Changes of Prostate-Specific Membrane Antigen-Radioligand Uptake on PET with Systemic Therapy in Patients with Metastatic Renal Cell Carcinoma
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Radiopharmaceutical and Imaging Protocol
2.3. [18F]PSMA-1007 PET Analysis
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Image Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ccRCC | clear cell renal cell carcinoma |
CI | checkpoint inhibitor/inhibition |
CT | computed tomography |
F | female |
M | male |
mRCC | metastatic renal cell carcinoma |
MRI | magnetic resonance imaging |
PET | positron emission tomography |
pRCC | papillary renal cell carcinoma |
PSMA | prostate-specific membrane antigen |
TKI | tyrosine kinase inhibitor/inhibition |
uRCC | undifferentiated renal cell carcinoma |
References
- Bukavina, L.; Bensalah, K.; Bray, F.; Carlo, M.; Challacombe, B.; Karam, J.A.; Kassouf, W.; Mitchell, T.; Montironi, R.; O’Brien, T.; et al. Epidemiology of Renal Cell Carcinoma: 2022 Update. Eur. Urol. 2022, 82, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, J.J.; Purdue, M.P.; Signoretti, S.; Swanton, C.; Albiges, L.; Schmidinger, M.; Heng, D.Y.; Larkin, J.; Ficarra, V. Renal cell carcinoma. Nat. Rev. Dis. Primers 2017, 3, 17009. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y. The Place of FDG PET/CT in Renal Cell Carcinoma: Value and Limitations. Front. Oncol. 2016, 6, 201. [Google Scholar] [CrossRef]
- Ljungberg, B.; Albiges, L.; Abu-Ghanem, Y.; Bedke, J.; Capitanio, U.; Dabestani, S.; Fernández-Pello, S.; Giles, R.H.; Hofmann, F.; Hora, M.; et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2022 Update. Eur. Urol. 2022, 82, 399–410. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Motzer, R.J. Systemic Therapy for Metastatic Renal-Cell Carcinoma. N. Engl. J. Med. 2017, 376, 354–366. [Google Scholar] [CrossRef]
- Reed, J.P.; Posadas, E.M.; Figlin, R.A. Developments in the use of tyrosine kinase inhibitors in the treatment of renal cell carcinoma. Expert Rev. Anticancer Ther. 2019, 19, 259–271. [Google Scholar] [CrossRef]
- Alsharedi, M.; Katz, H. Check point inhibitors a new era in renal cell carcinoma treatment. Med. Oncol. 2018, 35, 85. [Google Scholar] [CrossRef]
- Bui, V.N.; Unterrainer, L.M.; Brendel, M.; Kunte, S.C.; Holzgreve, A.; Allmendinger, F.; Bartenstein, P.; Klauschen, F.; Unterrainer, M.; Staehler, M.; et al. PSMA-Expression Is Highly Associated with Histological Subtypes of Renal Cell Carcinoma: Potential Implications for Theranostic Approaches. Biomedicines 2023, 11, 3095. [Google Scholar] [CrossRef] [PubMed]
- Polifka, I.; Agaimy, A.; Herrmann, E.; Spath, V.; Trojan, L.; Stockle, M.; Becker, F.; Strobel, P.; Wulfing, C.; Schrader, A.J.; et al. High proliferation rate and TNM stage but not histomorphological subtype are independent prognostic markers for overall survival in papillary renal cell carcinoma. Hum. Pathol. 2019, 83, 212–223. [Google Scholar] [CrossRef]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef]
- Siva, S.; Callahan, J.; Pryor, D.; Martin, J.; Lawrentschuk, N.; Hofman, M.S. Utility of 68Ga prostate specific membrane antigen—Positron emission tomography in diagnosis and response assessment of recurrent renal cell carcinoma. J. Med. Imaging Radiat. Oncol. 2017, 61, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, L.; Basso, U.; Maruzzo, M.; Novara, G. The Role of Radiolabeled Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography for the Evaluation of Renal Cancer. Eur. Urol. Focus 2020, 6, 146–150. [Google Scholar] [CrossRef]
- Rhee, H.; Blazak, J.; Tham, C.M.; Ng, K.L.; Shepherd, B.; Lawson, M.; Preston, J.; Vela, I.; Thomas, P.; Wood, S. Pilot study: Use of gallium-68 PSMA PET for detection of metastatic lesions in patients with renal tumour. EJNMMI Res. 2016, 6, 76. [Google Scholar] [CrossRef]
- Marafi, F.; Sasikumar, A.; Al-Terki, A.; Alfeeli, M. 18F-PSMA 1007 in Suspected Renal Cell Carcinoma. Clin. Nucl. Med. 2020, 45, 377–378. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, P.; Singh, H.; Das, C.K.; Mavuduru, R.S.; Kakkar, N.; Lal, A.; Gorsi, U.; Kumar, R.; Mittal, B.R. Potential role of 68Ga-PSMA PET/CT in metastatic renal cell cancer: A prospective study. Eur. J. Radiol. 2024, 170, 111218. [Google Scholar] [CrossRef]
- Mittlmeier, L.M.; Unterrainer, M.; Rodler, S.; Todica, A.; Albert, N.L.; Burgard, C.; Cyran, C.C.; Kunz, W.G.; Ricke, J.; Bartenstein, P.; et al. 18F-PSMA-1007 PET/CT for response assessment in patients with metastatic renal cell carcinoma undergoing tyrosine kinase or checkpoint inhibitor therapy: Preliminary results. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2031–2037. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Seitz, A.K.; Rauscher, I.; Haller, B.; Krönke, M.; Luther, S.; Heck, M.M.; Horn, T.; Gschwend, J.E.; Schwaiger, M.; Eiber, M.; et al. Preliminary results on response assessment using 68Ga-HBED-CC-PSMA PET/CT in patients with metastatic prostate cancer undergoing docetaxel chemotherapy. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, J.; Schäfer, M.; Benešová, M.; Bauder-Wüst, U.; Leotta, K.; Eder, M.; Neels, O.C.; Haberkorn, U.; Giesel, F.L.; Kopka, K. Preclinical Evaluation of 18F-PSMA-1007, a New Prostate-Specific Membrane Antigen Ligand for Prostate Cancer Imaging. J. Nucl. Med. 2017, 58, 425–431. [Google Scholar] [CrossRef]
- d’Amico, A.; Gorczewska, I.; Gorczewski, K.; Turska-d’Amico, M.; Di Pietro, M. Effect of furosemide administration before F-18 fluorodeoxyglucose positron emission tomography/computed tomography on urine radioactivity and detection of uterine cervical cancer. Nucl. Med. Rev. Cent. East. Eur. 2014, 17, 83–86. [Google Scholar] [CrossRef]
- Malaspina, S.; Ettala, O.; Tolvanen, T.; Rajander, J.; Eskola, O.; Boström, P.J.; Kemppainen, J. Flare on [18F]PSMA-1007 PET/CT after short-term androgen deprivation therapy and its correlation to FDG uptake: Possible marker of tumor aggressiveness in treatment-naïve metastatic prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 613–621. [Google Scholar] [CrossRef]
- Damaraju, V.L.; Aminpour, M.; Kuzma, M.; Winter, P.; Preto, J.; Tuszynski, J.; McEwan, A.B.J.; Sawyer, M.B. Tyrosine Kinase Inhibitors Reduce Glucose Uptake by Binding to an Exofacial Site on hGLUT-1: Influence on 18F-FDG PET Uptake. Clin. Transl. Sci. 2021, 14, 847–858. [Google Scholar] [CrossRef]
- Yin, Y.; Campbell, S.P.; Markowski, M.C.; Pierorazio, P.M.; Pomper, M.G.; Allaf, M.E.; Rowe, S.P.; Gorin, M.A. Inconsistent Detection of Sites of Metastatic Non-Clear Cell Renal Cell Carcinoma with PSMA-Targeted [18F]DCFPyL PET/CT. Mol. Imaging Biol. 2019, 21, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Meng, L.; Xu, Q.; Zhao, X.; Deng, Y.; Fu, Y.; Guo, S.; He, K.; Shi, J.; Wang, F.; et al. 68Ga-PSMA-11 PET/CT Parameter Correlates with Pathological VEGFR-2/PDGFR-β Expression in Renal Cell Carcinoma Patients. Mol. Imaging Biol. 2022, 24, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Gasparro, D.; Scarlattei, M.; Silini, E.M.; Migliari, S.; Baldari, G.; Cervati, V.; Graziani, T.; Campanini, N.; Maestroni, U.; Ruffini, L. High Prognostic Value of 68Ga-PSMA PET/CT in Renal Cell Carcinoma and Association with PSMA Expression Assessed by Immunohistochemistry. Diagnostics 2023, 13, 3082. [Google Scholar] [CrossRef]
- Mendhiratta, N.; Muraki, P.; Sisk, A.E., Jr.; Shuch, B. Papillary renal cell carcinoma: Review. Urol. Oncol. 2021, 39, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.H.; Lin, B.H.; Chen, S.M.; Qiu, Q.R.; Ruan, Z.T.; Chen, Z.J.; Wei, Y.; Zheng, Q.S.; Xue, X.Y.; Miao, W.B.; et al. Head-to-head comparisons of enhanced CT, 68Ga-PSMA-11 PET/CT and 18F-FDG PET/CT in identifying adverse pathology of clear-cell renal cell carcinoma: A prospective study. Int. Braz. J. Urol. 2023, 49, 716–731. [Google Scholar] [CrossRef]
- Meyer, A.R.; Carducci, M.A.; Denmeade, S.R.; Markowski, M.C.; Pomper, M.G.; Pierorazio, P.M.; Allaf, M.E.; Rowe, S.P.; Gorin, M.A. Improved identification of patients with oligometastatic clear cell renal cell carcinoma with PSMA-targeted 18F-DCFPyL PET/CT. Ann. Nucl. Med. 2019, 33, 617–623. [Google Scholar] [CrossRef]
- Hofman, M.S.; Tran, B.; Feldman, D.R.; Pokorska-Bocci, A.; Pichereau, S.; Wessen, J.; Haskali, M.B.; Sparks, R.B.; Vlasyuk, O.; Galetic, I. First-in-Human Safety, Imaging, and Dosimetry of a Carbonic Anhydrase IX-Targeting Peptide, [68Ga]Ga-DPI-4452, in Patients with Clear Cell Renal Cell Carcinoma. J. Nucl. Med. 2024, 65, 740–743. [Google Scholar] [CrossRef]
- Shuch, B.M.; Pantuck, A.J.; Bernhard, J.-C.; Morris, M.A.; Master, V.A.; Scott, A.M.; Van Praet, C.; Bailly, C.; Aksoy, T.; Merkx, R.; et al. Results from phase 3 study of 89Zr-DFO-girentuximab for PET/CT imaging of clear cell renal cell carcinoma (ZIRCON). J. Clin. Oncol. 2023, 41, LBA602. [Google Scholar] [CrossRef]
- Muselaers, C.H.; Stillebroer, A.B.; Desar, I.M.; Boers-Sonderen, M.J.; van Herpen, C.M.; de Weijert, M.C.; Langenhuijsen, J.F.; Oosterwijk, E.; Leenders, W.P.; Boerman, O.C.; et al. Tyrosine kinase inhibitor sorafenib decreases 111In-girentuximab uptake in patients with clear cell renal cell carcinoma. J. Nucl. Med. 2014, 55, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Deng, Y.; Xu, Q.; Gao, J.; Shen, H.; He, X.; Ding, Q.; Wang, F.; Guo, H. Exploration of 68Ga-labelled prostate-specific membrane antigen-11 PET/CT parameters for identifying PBRM1 status in primary clear cell renal cell carcinoma. Clin. Radiol. 2023, 78, e417–e424. [Google Scholar] [CrossRef] [PubMed]
- Joosten, S.C.; Hamming, L.; Soetekouw, P.M.; Aarts, M.J.; Veeck, J.; van Engeland, M.; Tjan-Heijnen, V.C. Resistance to sunitinib in renal cell carcinoma: From molecular mechanisms to predictive markers and future perspectives. Biochim. Biophys. Acta 2015, 1855, 1–16. [Google Scholar] [CrossRef]
- van Beijnum, J.R.; Nowak-Sliwinska, P.; Huijbers, E.J.; Thijssen, V.L.; Griffioen, A.W. The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol. Rev. 2015, 67, 441–461. [Google Scholar] [CrossRef]
- Zhang, J.; Schuchardt, C.; Chen, X.; Baum, R.P. Rapid Tumor Washout of 177 Lu-PSMA Radioligand in Renal Cell Carcinoma. Clin. Nucl. Med. 2023, 48, 732–734. [Google Scholar] [CrossRef] [PubMed]
- Seifert, R.; Telli, T.; Opitz, M.; Barbato, F.; Berliner, C.; Nader, M.; Umutlu, L.; Stuschke, M.; Hadaschik, B.; Herrmann, K.; et al. Unspecific 18F-PSMA-1007 Bone Uptake Evaluated Through PSMA-11 PET, Bone Scanning, and MRI Triple Validation in Patients with Biochemical Recurrence of Prostate Cancer. J. Nucl. Med. 2023, 64, 738–743. [Google Scholar] [CrossRef]
- Mittlmeier, L.M.; Unterrainer, M.; Todica, A.; Cyran, C.C.; Rodler, S.; Bartenstein, P.; Stief, C.G.; Ilhan, H.; Staehler, M. PSMA PET/CT for tyrosine-kinase inhibitor monitoring in metastatic renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2216–2217. [Google Scholar] [CrossRef]
No. | Age | Sex | Histology | Systemic Therapy |
---|---|---|---|---|
1 | 47 | F | ccRCC | Cabozantinib |
2 | 76 | F | ccRCC | Ipilimumab/Nivolumab |
3 | 74 | M | ccRCC | Everolimus/Lenvatinib |
4 | 70 | M | pRCC | Sunitinib |
5 | 52 | F | ccRCC | Cabozantinib |
6 | 70 | M | ccRCC | Sunitinib |
7 | 44 | M | ccRCC | Axitinib |
8 | 24 | M | pRCC | Nivolumab |
9 | 42 | M | uRCC | Ipilimumab/Nivolumab |
10 | 73 | M | ccRCC | Pembrolizumab |
11 | 78 | M | ccRCC | Sunitinib |
12 | 64 | M | ccRCC | Tivozanib |
13 | 71 | M | ccRCC | Pembrolizumab |
14 | 73 | M | pRCC | Sunitinib |
15 | 85 | M | ccRCC | Cabozantinib |
16 | 73 | F | ccRCC | Ipilimumab/Nivolumab |
17 | 79 | F | pRCC | Ipilimumab/Nivolumab |
18 | 74 | M | ccRCC | Ipilimumab/Nivolumab |
19 | 71 | M | ccRCC | Cabozantinib/Nivolumab |
20 | 60 | M | ccRCC | Cabozantinib |
21 | 55 | M | ccRCC | Ipilimumab/Nivolumab |
22 | 57 | M | ccRCC | Ipilimumab/Nivolumab |
23 | 65 | M | ccRCC | Ipilimumab/Nivolumab |
24 | 65 | M | ccRCC | Ipilimumab/Nivolumab |
25 * | 87 | M | ccRCC | Cabozantinib/Nivolumab |
Mean | 65.2 | |||
SD | 14.7 |
PET1 | PET2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SUVmax | Lymph Node | Bone | Liver | Lung | Soft Tissue | Lymph Node | Bone | Liver * | Lung | Soft Tissue |
Median | 7.8 | 6.4 | 26.0 | 4.5 | 7.0 | 7.7 | 12.4 | 31.7 | 7.5 | 2.0 |
Q1 | 5.9 | 4.5 | 17.8 | 3.5 | 5.6 | 5.6 | 7.0 | 31.7 | 5.3 | 2.0 |
Q3 | 10.4 | 9.5 | 36.9 | 6.9 | 12.2 | 16.0 | 19.3 | 31.7 | 11.8 | 2.0 |
SUVmean | ||||||||||
Median | 5.0 | 5.0 | 14.3 | 3.1 | 5.2 | 4.9 | 8.6 | 18.2 | 5.2 | 1.3 |
Q1 | 3.6 | 3.5 | 10.7 | 2.2 | 3.3 | 3.5 | 4.9 | 18.2 | 4.0 | 1.3 |
Q3 | 6.8 | 6.7 | 27.2 | 4.8 | 8.7 | 10.2 | 14.0 | 18.2 | 7.8 | 1.3 |
ccRCC | PET1 | PET2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SUVmax | Lymph Node | Bone | Liver | Lung | Soft Tissue | Lymph Node | Bone | Liver | Lung | Soft Tissue |
Median | 7.9 | 6.6 | 21.2 | 4.8 | 8.3 | 12.5 | 15.9 | n.a. | 8.1 | 2.0 |
Q1 | 6.0 | 4.5 | 16.9 | 3.7 | 5.3 | 6.1 | 9.6 | n.a. | 5.3 | n.a. |
Q3 | 11.6 | 9.7 | 40.7 | 7.1 | 12.2 | 16.6 | 27.7 | n.a. | 12.1 | n.a. |
SUVmean | ||||||||||
Median | 6.1 | 5.0 | 14.3 | 3.2 | 4.8 | 7.6 | 11.3 | n.a. | 5.2 | 1.3 |
Q1 | 3.8 | 3.2 | 10.7 | 2.4 | 3.2 | 3.8 | 7.3 | n.a. | 3.9 | n.a. |
Q3 | 8.1 | 6.6 | 27.2 | 4.9 | 8.7 | 11.4 | 17.3 | n.a. | 7.8 | n.a. |
pRCC | PET1 | PET2 | ||||||||
SUVmax | Lymph Node | Bone | Liver | Lung | Soft Tissue | Lymph Node | Bone | Liver | Lung | Soft Tissue |
Median | n.a. | 6.2 | 32.4 | n.a. | 5.2 | 6.0 | n.a. | 6.0 | n.a. | n.a. |
Q1 | n.a. | 5.2 | n.a. | n.a. | n.a. | 5.9 | n.a. | n.a. | n.a. | n.a. |
Q3 | n.a. | 7.2 | n.a. | n.a. | n.a. | 12.7 | n.a. | n.a. | n.a. | n.a. |
SUVmean | ||||||||||
Median | 2.7 | 12.9 | n.a. | n.a. | n.a. | 3.4 | 3.9 | 4.1 | n.a. | |
Q1 | n.a. | 9.3 | n.a. | n.a. | n.a. | n.a. | 3.7 | n.a. | n.a. | |
Q3 | n.a. | 16.4 | n.a. | n.a. | n.a. | n.a. | 8.9 | n.a. | n.a. | |
uRCC | PET1 | PET2 | ||||||||
SUVmax | Lymph Node | Bone | Liver | Lung | Soft Tissue | Lymph Node | Bone | Liver | Lung | Soft Tissue |
Median | 6.1 | 5.1 | n.a. | 2.8 | 7.0 | 6.0 | n.a. | n.a. | 2.3 | n.a. |
Q1 | 5.3 | n.a. | n.a. | n.a. | n.a. | 5.8 | n.a. | n.a. | n.a. | n.a. |
Q3 | 9.7 | n.a. | n.a. | n.a. | n.a. | 6.2 | n.a. | n.a. | n.a. | n.a. |
SUVmean | ||||||||||
Median | 3.7 | 3.6 | n.a. | 1.7 | 5.3 | 3.9 | n.a. | n.a. | 1.3 | n.a. |
Q1 | 3.6 | n.a. | n.a. | n.a. | n.a. | 3.8 | n.a. | n.a. | n.a. | n.a. |
Q3 | 5.0 | n.a. | n.a. | n.a. | n.a. | 4.1 | n.a. | n.a. | n.a. | n.a. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunte, S.C.; Holzgreve, A.; Unterrainer, M.; Zahner, J.; Schmid, H.P.; Schöll, M.; Blajan, I.; Sheikh, G.T.; Mehrens, D.; Casuscelli, J.; et al. Changes of Prostate-Specific Membrane Antigen-Radioligand Uptake on PET with Systemic Therapy in Patients with Metastatic Renal Cell Carcinoma. Cancers 2025, 17, 1736. https://doi.org/10.3390/cancers17111736
Kunte SC, Holzgreve A, Unterrainer M, Zahner J, Schmid HP, Schöll M, Blajan I, Sheikh GT, Mehrens D, Casuscelli J, et al. Changes of Prostate-Specific Membrane Antigen-Radioligand Uptake on PET with Systemic Therapy in Patients with Metastatic Renal Cell Carcinoma. Cancers. 2025; 17(11):1736. https://doi.org/10.3390/cancers17111736
Chicago/Turabian StyleKunte, Sophie Carina, Adrien Holzgreve, Marcus Unterrainer, Josef Zahner, Hans Peter Schmid, Magdalena Schöll, Iulia Blajan, Gabriel T. Sheikh, Dirk Mehrens, Jozefina Casuscelli, and et al. 2025. "Changes of Prostate-Specific Membrane Antigen-Radioligand Uptake on PET with Systemic Therapy in Patients with Metastatic Renal Cell Carcinoma" Cancers 17, no. 11: 1736. https://doi.org/10.3390/cancers17111736
APA StyleKunte, S. C., Holzgreve, A., Unterrainer, M., Zahner, J., Schmid, H. P., Schöll, M., Blajan, I., Sheikh, G. T., Mehrens, D., Casuscelli, J., Tamalunas, A. J., Werner, R. A., Stief, C. G., Staehler, M., & Unterrainer, L. M. (2025). Changes of Prostate-Specific Membrane Antigen-Radioligand Uptake on PET with Systemic Therapy in Patients with Metastatic Renal Cell Carcinoma. Cancers, 17(11), 1736. https://doi.org/10.3390/cancers17111736