Personalized Treatment in Ovarian Cancer: A Review of Disease Monitoring, Biomarker Expression, and Targeted Treatments for Advanced, Recurrent Ovarian Cancers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Disease Monitoring
3.1. CA125
3.2. Circulating Tumor DNA
4. Expression of Therapeutic Biomarker in Ovarian Cancer
4.1. Breast Cancer Susceptibility Genes (BRCA1/2)
4.2. Human Epidermal Growth Factor Receptor 2 (HER2)
4.3. Trophoblast Cell Surface Antigen 2 (TROP2)
4.4. Folic Acid Receptor Alpha (FOLR1)
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HGSOC | High-Grade Serous Ovarian Cancer |
HRD | Homologous Recombination Deficiency |
TMB | Tumor Mutational Burden |
TROP2 | Trophoblast Cell-Surface Antigen 2 |
CA125 | Cancer Antigen 125 |
GCIG | Gynecologic Cancer InterGroup |
PFS | Progression-Free Survival |
OS | Overall Survival |
CT | Computed Tomography |
ctDNA | Circulating Tumor DNA |
VAF | Variant Allele Frequency |
FGFR2 | Fibroblast Growth Factor Receptor 2 |
BRCA | Breast Cancer Susceptibility Gene |
HER2 | Human Epidermal Growth Factor Receptor 2 |
FOLR1 | Folate Receptor Alpha |
PARP | Poly (ADP-Ribose) Polymerase |
ADC | Antibody–Drug Conjugate |
ORR | Objective Response Rate |
DOR | Duration of Response |
DAR | Drug–Antibody Ratio |
GP1 | Glycosyl-Phosphatidylinositol |
LGOC | Low-Grade Serous Ovarian Cancer |
NCCN | National Comprehensive Cancer Network |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Webb, P.M.; Jordan, S.J. Global epidemiology of epithelial ovarian cancer. Nat. Rev. Clin. Oncol. 2024, 21, 389–400. [Google Scholar] [CrossRef]
- Berek, J.S.; Renz, M.; Kehoe, S.; Kumar, L.; Friedlander, M. Cancer of the ovary, fallopian tube, and peritoneum: 2021 update. Int. J. Gynaecol. Obstet. 2021, 155 (Suppl. S1), S61–S85. [Google Scholar] [CrossRef]
- Sambasivan, S. Epithelial ovarian cancer: Review article. Cancer Treat. Res. Commun. 2022, 33, 100629. [Google Scholar] [CrossRef]
- Salehi, F.; Dunfield, L.; Phillips, K.P.; Krewski, D.; Vanderhyden, B.C. Risk factors for ovarian cancer: An overview with emphasis on hormonal factors. J. Toxicol. Environ. Health B Crit. Rev. 2008, 11, 301–321. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.K.; Ding, D.C. Early Diagnosis of Ovarian Cancer: A Comprehensive Review of the Advances, Challenges, and Future Directions. Diagnostics 2025, 15, 406. [Google Scholar] [CrossRef]
- Morand, S.; Devanaboyina, M.; Staats, H.; Stanbery, L.; Nemunaitis, J. Ovarian Cancer Immunotherapy and Personalized Medicine. Int. J. Mol. Sci. 2021, 22, 6532. [Google Scholar] [CrossRef]
- Sharma, T.; Nisar, S.; Masoodi, T.; Macha, M.A.; Uddin, S.; Akil, A.A.; Pandita, T.K.; Singh, M.; Bhat, A.A. Current and emerging biomarkers in ovarian cancer diagnosis; CA125 and beyond. Adv. Protein Chem. Struct. Biol. 2023, 133, 85–114. [Google Scholar]
- Borella, F.; Bertero, L.; Valabrega, G.; Fucina, S.; Cassoni, P.; Benedetto, C. Searching for prognostic markers for Stage I epithelial ovarian cancer: A role for systemic inflammatory markers. Int. J. Gynaecol. Obstet. 2024, 164, 262–269. [Google Scholar] [CrossRef]
- Karpel, H.C.; Powell, S.S.; Pothuri, B. Antibody-Drug Conjugates in Gynecologic Cancer. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e390772. [Google Scholar] [CrossRef] [PubMed]
- Charkhchi, P.; Cybulski, C.; Gronwald, J.; Wong, F.O.; Narod, S.A.; Akbari, M.R. CA125 and Ovarian Cancer: A Comprehensive Review. Cancers 2020, 12, 3730. [Google Scholar] [CrossRef]
- Tuxen, M.K.; Soletormos, G.; Dombernowsky, P. Serum tumour marker CA 125 in monitoring of ovarian cancer during first-line chemotherapy. Br. J. Cancer 2001, 84, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Krell, D.; Said Battistino, F.; Benafif, S.; Ganegoda, L.; Hall, M.; Rustin, G.J.S. Audit of CA125 Follow-Up After First-Line Therapy for Ovarian Cancer. Int. J. Gynecol. Cancer 2017, 27, 1118–1122. [Google Scholar] [CrossRef] [PubMed]
- Rustin, G.J.; Nelstrop, A.E.; Tuxen, M.K.; Lambert, H.E. Defining progression of ovarian carcinoma during follow-up according to CA 125: A North Thames Ovary Group Study. Ann. Oncol. 1996, 7, 361–364. [Google Scholar] [CrossRef]
- Santillan, A.; Garg, R.; Zahurak, M.L.; Gardner, G.J.; Giuntoli, R.L., II; Armstrong, D.K.; Bristow, R.E. Risk of epithelial ovarian cancer recurrence in patients with rising serum CA-125 levels within the normal range. J. Clin. Oncol. 2005, 23, 9338–9343. [Google Scholar] [CrossRef]
- Gadducci, A.; Cosio, S. Surveillance of patients after initial treatment of ovarian cancer. Crit. Rev. Oncol. Hematol. 2009, 71, 43–52. [Google Scholar] [CrossRef]
- Markman, M.; Federico, M.; Liu, P.Y.; Hannigan, E.; Alberts, D. Significance of early changes in the serum CA-125 antigen level on overall survival in advanced ovarian cancer. Gynecol. Oncol. 2006, 103, 195–198. [Google Scholar] [CrossRef]
- Kessous, R.; Wissing, M.D.; Piedimonte, S.; Abitbol, J.; Kogan, L.; Laskov, I.; Yasmeen, A.; Salvador, S.; Lau, S.; Gotlieb, W.H. CA-125 reduction during neoadjuvant chemotherapy is associated with success of cytoreductive surgery and outcome of patients with advanced high-grade ovarian cancer. Acta Obstet. Gynecol. Scand. 2020, 99, 933–940. [Google Scholar] [CrossRef]
- Riedinger, J.M.; Wafflart, J.; Ricolleau, G.; Eche, N.; Larbre, H.; Basuyau, J.P.; Dalifard, I.; Hacene, K.; Pichon, M.F. CA 125 half-life and CA 125 nadir during induction chemotherapy are independent predictors of epithelial ovarian cancer outcome: Results of a French multicentric study. Ann. Oncol. 2006, 17, 1234–1238. [Google Scholar] [CrossRef]
- Chiang, A.J.; Chen, J.; Chung, Y.C.; Huang, H.J.; Liou, W.S.; Chang, C. A longitudinal analysis with CA-125 to predict overall survival in patients with ovarian cancer. J. Gynecol. Oncol. 2014, 25, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Plana, A.; Talo, R.; Wallengren, N.O.; Pudaric, S.; Sartor, H.; Asp, M. Radiologically enlarged cardiophrenic lymph nodes and CA-125 in relation to diaphragmatic carcinomatosis, surgical outcome, and overall survival in advanced ovarian cancer. Acta Oncol. 2023, 62, 451–457. [Google Scholar] [CrossRef]
- Rustin, G.J.; van der Burg, M.E.; Griffin, C.L.; Guthrie, D.; Lamont, A.; Jayson, G.C.; Kristensen, G.; Mediola, C.; Coens, C.; Qian, W.; et al. Early versus delayed treatment of relapsed ovarian cancer (MRC OV05/EORTC 55955): A randomised trial. Lancet 2010, 376, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Chitale, R. Monitoring ovarian cancer: CA125 trial stirs controversy. J. Natl. Cancer Inst. 2009, 101, 1233–1235. [Google Scholar] [CrossRef]
- Yang, F.; Tang, J.; Zhao, Z.; Zhao, C.; Xiang, Y. Circulating tumor DNA: A noninvasive biomarker for tracking ovarian cancer. Reprod. Biol. Endocrinol. 2021, 19, 178. [Google Scholar] [CrossRef]
- Alves, M.C.; Fonseca, F.L.A.; Yamada, A.; Barros, L.; Lopes, A.; Silva, L.; Luz, A.; Cruz, F.; Giglio, A. Increased circulating tumor DNA as a noninvasive biomarker of early treatment response in patients with metastatic ovarian carcinoma: A pilot study. Tumour Biol. 2020, 42, 1010428320919198. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.M.; Lee, S.W.; Lee, Y.J.; Lee, H.Y.; Lee, J.E.; Choi, E.K. Prospective study of the efficacy and utility of TP53 mutations in circulating tumor DNA as a non-invasive biomarker of treatment response monitoring in patients with high-grade serous ovarian carcinoma. J. Gynecol. Oncol. 2019, 30, e32. [Google Scholar] [CrossRef]
- Noguchi, T.; Sakai, K.; Iwahashi, N.; Matsuda, K.; Matsukawa, H.; Yahata, T.; Toujima, S.; Nishio, K.; Ino, K. Changes in the gene mutation profiles of circulating tumor DNA detected using CAPP-Seq in neoadjuvant chemotherapy-treated advanced ovarian cancer. Oncol. Lett. 2020, 19, 2713–2720. [Google Scholar] [CrossRef]
- Martignetti, J.A.; Camacho-Vanegas, O.; Priedigkeit, N.; Camacho, C.; Pereira, E.; Lin, L.; Garnar-Wortzel, L.; Miller, D.; Losic, B.; Shah, H.; et al. Personalized ovarian cancer disease surveillance and detection of candidate therapeutic drug target in circulating tumor DNA. Neoplasia 2014, 16, 97–103. [Google Scholar] [CrossRef]
- Weigelt, B.; Comino-Mendez, I.; de Bruijn, I.; Tian, L.; Meisel, J.L.; Garcia-Murillas, I.; Fribbens, C.; Cutts, R.; Martelotto, L.G.; Ng, C.; et al. Diverse BRCA1 and BRCA2 Reversion Mutations in Circulating Cell-Free DNA of Therapy-Resistant Breast or Ovarian Cancer. Clin. Cancer Res. 2017, 23, 6708–6720. [Google Scholar] [CrossRef]
- Morikawa, A.; Hayashi, T.; Shimizu, N.; Kobayashi, M.; Taniue, K.; Takahashi, A.; Tachibana, K.; Saito, M.; Kawabata, A.; Iida, Y.; et al. PIK3CA and KRAS mutations in cell free circulating DNA are useful markers for monitoring ovarian clear cell carcinoma. Oncotarget 2018, 9, 15266–15274. [Google Scholar] [CrossRef]
- Ogasawara, A.; Hihara, T.; Shintani, D.; Yabuno, A.; Ikeda, Y.; Tai, K.; Fujiwara, K.; Wantanabe, K.; Hasegawa, K. Evaluation of Circulating Tumor DNA in Patients with Ovarian Cancer Harboring Somatic PIK3CA or KRAS Mutations. Cancer Res. Treat. 2020, 52, 1219–1228. [Google Scholar] [CrossRef]
- Gunderson, C.C.; Radhakrishnan, R.; Gomathinayagam, R.; Husain, S.; Aravindan, S.; Moore, K.M.; Dhanasekaran, D.; Jayaraman, M. Circulating Tumor Cell-Free DNA Genes as Prognostic Gene Signature for Platinum Resistant Ovarian Cancer Diagnosis. Biomark. Insights 2022, 17, 11772719221088404. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guan, Y.; Xiao, X.; Xu, S.; Zhu, S.; Cao, D.; Yu, M.; Peng, P.; Wang, J.; Wang, Y.; et al. Circulating tumor DNA detection improves relapse prediction in epithelial ovarian cancer. BMC Cancer 2024, 24, 1565. [Google Scholar] [CrossRef] [PubMed]
- Nemtsova, M.V.; Kalinkin, A.I.; Kuznetsova, E.B.; Bure, I.V.; Alekseeva, E.A.; Bykov, I.I.; Khorobrykh, T.; Mikhaylenko, D.; Tanas, A.; Kutsev, S.; et al. Clinical relevance of somatic mutations in main driver genes detected in gastric cancer patients by next-generation DNA sequencing. Sci. Rep. 2020, 10, 504. [Google Scholar] [CrossRef]
- Heo, J.; Kim, Y.N.; Shin, S.; Lee, K.; Lee, J.H.; Lee, Y.J.; Choi, Z.; Park, J.; Min, S.; Kim, S.; et al. Serial Circulating Tumor DNA Analysis with a Tumor-Naive Next-Generation Sequencing Panel Detects Minimal Residual Disease and Predicts Outcome in Ovarian Cancer. Cancer Res. 2024, 84, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.; Colombo, N.; Scambia, G.; Kim, B.G.; Oaknin, A.; Friedlander, M.; Lisyanskaya, A.; Floquet, A.; Leary, A.; Sonke, G.S.; et al. Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2018, 379, 2495–2505. [Google Scholar] [CrossRef]
- DiSilvestro, P.; Banerjee, S.; Colombo, N.; Scambia, G.; Kim, B.G.; Oaknin, A.; Friedlander, M.; Lisyanskaya, A.; Floquet, A.; Leary, A.; et al. Overall Survival With Maintenance Olaparib at a 7-Year Follow-Up in Patients With Newly Diagnosed Advanced Ovarian Cancer and a BRCA Mutation: The SOLO1/GOG 3004 Trial. J. Clin. Oncol. 2023, 41, 609–617. [Google Scholar] [CrossRef]
- O’Malley, D.M.; Krivak, T.C.; Kabil, N.; Munley, J.; Moore, K.N. PARP Inhibitors in Ovarian Cancer: A Review. Target. Oncol. 2023, 18, 471–503. [Google Scholar] [CrossRef]
- Committee, S.C.P. Summary: Revisions to FDA Approvals for Parp Inhibitors in the Management of Ovarian Cancer; Society of Gynecologic Oncology: Chicago, IL, USA, 2022. [Google Scholar]
- Citri, A.; Yarden, Y. EGF-ERBB signalling: Towards the systems level. Nat. Rev. Mol. Cell Biol. 2006, 7, 505–516. [Google Scholar] [CrossRef]
- McNamara, B.; Greenman, M.; Pebley, N.; Mutlu, L.; Santin, A.D. Antibody-Drug Conjugates (ADC) in HER2/neu-Positive Gynecologic Tumors. Molecules 2023, 28, 7389. [Google Scholar] [CrossRef] [PubMed]
- Diver, E.J.; Foster, R.; Rueda, B.R.; Growdon, W.B. The Therapeutic Challenge of Targeting HER2 in Endometrial Cancer. Oncologist 2015, 20, 1058–1068. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Xu, X.; Ye, M.; Sheng, B.; Zhu, X. The prognostic value of HER2 in ovarian cancer: A meta-analysis of observational studies. PLoS ONE 2018, 13, e0191972. [Google Scholar] [CrossRef]
- Tuefferd, M.; Couturier, J.; Penault-Llorca, F.; Vincent-Salomon, A.; Broet, P.; Guastalla, J.P.; Allouache, D.; Combe, M.; Weber, B.; Pujade-Lauraine, E.; et al. HER2 status in ovarian carcinomas: A multicenter GINECO study of 320 patients. PLoS ONE 2007, 2, e1138. [Google Scholar] [CrossRef]
- Lee, E.K.; Kolin, D.L.; Matulonis, U.A.; Erickson, B.K. Diagnostic and therapeutic advances for HER2-expressing or amplified gynecologic cancers. Gynecol. Oncol. 2025, 195, 152–164. [Google Scholar] [CrossRef]
- Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 2001, 344, 783–792. [Google Scholar] [CrossRef]
- Bookman, M.A.; Darcy, K.M.; Clarke-Pearson, D.; Boothby, R.A.; Horowitz, I.R. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: A phase II trial of the Gynecologic Oncology Group. J. Clin. Oncol. 2003, 21, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.S.; Matei, D.; Aghajanian, C.; Matulonis, U.A.; Brewer, M.; Fleming, G.F.; Hainsworth, J.D.; Garcia, A.A.; Pegram, M.D.; Shilder, R.J.; et al. Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: Potential predictive relationship with tumor HER2 activation status. J. Clin. Oncol. 2006, 24, 4324–4332. [Google Scholar] [CrossRef]
- Burris, H.A.; Rugo, H.S.; Vukelja, S.J.; Vogel, C.L.; Borson, R.A.; Limentani, S.; Tan-Chiu, E.; Krop, I.E.; Michaelson, R.A.; Girish, S.; et al. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J. Clin. Oncol. 2011, 29, 398–405. [Google Scholar] [CrossRef]
- Liu, D.; Makker, V.; Buonocore, D.; Shen, R.; Yaeger, R.; Ginsberg, M.; Yeh, R.; Johnson, A.; Offin, M.; Solit, D.B.; et al. Final analysis of multi-histology basket trial expansion of ado-trastuzumab emtansine in patients with HER2 amplified cancers. J. Clin. Oncol. 2023, 41, 3025. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Huang, C.S.; Mano, M.S.; Loibl, S.; Mamounas, E.P.; Untch, M.; Wolmark, N.; Rastogi, P.; Schneeweiss, A.; Redondo, A.; et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N. Engl. J. Med. 2019, 380, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Azar, I.; Alkassis, S.; Fukui, J.; Alsawah, F.; Fedak, K.; Al Hallak, M.N.; Sukari, A.; Nagasaka, M. Spotlight on Trastuzumab Deruxtecan (DS-8201,T-DXd) for HER2 Mutation Positive Non-Small Cell Lung Cancer. Lung Cancer 2021, 12, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Andrikopoulou, A.; Zografos, E.; Liontos, M.; Koutsoukos, K.; Dimopoulos, M.A.; Zagouri, F. Trastuzumab Deruxtecan (DS-8201a): The Latest Research and Advances in Breast Cancer. Clin. Breast Cancer 2021, 21, e212–e219. [Google Scholar] [CrossRef]
- Mutlu, L.; McNamara, B.; Bellone, S.; Manavella, D.D.; Demirkiran, C.; Greenman, M.; Verzosa, M.; Buza, N.; Hui, P.; Hartwich, T.; et al. Trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody-drug conjugate, demonstrates in vitro and in vivo antitumor activity against primary and metastatic ovarian tumors overexpressing HER2. Clin. Exp. Metastasis 2024, 41, 765–775. [Google Scholar] [CrossRef]
- Nishikawa, T.; Hasegawa, K.; Matsumoto, K.; Mori, M.; Hirashima, Y.; Takehara, K.; Ariyoshi, K.; Kato, T.; Yagishita, S.; Hamada, A.; et al. Trastuzumab Deruxtecan for Human Epidermal Growth Factor Receptor 2-Expressing Advanced or Recurrent Uterine Carcinosarcoma (NCCH1615): The STATICE Trial. J. Clin. Oncol. 2023, 41, 2789–2799. [Google Scholar] [CrossRef] [PubMed]
- Meric-Bernstam, F.; Makker, V.; Oaknin, A.; Oh, D.Y.; Banerjee, S.; Gonzalez-Martin, A.; Jung, K.; Lugowska, I.; Manso, L.; Manzano, A.; et al. Efficacy and Safety of Trastuzumab Deruxtecan in Patients With HER2-Expressing Solid Tumors: Primary Results From the DESTINY-PanTumor02 Phase II Trial. J. Clin. Oncol. 2024, 42, 47–58. [Google Scholar] [CrossRef]
- Elgersma, R.C.; Coumans, R.G.; Huijbregts, T.; Menge, W.M.; Joosten, J.A.; Spijker, H.J.; de Groot, F.; van der Lee, M.; Ubink, R.; van den Dobbelsteen, D.; et al. Design, Synthesis, and Evaluation of Linker-Duocarmycin Payloads: Toward Selection of HER2-Targeting Antibody-Drug Conjugate SYD985. Mol. Pharm. 2015, 12, 1813–1835. [Google Scholar] [CrossRef] [PubMed]
- van der Lee, M.M.; Groothuis, P.G.; Ubink, R.; van der Vleuten, M.A.; van Achterberg, T.A.; Loosveld, E.M.; Damming, D.; Jacobs, D.; Rouwette, M.; Egging, D.; et al. The Preclinical Profile of the Duocarmycin-Based HER2-Targeting ADC SYD985 Predicts for Clinical Benefit in Low HER2-Expressing Breast Cancers. Mol. Cancer Ther. 2015, 14, 692–703. [Google Scholar] [CrossRef] [PubMed]
- Menderes, G.; Bonazzoli, E.; Bellone, S.; Black, J.; Altwerger, G.; Masserdotti, A.; Pettinella, F.; Zammataro, L.; Buza, N.; Hui, P.; et al. SYD985, a novel duocarmycin-based HER2-targeting antibody-drug conjugate, shows promising antitumor activity in epithelial ovarian carcinoma with HER2/Neu expression. Gynecol. Oncol. 2017, 146, 179–186. [Google Scholar] [CrossRef]
- Yang, F.; Yan, L.; Ji, J.; Lou, Y.; Zhu, J. HER2 puzzle pieces: Non-Coding RNAs as keys to mechanisms, chemoresistance, and clinical outcomes in Ovarian cancer. Pathol. Res. Pract. 2024, 258, 155335. [Google Scholar] [CrossRef]
- Goldenberg, D.M.; Stein, R.; Sharkey, R.M. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget 2018, 9, 28989–29006. [Google Scholar] [CrossRef] [PubMed]
- Cubas, R.; Li, M.; Chen, C.; Yao, Q. Trop2: A possible therapeutic target for late stage epithelial carcinomas. Biochim. Biophys. Acta 2009, 1796, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Dum, D.; Taherpour, N.; Menz, A.; Hoflmayer, D.; Volkel, C.; Hinsch, A.; Gorbokon, N.; Lennartz, M.; Hube-Magg, C.; Fraune, C.; et al. Trophoblast Cell Surface Antigen 2 Expression in Human Tumors: A Tissue Microarray Study on 18,563 Tumors. Pathobiology 2022, 89, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Bignotti, E.; Todeschini, P.; Calza, S.; Falchetti, M.; Ravanini, M.; Tassi, R.A.; Ravaggi, A.; Bandiera, E.; Romani, C.; Zanotti, L.; et al. Trop-2 overexpression as an independent marker for poor overall survival in ovarian carcinoma patients. Eur. J. Cancer 2010, 46, 944–953. [Google Scholar] [CrossRef]
- Tolcher, A.; Hamilton, E.; Coleman, R.L. The evolving landscape of antibody-drug conjugates in gynecologic cancers. Cancer Treat. Rev. 2023, 116, 102546. [Google Scholar] [CrossRef]
- Perrone, E.; Lopez, S.; Zeybek, B.; Bellone, S.; Bonazzoli, E.; Pelligra, S.; Zammataro, L.; Manzano, A.; Manara, P.; Bianchi, A.; et al. Preclinical Activity of Sacituzumab Govitecan, an Antibody-Drug Conjugate Targeting Trophoblast Cell-Surface Antigen 2 (Trop-2) Linked to the Active Metabolite of Irinotecan (SN-38), in Ovarian Cancer. Front. Oncol. 2020, 10, 118. [Google Scholar] [CrossRef]
- Rugo, H.S.; Bardia, A.; Marme, F.; Cortes, J.; Schmid, P.; Loirat, D.; Tredan, O.; Circuelos, E.; Dalenc, F.; Gomez Pardo, P.; et al. Overall survival with sacituzumab govitecan in hormone receptor-positive and human epidermal growth factor receptor 2-negative metastatic breast cancer (TROPiCS-02): A randomised, open-label, multicentre, phase 3 trial. Lancet 2023, 402, 1423–1433. [Google Scholar] [CrossRef]
- Greenman, M.; Bellone, S.; Demirkiran, C.; Max Philipp Hartwich, T.; Santin, A.D. Sacituzumab govitecan in heavily pretreated, platinum-resistant high grade serous ovarian cancer. Gynecol. Oncol. Rep. 2024, 54, 101459. [Google Scholar] [CrossRef]
- Okajima, D.; Yasuda, S.; Maejima, T.; Karibe, T.; Sakurai, K.; Aida, T.; Toki, T.; Yamaguchi, J.; Kitamura, M.; Kamei, R.; et al. Datopotamab Deruxtecan, a Novel TROP2-directed Antibody-drug Conjugate, Demonstrates Potent Antitumor Activity by Efficient Drug Delivery to Tumor Cells. Mol. Cancer Ther. 2021, 20, 2329–2340. [Google Scholar] [CrossRef]
- McNamara, B.; Greenman, M.; Bellone, S.; Santin, L.A.; Demirkiran, C.; Mutlu, L.; Hartwich, T.; Yang-Hartwich, Y.; Ratner, E.; Schwartz, P.; et al. Preclinical activity of datopotamab deruxtecan, a novel TROP2 directed antibody-drug conjugate targeting trophoblast cell-surface antigen 2 (TROP2) in ovarian carcinoma. Gynecol. Oncol. 2024, 189, 16–23. [Google Scholar] [CrossRef]
- Han, S.; Lim, K.S.; Blackburn, B.J.; Yun, J.; Putnam, C.W.; Bull, D.A.; Won, Y. The Potential of Topoisomerase Inhibitor-Based Antibody-Drug Conjugates. Pharmaceutics 2022, 14, 1707. [Google Scholar] [CrossRef] [PubMed]
- Bardia, A.; Jhaveri, K.; Im, S.A.; Pernas, S.; De Laurentiis, M.; Wang, S.; Martinez Janez, N.; Borges, G.; Cescon, D.; Hattori, M.; et al. Datopotamab Deruxtecan Versus Chemotherapy in Previously Treated Inoperable/Metastatic Hormone Receptor-Positive Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer: Primary Results From TROPION-Breast01. J. Clin. Oncol. 2025, 43, 285–296. [Google Scholar] [CrossRef] [PubMed]
- NIH. Folate Fact Sheet for Health Professionals; National Institutes of Health: Bethesda, MD, USA, 2022. [Google Scholar]
- Sangha, V.; Hoque, M.T.; Henderson, J.T.; Bendayan, R. Novel localization of folate transport systems in the murine central nervous system. Fluids Barriers CNS 2022, 19, 92. [Google Scholar] [CrossRef]
- Sabharanjak, S.; Mayor, S. Folate receptor endocytosis and trafficking. Adv. Drug Deliv. Rev. 2004, 56, 1099–1109. [Google Scholar] [CrossRef]
- Gonzalez, T.; Muminovic, M.; Nano, O.; Vulfovich, M. Folate Receptor Alpha-A Novel Approach to Cancer Therapy. Int. J. Mol. Sci. 2024, 25, 1046. [Google Scholar] [CrossRef] [PubMed]
- Siu, M.K.; Kong, D.S.; Chan, H.Y.; Wong, E.S.; Ip, P.P.; Jiang, L.; Ngan, H.; Le, X.; Cheung, A. Paradoxical impact of two folate receptors, FRalpha and RFC, in ovarian cancer: Effect on cell proliferation, invasion and clinical outcome. PLoS ONE 2012, 7, e47201. [Google Scholar] [CrossRef]
- Bagnoli, M.; Tomassetti, A.; Figini, M.; Flati, S.; Dolo, V.; Canevari, S.; Miotti, S. Downmodulation of caveolin-1 expression in human ovarian carcinoma is directly related to alpha-folate receptor overexpression. Oncogene 2000, 19, 4754–4763. [Google Scholar] [CrossRef]
- Ettorre, V.; Conca, B.; Demirkiran, C.; Bellone, S.; Sethi, N.; Hartwich, T.M.; Niu, N.; Buza, N.; Angioli, R.; Plott, F.; et al. Folate Receptor Alpha as a Successful Biomarker in the Treatment of Low Grade Serous Ovarian Cancer Patients Using Preclinical and Clinical Models. Soc. Sci. Res. Netw. 2025; in press. [Google Scholar]
- Lee, E.K.; Liu, J.F. Antibody-drug conjugates in gynecologic malignancies. Gynecol. Oncol. 2019, 153, 694–702. [Google Scholar] [CrossRef]
- Matulonis, U.A.; Lorusso, D.; Oaknin, A.; Pignata, S.; Dean, A.; Denys, H.; Colombo, N.; Van Gorp, T.; Konner, J.; Marin, M.; et al. Efficacy and Safety of Mirvetuximab Soravtansine in Patients With Platinum-Resistant Ovarian Cancer With High Folate Receptor Alpha Expression: Results From the SORAYA Study. J. Clin. Oncol. 2023, 41, 2436–2445. [Google Scholar] [CrossRef]
- Moore, K.N.; Angelergues, A.; Konecny, G.E.; Garcia, Y.; Banerjee, S.; Lorusso, D.; Lee, J.; Moroney, J.; Colombo, N.; Roszak, A.; et al. Mirvetuximab Soravtansine in FRalpha-Positive, Platinum-Resistant Ovarian Cancer. N. Engl. J. Med. 2023, 389, 2162–2174. [Google Scholar] [CrossRef] [PubMed]
- Scaranti, M.; Cojocaru, E.; Banerjee, S.; Banerji, U. Exploiting the folate receptor alpha in oncology. Nat. Rev. Clin. Oncol. 2020, 17, 349–359. [Google Scholar] [CrossRef] [PubMed]
- NCCN. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®): Ovarian Cancer Including Fallopian Tube Cancer and Primary Peritoneal Cancer, Version 1.2025 ed2025; NCCN: Plymouth Meeting, PA, USA, 2025. [Google Scholar]
- Buza, N.; Hui, P. Characteristics of HER2 Gene Amplification by Fluorescence In Situ Hybridization in Endometrial Serous Carcinoma. Arch. Pathol. Lab. Med. 2022, 146, 331–337. [Google Scholar]
- Lopez, S.; Perrone, E.; Bellone, S.; Bonazzoli, E.; Zeybek, B.; Han, C.; Tymon-Rosario, J.; Altwerger, G.; Menderes, G.; Bianchi, A.; et al. Preclinical activity of sacituzumab govitecan (IMMU-132) in uterine and ovarian carcinosarcomas. Oncotarget 2020, 11, 560–570. [Google Scholar] [CrossRef]
- LARVOL CLIN Cancer Trial Results. A Study of Sacituzumab Govitecan (IMMU-132) in Platinum-Resistant Ovarian Cancer Patients; Yale University: New Haven, CT, USA, 2025. [Google Scholar]
- LARVOL CLIN Cancer Trial Results. Study of STRO-002, an Anti-Folate Receptor Alpha (FolRα) Antibody Drug Conjugate in Ovarian & Endometrial Cancers; Sutro Biopharma, Inc.: San Francisco, CA, USA, 2025. [Google Scholar]
Biomarker | Downstream Effect | Targeted Therapeutic |
---|---|---|
BRCA1 or BRCA2 mutation | Deficient homologous recombination and DNA repair | PARP inhibitor (olaparib, niraparib, rucaparib) |
HER2 | Chemoresistance, decreased overall survival, and progression-free survival | Monoclonal antibodies (trastuzumab, pertuzumab); antibody–drug conjugates (T-DM1, T-DXd, trastuzumab duocarmazine) |
TROP2 | Increased invasive potential, decreased overall survival, and progression-free survival | Antibody–drug conjugates (sacituzumab govitecan, datopotamab deruxtecan, sacituzumab tirumotecan) |
FOLR1 | Decreased E-cadherin and Cav-1; increased invasive potential; increased cellular proliferation | Antibody–drug conjugates (mirvetuximab soravtansine), folate–drug conjugates (EC131, EC145) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ettorre, V.M.; AlAshqar, A.; Sethi, N.; Santin, A.D. Personalized Treatment in Ovarian Cancer: A Review of Disease Monitoring, Biomarker Expression, and Targeted Treatments for Advanced, Recurrent Ovarian Cancers. Cancers 2025, 17, 1822. https://doi.org/10.3390/cancers17111822
Ettorre VM, AlAshqar A, Sethi N, Santin AD. Personalized Treatment in Ovarian Cancer: A Review of Disease Monitoring, Biomarker Expression, and Targeted Treatments for Advanced, Recurrent Ovarian Cancers. Cancers. 2025; 17(11):1822. https://doi.org/10.3390/cancers17111822
Chicago/Turabian StyleEttorre, Victoria M., Abdelrahman AlAshqar, Namrata Sethi, and Alessandro D. Santin. 2025. "Personalized Treatment in Ovarian Cancer: A Review of Disease Monitoring, Biomarker Expression, and Targeted Treatments for Advanced, Recurrent Ovarian Cancers" Cancers 17, no. 11: 1822. https://doi.org/10.3390/cancers17111822
APA StyleEttorre, V. M., AlAshqar, A., Sethi, N., & Santin, A. D. (2025). Personalized Treatment in Ovarian Cancer: A Review of Disease Monitoring, Biomarker Expression, and Targeted Treatments for Advanced, Recurrent Ovarian Cancers. Cancers, 17(11), 1822. https://doi.org/10.3390/cancers17111822