024, 16, 3200. [Google Scholar] [CrossRef]
- Firnau, G.; Garnett, E.S.; Sourkes, T.L.; Missala, K. [18F] Fluoro-Dopa: A Unique Gamma Emitting Substrate for Dopa Decarboxylase. Experientia 1975, 31, 1254–1255. [Google Scholar] [CrossRef]
- Somme, F.; Bender, L.; Namer, I.J.; Noël, G.; Bund, C. Usefulness of 18F-FDOPA PET for the Management of Primary Brain Tumors: A Systematic Review of the Literature. Cancer Imaging 2020, 20, 70. [Google Scholar] [CrossRef]
- Stormezand, G.N.; de Meyer, E.; Koopmans, K.P.; Brouwers, A.H.; Luurtsema, G.; Dierckx, R.A.J.O. Update on the Role of [18F]FDOPA PET/CT. Semin. Nucl. Med. 2024, 54, 845–855. [Google Scholar] [CrossRef]
- Habermeier, A.; Graf, J.; Sandhöfer, B.F.; Boissel, J.-P.; Roesch, F.; Closs, E.I. System L Amino Acid Transporter LAT1 Accumulates O-(2-Fluoroethyl)-L-Tyrosine (FET). Amino Acids 2015, 47, 335–344. [Google Scholar] [CrossRef]
- Weckesser, M.; Langen, K.J.; Rickert, C.H.; Kloska, S.; Straeter, R.; Hamacher, K.; Kurlemann, G.; Wassmann, H.; Coenen, H.H.; Schober, O. O-(2-[18F]Fluorethyl)-L-Tyrosine PET in the Clinical Evaluation of Primary Brain Tumours. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 422–429. [Google Scholar] [CrossRef]
- van de Weijer, T.; Broen, M.P.G.; Moonen, R.P.M.; Hoeben, A.; Anten, M.; Hovinga, K.; Compter, I.; van der Pol, J.A.J.; Mitea, C.; Lodewick, T.M.; et al. The Use of 18F-FET-PET-MRI in Neuro-Oncology: The Best of Both Worlds-A Narrative Review. Diagnostics 2022, 12, 1202. [Google Scholar] [CrossRef]
- Wen, P.Y.; Macdonald, D.R.; Reardon, D.A.; Cloughesy, T.F.; Sorensen, A.G.; Galanis, E.; Degroot, J.; Wick, W.; Gilbert, M.R.; Lassman, A.B.; et al. Updated Response Assessment Criteria for High-Grade Gliomas: Response Assessment in Neuro-Oncology Working Group. J. Clin. Oncol. 2010, 28, 1963–1972. [Google Scholar] [CrossRef] [PubMed]
- Reardon, D.A.; Weller, M. Pseudoprogression: Fact or Wishful Thinking in Neuro-Oncology? Lancet Oncol. 2018, 19, 1561–1563. [Google Scholar] [CrossRef]
- Kadali, K.R.; Nierobisch, N.; Maibach, F.; Heesen, P.; Alcaide-Leon, P.; Hüllner, M.; Weller, M.; Kulcsar, Z.; Hainc, N. An Effective MRI Perfusion Threshold Based Workflow to Triage Additional 18F-FET PET in Posttreatment High Grade Glioma. Sci. Rep. 2025, 15, 7749. [Google Scholar] [CrossRef] [PubMed]
- Galldiks, N.; Kaufmann, T.J.; Vollmuth, P.; Lohmann, P.; Smits, M.; Veronesi, M.C.; Langen, K.-J.; Rudà, R.; Albert, N.L.; Hattingen, E.; et al. Challenges, Limitations, and Pitfalls of PET and Advanced MRI in Patients with Brain Tumors: A Report of the PET/RANO Group. Neuro-Oncology 2024, 26, 1181–1194. [Google Scholar] [CrossRef]
- Achmad, A.; Hanaoka, H.; Holik, H.A.; Endo, K.; Tsushima, Y.; Kartamihardja, A.H.S. LAT1-Specific PET Radiotracers: Development and Clinical Experiences of a New Class of Cancer-Specific Radiopharmaceuticals. Theranostics 2025, 15, 1864–1878. [Google Scholar] [CrossRef] [PubMed]
- Gröner, B.; Hoffmann, C.; Endepols, H.; Urusova, E.A.; Brugger, M.; Neumaier, F.; Timmer, M.; Neumaier, B.; Zlatopolskiy, B.D. Radiosynthesis and Preclinical Evaluation of M-[18F]FET and [18F]FET-OMe as Novel [18F]FET Analogs for Brain Tumor Imaging. Mol. Pharm. 2024, 21, 2795–2812. [Google Scholar] [CrossRef]
- Leung, K. [18F]Fluorocholine. In Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda, MD, USA, 2004. [Google Scholar]
- Ferrari, C.; Mammucci, P.; Lavelli, V.; Pisani, A.R.; Nappi, A.G.; Rubini, D.; Sardaro, A.; Rubini, G. [18F]Fluciclovine vs. [18F]Fluorocholine Positron Emission Tomography/Computed Tomography: A Head-to-Head Comparison for Early Detection of Biochemical Recurrence in Prostate Cancer Patients. Tomography 2022, 8, 2709–2722. [Google Scholar] [CrossRef]
- Olivier, P.; Giraudet, A.-L.; Skanjeti, A.; Merlin, C.; Weinmann, P.; Rudolph, I.; Hoepping, A.; Gauthé, M. Phase III Study of 18F-PSMA-1007 Versus 18F-Fluorocholine PET/CT for Localization of Prostate Cancer Biochemical Recurrence: A Prospective, Randomized, Crossover Multicenter Study. J. Nucl. Med. 2023, 64, 579–585. [Google Scholar] [CrossRef]
- Muglia, V.F.; Laschena, L.; Pecoraro, M.; de Lion Gouvea, G.; Colli, L.M.; Panebianco, V. Imaging Assessment of Prostate Cancer Recurrence: Advances in Detection of Local and Systemic Relapse. Abdom. Radiol. 2025, 50, 807–826. [Google Scholar] [CrossRef]
- Samim, A.; Tytgat, G.A.M.; Bleeker, G.; Wenker, S.T.M.; Chatalic, K.L.S.; Poot, A.J.; Tolboom, N.; van Noesel, M.M.; Lam, M.G.E.H.; de Keizer, B. Nuclear Medicine Imaging in Neuroblastoma: Current Status and New Developments. J. Pers. Med. 2021, 11, 270. [Google Scholar] [CrossRef]
- Leung, K. 3′-Deoxy-3′-[18F]Fluorothymidine. In Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda, MD, USA, 2004. [Google Scholar]
- Jørgensen, J.T.; Persson, M.; Madsen, J.; Kjær, A. High Tumor Uptake of 64Cu: Implications for Molecular Imaging of Tumor Characteristics with Copper-Based PET Tracers. Nucl. Med. Biol. 2013, 40, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Peng, F. Recent Advances in Cancer Imaging with 64CuCl2 PET/CT. Nucl. Med. Mol. Imaging 2022, 56, 80–85. [Google Scholar] [CrossRef]
- Adams, S.; Braidy, N.; Bessesde, A.; Brew, B.J.; Grant, R.; Teo, C.; Guillemin, G.J. The Kynurenine Pathway in Brain Tumor Pathogenesis. Cancer Res. 2012, 72, 5649–5657. [Google Scholar] [CrossRef]
- Park, S.; Parihar, A.S.; Bodei, L.; Hope, T.A.; Mallak, N.; Millo, C.; Prasad, K.; Wilson, D.; Zukotynski, K.; Mittra, E. Somatostatin Receptor Imaging and Theranostics: Current Practice and Future Prospects. J. Nucl. Med. 2021, 62, 1323–1329. [Google Scholar] [CrossRef]
- Hennrich, U.; Kopka, K. Lutathera®: The First FDA- and EMA-Approved Radiopharmaceutical for Peptide Receptor Radionuclide Therapy. Pharmaceuticals 2019, 12, 114. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research. FDA Approves Lutetium Lu 177 Dotatate for Pediatric Patients 12 Years and Older with GEP-NETS. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-lutetium-lu-177-dotatate-pediatric-patients-12-years-and-older-gep-nets (accessed on 2 April 2025).
- Cimini, A.; Ricci, M.; Chiaravalloti, A.; Filippi, L.; Schillaci, O. Theragnostic Aspects and Radioimmunotherapy in Pediatric Tumors. Int. J. Mol. Sci. 2020, 21, 3849. [Google Scholar] [CrossRef] [PubMed]
- Lazow, M.A.; Fuller, C.; Trout, A.T.; Stanek, J.R.; Reuss, J.; Turpin, B.K.; Szabo, S.; Salloum, R. Immunohistochemical Assessment and Clinical, Histopathologic, and Molecular Correlates of Membranous Somatostatin Type-2A Receptor Expression in High-Risk Pediatric Central Nervous System Tumors. Front Oncol 2022, 12, 996489. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, E.; Cleeren, F.; Bormans, G.; Deroose, C.M. Somatostatin Receptor PET Ligands—The next Generation for Clinical Practice. Am. J. Nucl. Med. Mol. Imaging 2018, 8, 311–331. [Google Scholar]
- Roesler, R.; Schwartsmann, G. Gastrin-Releasing Peptide Receptors in the Central Nervous System: Role in Brain Function and as a Drug Target. Front. Endocrinol. 2012, 3, 159. [Google Scholar] [CrossRef]
- Roth, P. The Role of Integrins in Glioma Biology and Anti-Glioma Therapies. SpringerPlus 2015, 4, L12. [Google Scholar] [CrossRef]
- Roncaroli, F.; Su, Z.; Herholz, K.; Gerhard, A.; Turkheimer, F.E. TSPO Expression in Brain Tumours: Is TSPO a Target for Brain Tumour Imaging? Clin. Transl. Imaging 2016, 4, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Ellert-Miklaszewska, A.; Poleszak, K.; Pasierbinska, M.; Kaminska, B. Integrin Signaling in Glioma Pathogenesis: From Biology to Therapy. Int. J. Mol. Sci. 2020, 21, 888. [Google Scholar] [CrossRef] [PubMed]
- Echavidre, W.; Picco, V.; Faraggi, M.; Montemagno, C. Integrin-Avβ3 as a Therapeutic Target in Glioblastoma: Back to the Future? Pharmaceutics 2022, 14, 1053. [Google Scholar] [CrossRef]
- Bogdanović, B.; Fagret, D.; Ghezzi, C.; Montemagno, C. Integrin Targeting and Beyond: Enhancing Cancer Treatment with Dual-Targeting RGD (Arginine–Glycine–Aspartate) Strategies. Pharmaceuticals 2024, 17, 1556. [Google Scholar] [CrossRef] [PubMed]
- Niessen, V.J.A.; Wenker, S.T.M.; Lam, M.G.E.H.; van Noesel, M.M.; Poot, A.J. Biologicals as Theranostic Vehicles in Paediatric Oncology. Nucl. Med. Biol. 2022, 114–115, 58–64. [Google Scholar] [CrossRef]
- Bottino, C.; Vitale, C.; Dondero, A.; Castriconi, R. B7-H3 in Pediatric Tumors: Far beyond Neuroblastoma. Cancers 2023, 15, 3279. [Google Scholar] [CrossRef]
- Luther, N.; Zhou, Z.; Zanzonico, P.; Cheung, N.-K.; Humm, J.; Edgar, M.A.; Souweidane, M.M. The Potential of Theragnostic 124I-8H9 Convection-Enhanced Delivery in Diffuse Intrinsic Pontine Glioma. Neuro-Oncology 2014, 16, 800–806. [Google Scholar] [CrossRef]
- Nazha, B.; Inal, C.; Owonikoko, T.K. Disialoganglioside GD2 Expression in Solid Tumors and Role as a Target for Cancer Therapy. Front. Oncol. 2020, 10, 1000. [Google Scholar] [CrossRef]
- Dhillon, S. Dinutuximab: First Global Approval. Drugs 2015, 75, 923–927. [Google Scholar] [CrossRef]
- Qarziba (Previously Dinutuximab Beta EUSA and Dinutuximab Beta Apeiron)|European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/qarziba (accessed on 2 April 2025).
- Keyel, M.E.; Reynolds, C.P. Spotlight on Dinutuximab in the Treatment of High-Risk Neuroblastoma: Development and Place in Therapy. Biologics 2019, 13, 1–12. [Google Scholar] [CrossRef]
- Spasov, N.J.; Dombrowski, F.; Lode, H.N.; Spasova, M.; Ivanova, L.; Mumdjiev, I.; Burnusuzov, H.; Siebert, N. First-Line Anti-GD2 Therapy Combined with Consolidation Chemotherapy in 3 Patients with Newly Diagnosed Metastatic Ewing Sarcoma or Ewing-like Sarcoma. J. Pediatr. Hematol. Oncol. 2022, 44, e948–e953. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute (NCI). A Phase 2 Study of Human-Mouse Chimeric Anti-Disialoganglioside Monoclonal Antibody Ch14.18 (Dinutuximab, NSC# 764038) in Combination with Sargramostim (GM-CSF) in Patients with Recurrent Osteosarcoma; Clinicaltrials.gov: Bethesda, MD, USA, 2023. [Google Scholar]
- Institut für Klinische Krebsforschung IKF GmbH at Krankenhaus Nordwest Combined. Treatment with Dinutuximab Beta, Zoledronic Acid and Low-Dose Interleukin (IL-2) in Patients with Metastatic or Inoperable Leiomyosarcoma—DiTuSarc Study; Clinicaltrials.gov: Bethesda, MD, USA, 2025. [Google Scholar]
- Trautwein, N.F.; Schwenck, J.; Seitz, C.; Seith, F.; Calderón, E.; von Beschwitz, S.; Singer, S.; Reischl, G.; Handgretinger, R.; Schäfer, J.; et al. A Novel Approach to Guide GD2-Targeted Therapy in Pediatric Tumors by PET and [64Cu]Cu-NOTA-Ch14.18/CHO. Theranostics 2024, 14, 1212–1223. [Google Scholar] [CrossRef] [PubMed]
- Gerriets, V.; Kasi, A. Bevacizumab. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Fangusaro, J.; Jones, D.T.; Packer, R.J.; Gutmann, D.H.; Milde, T.; Witt, O.; Mueller, S.; Fisher, M.J.; Hansford, J.R.; Tabori, U.; et al. Pediatric Low-Grade Glioma: State-of-the-Art and Ongoing Challenges. Neuro-Oncology 2023, 26, 25–37. [Google Scholar] [CrossRef]
- Green, K.; Panagopoulou, P.; D’Arco, F.; O’Hare, P.; Bowman, R.; Walters, B.; Dahl, C.; Jorgensen, M.; Patel, P.; Slater, O.; et al. A Nationwide Evaluation of Bevacizumab-Based Treatments in Pediatric Low-Grade Glioma in the UK: Safety, Efficacy, Visual Morbidity, and Outcomes. Neuro-Oncology 2023, 25, 774–785. [Google Scholar] [CrossRef]
- Bennebroek, C.A.M.; van Zwol, J.; Porro, G.L.; Oostenbrink, R.; Dittrich, A.T.M.; Groot, A.L.W.; Pott, J.W.; Janssen, E.J.M.; Bauer, N.J.; van Genderen, M.M.; et al. Impact of Bevacizumab on Visual Function, Tumor Size, and Toxicity in Pediatric Progressive Optic Pathway Glioma: A Retrospective Nationwide Multicentre Study. Cancers 2022, 14, 6087. [Google Scholar] [CrossRef]
- Yamasaki, F.; Takano, M.; Yonezawa, U.; Taguchi, A.; Kolakshyapati, M.; Okumichi, H.; Kiuchi, Y.; Kurisu, K. Bevacizumab for Optic Pathway Glioma with Worsening Visual Field in Absence of Imaging Progression: 2 Case Reports and Literature Review. Childs Nerv. Syst. 2020, 36, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Gill, R.; Bull, K.S. Does a Bevacizumab-Based Regime Have a Role in the Treatment of Children with Diffuse Intrinsic Pontine Glioma? A Systematic Review. Neurooncol. Adv. 2022, 4, vdac100. [Google Scholar] [CrossRef]
- El-Khouly, F.E.; Veldhuijzen van Zanten, S.E.M.; Jansen, M.H.A.; Bakker, D.P.; Sanchez Aliaga, E.; Hendrikse, N.H.; Vandertop, W.P.; van Vuurden, D.G.; Kaspers, G.J.L. A Phase I/II Study of Bevacizumab, Irinotecan and Erlotinib in Children with Progressive Diffuse Intrinsic Pontine Glioma. J. Neurooncol. 2021, 153, 263–271. [Google Scholar] [CrossRef]
- Crotty, E.E.; Leary, S.E.S.; Geyer, J.R.; Olson, J.M.; Millard, N.E.; Sato, A.A.; Ermoian, R.P.; Cole, B.L.; Lockwood, C.M.; Paulson, V.A.; et al. Children with DIPG and High-Grade Glioma Treated with Temozolomide, Irinotecan, and Bevacizumab: The Seattle Children’s Hospital Experience. J. Neurooncol. 2020, 148, 607–617. [Google Scholar] [CrossRef]
- Hummel, T.R.; Salloum, R.; Drissi, R.; Kumar, S.; Sobo, M.; Goldman, S.; Pai, A.; Leach, J.; Lane, A.; Pruitt, D.; et al. A Pilot Study of Bevacizumab-Based Therapy in Patients with Newly Diagnosed High-Grade Gliomas and Diffuse Intrinsic Pontine Gliomas. J. Neurooncol. 2016, 127, 53–61. [Google Scholar] [CrossRef]
- Jansen, M.H.A.; Lagerweij, T.; Sewing, A.C.P.; Vugts, D.J.; van Vuurden, D.G.; Molthoff, C.F.M.; Caretti, V.; Veringa, S.J.E.; Petersen, N.; Carcaboso, A.M.; et al. Bevacizumab Targeting Diffuse Intrinsic Pontine Glioma: Results of 89Zr-Bevacizumab PET Imaging in Brain Tumor Models. Mol. Cancer Ther. 2016, 15, 2166–2174. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogdanović, B.; Montemagno, C. From Seeing to Healing: The Clinical Potential of Radiotracers in Pediatric Neuro-Oncology. Cancers 2025, 17, 1905. https://doi.org/10.3390/cancers17121905
Bogdanović B, Montemagno C. From Seeing to Healing: The Clinical Potential of Radiotracers in Pediatric Neuro-Oncology. Cancers. 2025; 17(12):1905. https://doi.org/10.3390/cancers17121905
Chicago/Turabian StyleBogdanović, Bojana, and Christopher Montemagno. 2025. "From Seeing to Healing: The Clinical Potential of Radiotracers in Pediatric Neuro-Oncology" Cancers 17, no. 12: 1905. https://doi.org/10.3390/cancers17121905
APA StyleBogdanović, B., & Montemagno, C. (2025). From Seeing to Healing: The Clinical Potential of Radiotracers in Pediatric Neuro-Oncology. Cancers, 17(12), 1905. https://doi.org/10.3390/cancers17121905