Understanding the Diverse Experiences of Those Living with and Beyond Cancer: Implications for Personalised Care from a Latent Profile Analysis of HRQoL
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Population
2.2. Measures
2.2.1. Questionnaires
2.2.2. Physical Measures
2.3. Latent Profile Analysis
2.4. Multinominal Logistic Regression
3. Results
3.1. Participant Characteristics
3.2. Fit Indices
3.3. Findings from the Latent Profile Analysis
3.4. Findings from the Multinominal Logistic Regression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bottomley, A. The cancer patient and quality of life. Oncologist 2002, 7, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Nolazco, J.I.; Chang, S.L. The role of health-related quality of life in improving cancer outcomes. J. Clin. Transl. Res. 2023, 9, 110–114. [Google Scholar] [PubMed] [PubMed Central]
- Tregear, M.; Visco, F. Outcomes that matter to patients with cancer: Living longer and living better. EClinicalMedicine 2024, 76, 102833. [Google Scholar] [CrossRef] [PubMed]
- Deshields, T.L.; Potter, P.; Olsen, S.; Liu, J. The persistence of symptom burden: Symptom experience and quality of life of cancer patients across one year. Support. Care Cancer 2014, 22, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Aversa, Z.; Costelli, P.; Muscaritoli, M. Cancer-induced muscle wasting: Latest findings in prevention and treatment. Ther. Adv. Med. Oncol. 2017, 9, 369–382. [Google Scholar] [CrossRef]
- Stanton, A.L.; Bower, J.E. Psychological Adjustment in Breast Cancer Survivors. Adv. Exp. Med. Biol. 2015, 862, 231–242. [Google Scholar]
- Annunziata, M.A.; Muzzatti, B.; Flaiban, C.; Gipponi, K.; Carnaghi, C.; Tralongo, P.; Caruso, M.; Cavina, R.; Tirelli, U. Long-term quality of life profile in oncology: A comparison between cancer survivors and the general population. Support. Care Cancer 2018, 26, 651–656. [Google Scholar] [CrossRef]
- Aaronson, N.K.; Ahmedzai, S.; Bergman, B.; Bullinger, M.; Cull, A.; Duez, N.J.; Filiberti, A.; Flechtner, H.; Fleishman, S.B.; de Haes, J.C.; et al. The European Organization for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. J. Natl. Cancer Inst. 1993, 85, 365–376. [Google Scholar] [CrossRef]
- Clouth, F.J.; Moncada-Torres, A.; Geleijnse, G.; Mols, F.; van Erning, F.N.; de Hingh, I.H.J.T.; Pauws, S.C.; van de Poll-Franse, L.V.; Vermunt, J.K. Heterogeneity in Quality of Life of Long-Term Colon Cancer Survivors: A Latent Class Analysis of the Population-Based PROFILES Registry. Oncologist 2021, 26, e492–e499. [Google Scholar] [CrossRef]
- Spurk, D.; Hirschi, A.; Wang, M.; Valero, D.; Kauffeld, S. Latent profile analysis: A review and “how to” guide of its application within vocational behavior research. J. Vocat. Behav. 2020, 120, 103445. [Google Scholar] [CrossRef]
- Pt-Global. Patient Generated Subjective Global Assesesment (Pg-Sga). Available online: http://pt-global.org/?page_id=13 (accessed on 5 April 2025).
- World Health Organisation. Body Mass Index-Bmi. World Health Organisation. Available online: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/body-mass-index (accessed on 29 January 2025).
- Moreau, J.; Ordan, M.-A.; Barbe, C.; Mazza, C.; Perrier, M.; Botsen, D.; Brasseur, M.; Portefaix, C.; Renard, Y.; Tallière, B.; et al. Correlation between Muscle Mass and Handgrip Strength in Digestive Cancer Patients Undergoing Chemotherapy. Cancer Med. 2019, 8, 3677–3684. [Google Scholar] [CrossRef] [PubMed]
- Jeongki, P.; Choi, Y.J. Association between Hand Grip Strength and Impaired Health-Related Quality of Life in Korean Cancer Survivors: A Cross-Sectional Study. BMJ Open 2019, 9, e030938. [Google Scholar]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 7th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2012. [Google Scholar]
- Nylund, K.L.; Asparouhov, T.; Muthén, B.O. Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Struct. Equ. Model. A Multidiscip. J. 2007, 14, 535–569. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Sclove, S.L. Application of model-selection criteria to some problems in multivariate analysis. Psychometrika 1987, 52, 333–343. [Google Scholar] [CrossRef]
- Lo, Y.; Mendell, N.; Rubin, D. Testing the number of classes in latent class models. J. Am. Stat. Assoc. 2001, 96, 1146–1156. [Google Scholar]
- van de Poll-Franse, L.V.; Mols, F.; Gundy, C.M.; Creutzberg, C.L.; Nout, R.A.; Verdonck-de Leeuw, I.M.; Taphoorn, M.J.; Aaronson, N.K. Normative data for the EORTC QLQ-C30 and EORTC-sexuality items in the general Dutch population. Eur. J. Cancer 2011, 47, 667–675. [Google Scholar] [CrossRef]
- Cocks, K.; King, M.T.; Velikova, G.; Martyn St James, M.; Fayer, P.M.; Brown, J.M. Evidence-based guidelines for determination of sample size and interpretation of the European Organisation for the Research and Treatment of Cancer Quality of Life Questionnaire Core 30. J. Clin. Oncol. 2011, 29, 89–96. [Google Scholar] [CrossRef]
- Morishita, S.; Jinbo, R.; Tsubaki, A.; Fu, J.B. Physical Function and Health-Related QOL in Cancer Survivors. In Physical Therapy and Research in Patients with Cancer; Morishita, S., Inoue, J., Nakano, J., Eds.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Hanna, L.; Nguo, K.; Furness, K.; Porter, J.; Huggins, C.E. Association between skeletal muscle mass and quality of life in adults with cancer: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 839–857. [Google Scholar] [CrossRef]
- Lu Shin, K.N.; Mun, C.Y.; Shariff, Z.M. Nutrition Indicators, Physical Function, and Health-Related Quality of Life in Breast Cancer Patients. Asian Pac. J. Cancer Prev. 2020, 21, 1939–1950. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Simón, A.; Díez-Fernández, D.M.; Artés-Rodríguez, E.; Casimiro-Artés, M.Á.; Rodríguez-Pérez, M.A.; Moreno-Martos, H.; Casimiro-Andújar, A.J.; Soriano-Maldonado, A. Absolute and Relative Handgrip Strength as Indicators of Self-Reported Physical Function and Quality of Life in Breast Cancer Survivors: The EFICAN Study. Cancers 2021, 13, 5292. [Google Scholar] [CrossRef] [PubMed]
- Morishita, S.; Kaida, K.; Tanaka, T.; Itani, Y.; Ikegame, K.; Okada, M.; Ishii, S.; Kodama, N.; Ogawa, H.; Domen, K. Prevalence of sarcopenia and relevance of body composition, physiological function, fatigue, and health-related quality of life in patients before allogeneic hematopoietic stem cell transplantation. Support. Care Cancer 2012, 20, 3161–3168. [Google Scholar] [CrossRef]
- Tsekoura, M.; Kastrinis, A.; Katsoulaki, M.; Billis, E.; Gliatis, J. Sarcopenia and its impact on quality of life. Adv. Exp. Med. Biol. 2017, 987, 213–218. [Google Scholar] [PubMed]
- Hariyanto, T.I.; Kurniawan, A. Appetite problem in cancer patients: Pathophysiology, diagnosis, and treatment. Cancer Treat. Res. Commun. 2021, 7, 100336. [Google Scholar] [CrossRef]
- O’Reilly, M.; Mellotte, G.; Ryan, B.; O’Connor, A. Gastrointestinal side effects of cancer treatments. Ther. Adv. Chronic Dis. 2020, 11, 1–7. [Google Scholar] [CrossRef]
- Shen, S.; Xing, S.; Shen, T.; Niu, L.; Tian, X.; Ma, H.; Gou, X. Nutritional risk, functional decline, and symptom burden in lung cancer: A study based on PG-SGA scores and biochemical data. Front. Nutr. 2025, 3, 1545177. [Google Scholar] [CrossRef]
- Blinder, V.S.; Gany, F.M. Impact of Cancer on Employment. J. Clin. Oncol. 2020, 38, 302–309. [Google Scholar] [CrossRef]
- Luszczynska, A.; Pawlowska, I.; Cieslak, R.; Knoll, N.; Scholz, U. Social support and quality of life among lung cancer patients: A systematic review. Psycho-Oncology 2013, 22, 2160–2168. [Google Scholar] [CrossRef]
Class | Loglikelihood | Par | AIC | BIC | Adj LRT | p |
---|---|---|---|---|---|---|
1 | −15,064.791 | 28 | 30,185.581 | 30,281.969 | -- | -- |
2 | −14,726.888 | 43 | 29,539.776 | 29,687.800 | 667.627 | p < 0.001 |
3 | −14,642.172 | 58 | 29,400.345 | 29,600.005 | 167.381 | p < 0.05 |
4 | −14,571.946 | 73 | 29,289.892 | 29,541.189 | 138.753 | ns |
5 | −14,480.557 | 88 | 29,137.113 | 29,440.046 | 180.567 | ns |
Class 1 | Class 2 | Class 3 | Group Mean ± SD | Norm-Population Mean [15] | Clinically Meaningful Differences [16] | ||||
---|---|---|---|---|---|---|---|---|---|
Trivial | Small | Medium | Large | ||||||
Physical Functioning | 71.29 | 91.81 | 49.53 | 79.31 ± 20.02 | 89 | 0–5 | 5–14 | 14–22 | >22 |
Role Functioning | 64.95 | 92.15 | 37.45 | 75.75 ± 29.39 | 88 | 0–6 | 6–19 | 19–29 | >29 |
Emotional Functioning | 76.06 | 90.83 | 49.98 | 80.53 ± 22.66 | 90 | 0–3 | 3–7 | 7–10 | >10 |
Cognitive Functioning | 77.85 | 89.25 | 53.13 | 80.66 ± 23.29 | 92 | 0–3 | 3–9 | 9–14 | >14 |
Social Functioning | 66.65 | 86.87 | 36.69 | 73.44 ± 28.10 | 95 | 0–5 | 5–11 | 11–15 | >15 |
Fatigue | 39.52 | 14.11 | 75.35 | 30.82 ± 26.20 | 5 | 0–5 | 5–13 | 13–19 | >19 |
Nausea/Vomiting | 7.70 | 3.25 | 34.20 | 8.80 ± 19.08 | 1.8 | 0–3 | 3–8 | 8–15 | >15 |
Pain | 22.19 | 6.18 | 61.37 | 18.83 ± 28.36 | 18 | 0–6 | 6–13 | 13–19 | >19 |
Dyspnoea | 24.89 | 9.84 | 40.83 | 19.03 ± 27.04 | 7.4 | 0–4 | 4–9 | 9–15 | >15 |
Sleep Disturbances | 37.62 | 19.91 | 67.85 | 32.17 ± 37.10 | 5 | 0–4 | 4–13 | 13–24 | >24 |
Appetite Loss | 16.56 | 6.12 | 44.77 | 14.72 ± 27.71 | 3 | 0–5 | 5–14 | 14–23 | >23 |
Constipation | 15.28 | 10.75 | 31.57 | 15.00 ± 27.38 | 7.7 | 0–5 | 5–13 | 13–19 | >19 |
Diarrhoea | 12.59 | 7.33 | 29.21 | 11.98 ± 24.78 | 4.2 | 0–3 | 3–7 | >7 | - |
Financial | 18.61 | 11.25 | 38.12 | 17.17 ± 26.78 | 2.1 | 0–3 | 3–10 | >10 | - |
N | 79 | 122 | 30 | ||||||
% | 34.20 | 52.81 | 12.99 |
Class 2 (HQoL) | SE | OR | 95% Confidence Interval | |||
---|---|---|---|---|---|---|
Lower | Upper | |||||
Class 1 (CQoL) | Age | 0.017 | 1.012 | 0.980 | 1.046 | |
Education | 0.202 | 0.968 | 0.651 | 1.439 | ||
BMI (kg/m2) | 0.026 | 1.010 | 0.960 | 1.063 | ||
Gender | 0.322 | 0.462 | * | 0.246 | 0.869 | |
Male = 0, Female = 1 | ||||||
Work | 0.369 | 1.171 | 0.568 | 2.415 | ||
Not working = 0, Working = 1 | ||||||
Class 3 (LQoL) | Age | 0.022 | 0.956 | * | 0.917 | 0.998 |
Education | 0.314 | 0.676 | 0.365 | 1.250 | ||
BMI (kg/m2) | 0.033 | 1.034 | 0.969 | 1.103 | ||
Gender | 0.526 | 0.237 | * | 0.084 | 0.665 | |
Male = 0, Female = 1 | ||||||
Work | 0.663 | 7.215 | * | 1.967 | 26.461 | |
Not working = 0, Working = 1 | ||||||
The reference category is Class 2. |
Class 2 (HQoL) | SE | OR | 95% Confidence Interval | |||
---|---|---|---|---|---|---|
Lower | Upper | |||||
Class 1 (CQoL) | Handgrip (kg) | 0.017 | 0.955 | * | 0.924 | 0.988 |
Total NISs | 0.135 | 1.266 | 0.972 | 1.650 | ||
PG-SGA | 0.380 | 1.098 | 0.521 | 2.315 | ||
Diagnosed within 2 years | 0.338 | 1.145 | 0.590 | 2.223 | ||
No = 0, Yes = 1 | ||||||
Receiving treatment | 0.368 | 0.778 | 0.378 | 1.602 | ||
No = 0, Yes = 1 | ||||||
Class 3 (LQoL) | Handgrip (kg) | 0.028 | 0.962 | 0.911 | 1.016 | |
Total NISs | 0.160 | 1.375 | * | 1.004 | 1.883 | |
PG-SGA | 0.527 | 2.363 | 0.842 | 6.632 | ||
Diagnosed within 2 years | 0.509 | 2.253 | 0.831 | 6.109 | ||
No = 0, Yes = 1 | ||||||
Receiving treatment | 0.548 | 0.819 | 0.280 | 2.394 | ||
No = 0, Yes = 1 | ||||||
The reference category is Class 2. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keaver, L.; McLaughlin, C. Understanding the Diverse Experiences of Those Living with and Beyond Cancer: Implications for Personalised Care from a Latent Profile Analysis of HRQoL. Cancers 2025, 17, 1698. https://doi.org/10.3390/cancers17101698
Keaver L, McLaughlin C. Understanding the Diverse Experiences of Those Living with and Beyond Cancer: Implications for Personalised Care from a Latent Profile Analysis of HRQoL. Cancers. 2025; 17(10):1698. https://doi.org/10.3390/cancers17101698
Chicago/Turabian StyleKeaver, Laura, and Christopher McLaughlin. 2025. "Understanding the Diverse Experiences of Those Living with and Beyond Cancer: Implications for Personalised Care from a Latent Profile Analysis of HRQoL" Cancers 17, no. 10: 1698. https://doi.org/10.3390/cancers17101698
APA StyleKeaver, L., & McLaughlin, C. (2025). Understanding the Diverse Experiences of Those Living with and Beyond Cancer: Implications for Personalised Care from a Latent Profile Analysis of HRQoL. Cancers, 17(10), 1698. https://doi.org/10.3390/cancers17101698