Clinical Outcome Assessment Tools for Evaluating the Management of Gliomas
Simple Summary
Abstract
1. Introduction
2. Search Strategy
3. Patient-Reported Outcomes (PROs)
4. EuroQoL-5-Dimension (EQ-5D)
5. European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30)
6. EORTC QLQ-BN20—Brain Cancer Module (BCM)
7. Patient-Reported Outcome Measurement Information System (PROMIS)-10 and -29
8. Quality of Life in Neurological Disorders (Neuro-QOLs)
9. Thirty-Six-Item and Twelve-Item Short-Form Health Survey (SF-36, SF-12, and RAND-36)
10. Linear Analogue Scale Assessment (LASA)
11. Functional Assessment of Cancer Therapy (FACT-G and FACT-Br)
12. MD Anderson Symptom Inventory-Brain Tumor Module (MDASI-BT)
13. Quality of Life Surrogates
14. Clinician-Reported Outcomes (ClinROs)
14.1. Karnofsky Performance Status (KPS) Scale
14.2. Neurologic Assessment in Neuro-Oncology (NANO)
15. Performance Outcomes (PerfROs)
15.1. Montreal Cognitive Assessment (MoCA)
15.2. Trail Making Test (TMT)
15.3. Hopkins Verbal Learning Test (HVLT)
15.4. Mini-Mental State Examination (MMSE)
16. Discussion
16.1. Limitations to the Current COA Assessments
16.2. A Framework for PRO Instrument Integration into Glioma Clinical Practice
16.3. Sexual Health
16.4. Limitations
17. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostrom, Q.T.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro-Oncology 2021, 23 (Suppl. S3), iii1–iii105. [Google Scholar] [CrossRef]
- Rouse, C.; Gittleman, H.; Ostrom, Q.T.; Kruchko, C.; Barnholtz-Sloan, J.S. Years of potential life lost for brain and CNS tumors relative to other cancers in adults in the United States, 2010. Neuro-Oncology 2016, 18, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, T.S.; Vera-Bolanos, E.; Acquaye, A.A.; Gilbert, M.R.; Ladha, H.; Mendoza, T. The symptom burden of primary brain tumors: Evidence for a core set of tumor-and treatment-related symptoms. Neuro-Oncology 2015, 18, 252–260. [Google Scholar] [CrossRef]
- Rogers, J.L.; Vera, E.; Acquaye, A.; Briceno, N.; Jammula, V.; King, A.L.; Leeper, H.; Quezado, M.M.; Gonzalez Alarcon, J.; Boris, L.; et al. Living with a central nervous system (CNS) tumor: Findings on long-term survivorship from the NIH Natural History Study. Neuro-Oncol. Pract. 2021, 8, 460–474. [Google Scholar] [CrossRef]
- Testa, M.A.; Simonson, D.C. Assessment of quality-of-life outcomes. N. Engl. J. Med. 1996, 334, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Abbatematteo, J.; De Leo, E.K.; Kubilis, P.S.; Vaziri, S.; Bova, F.; Sayour, E.; Mitchell, D.; Quinones-Hinojosa, A. The effects of new or worsened postoperative neurological deficits on survival of patients with glioblastoma. J. Neurosurg. 2017, 127, 123–131. [Google Scholar] [CrossRef] [PubMed]
- McGirt, M.J.; Mukherjee, D.; Chaichana, K.L.; Than, K.D.; Weingart, J.D.; Quinones-Hinojosa, A. Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery 2009, 65, 463–469; discussion 469–470. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, R.; Kinoshita, M.; Okita, H.; Nakada, M. Postsurgical motor function and processing speed as predictors of quality of life in patients with chronic-phase glioblastoma. Acta Neurochir. 2024, 166, 357. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA-a scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef]
- Armstrong, T.S.; Dirven, L.; Arons, D.; Bates, A.; Chang, S.M.; Coens, C.; Espinasse, C.; Gilbert, M.R.; Jenkinson, D.; Kluetz, P.; et al. Glioma patient-reported outcome assessment in clinical care and research: A Response Assessment in Neuro-Oncology collaborative report. Lancet Oncol. 2020, 21, e97–e103. [Google Scholar] [CrossRef]
- Basch, E. Patient-Reported Outcomes—Harnessing Patients’ Voices to Improve Clinical Care. N. Engl. J. Med. 2017, 376, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Calvert, M.; Blazeby, J.; Altman, D.G.; Revicki, D.A.; Moher, D.; Brundage, M.D.; CONSORT PRO Group. Reporting of patient-reported outcomes in randomized trials: The CONSORT PRO extension. JAMA 2013, 309, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Sagberg, L.M.; Jakola, A.S.; Solheim, O. Quality of life assessed with EQ-5D in patients undergoing glioma surgery: What is the responsiveness and minimal clinically important difference? Qual. Life Res. 2014, 23, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Mauer, M.; Stupp, R.; Taphoorn, M.J.; Coens, C.; Osoba, D.; Marosi, C.; Wong, R.; de Witte, O.; Cairncross, J.G.; Efficace, F.; et al. The prognostic value of health-related quality-of-life data in predicting survival in glioblastoma cancer patients: Results from an international randomised phase III EORTC Brain Tumour and Radiation Oncology Groups, and NCIC Clinical Trials Group study. Br. J. Cancer 2007, 97, 302–307. [Google Scholar] [CrossRef]
- Osoba, D.; Aaronson, N.K.; Muller, M.; Sneeuw, K.; Hsu, M.A.; Yung, W.K.; Brada, M.; Newlands, E. Effect of neurological dysfunction on health-related quality of life in patients with high-grade glioma. J. Neurooncol. 1997, 34, 263–278. [Google Scholar] [CrossRef]
- Gabel, N.; Altshuler, D.B.; Brezzell, A.; Briceño, E.M.; Boileau, N.R.; Miklja, Z.; Kluin, K.; Ferguson, T.; McMurray, K.; Wang, L.; et al. Health Related Quality of Life in Adult Low and High-Grade Glioma Patients Using the National Institutes of Health Patient Reported Outcomes Measurement Information System (PROMIS) and Neuro-QOL Assessments. Front. Neurol. 2019, 10, 212. [Google Scholar] [CrossRef]
- Bunevicius, A.; Tamasauskas, S.; Deltuva, V.; Tamasauskas, A.; Radziunas, A.; Bunevicius, R. Predictors of health-related quality of life in neurosurgical brain tumor patients: Focus on patient-centered perspective. Acta Neurochir. 2014, 156, 367–374. [Google Scholar] [CrossRef]
- Coates, A.; Thomson, D.; McLeod, G.R.; Hersey, P.; Gill, P.G.; Olver, I.N.; Kefford, R.; Lowenthal, R.M.; Beadle, G.; Walpole, E. Prognostic value of quality of life scores in a trial of chemotherapy with or without interferon in patients with metastatic malignant melanoma. Eur. J. Cancer 1993, 29A, 1731–1734. [Google Scholar] [CrossRef]
- Roa, W.; Brasher, P.M.; Bauman, G.; Anthes, M.; Bruera, E.; Chan, A.; Fisher, B.; Fulton, D.; Gulavita, S.; Hao, C.; et al. Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: A prospective randomized clinical trial. J. Clin. Oncol. 2004, 22, 1583–1588. [Google Scholar] [CrossRef]
- Piil, K.; Whisenant, M.; Mendoza, T.; Armstrong, T.; Cleeland, C.; Nordentoft, S.; Williams, L.A.; Jarden, M. Psychometric validity and reliability of the Danish version of the MD Anderson Symptom Inventory Brain Tumor Module. Neuro-Oncol. Pract. 2021, 8, 137–147. [Google Scholar] [CrossRef]
- EuroQol Group. EuroQol--a new facility for the measurement of health-related quality of life. Health Policy 1990, 16, 199–208. [Google Scholar] [CrossRef]
- Nord, E. EuroQol: Health-related quality of life measurement. Valuations of health states by the general public in Norway. Health Policy 1991, 18, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Marten, O.; Brand, L.; Greiner, W. Feasibility of the EQ-5D in the elderly population: A systematic review of the literature. Qual. Life Res. 2022, 31, 1621–1637. [Google Scholar] [CrossRef]
- Jakola, A.S.; Unsgård, G.; Solheim, O. Quality of life in patients with intracranial gliomas: The impact of modern image-guided surgery. J. Neurosurg. 2011, 114, 1622–1630. [Google Scholar] [CrossRef] [PubMed]
- Taphoorn, M.J.; van den Bent, M.J.; Mauer, M.E.; Coens, C.; Delattre, J.Y.; Brandes, A.A.; Sillevis Smitt, P.A.; Bernsen, H.J.; Frénay, M.; Tijssen, C.C.; et al. Health-related quality of life in patients treated for anaplastic oligodendroglioma with adjuvant chemotherapy: Results of a European Organisation for Research and Treatment of Cancer randomized clinical trial. J. Clin. Oncol. 2007, 25, 5723–5730. [Google Scholar] [CrossRef]
- Taphoorn, M.J.B.; Dirven, L.; Kanner, A.A.; Lavy-Shahaf, G.; Weinberg, U.; Taillibert, S.; Toms, S.A.; Honnorat, J.; Chen, T.C.; Sroubek, J.; et al. Influence of Treatment With Tumor-Treating Fields on Health-Related Quality of Life of Patients With Newly Diagnosed Glioblastoma: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2018, 4, 495–504. [Google Scholar] [CrossRef]
- Aaronson, N.K.; Ahmedzai, S.; Bergman, B.; Bullinger, M.; Cull, A.; Duez, N.J.; Filiberti, A.; Flechtner, H.; Fleishman, S.B.; de Haes, J.C.; et al. The European Organization for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. J. Natl. Cancer Inst. 1993, 85, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.L.; Idris, D.B.; Teo, L.W.; Loh, S.Y.; Seow, G.C.; Chia, Y.Y.; Tin, A.S. Validation of EORTC QLQ-C30 and QLQ-BR23 questionnaires in the measurement of quality of life of breast cancer patients in Singapore. Asia Pac. J. Oncol. Nurs. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Greimel, E.; Bottomley, A.; Cull, A.; Waldenstrom, A.C.; Arraras, J.; Chauvenet, L.; Holzner, B.; Kuljanic, K.; Lebrec, J.; D’haese, S.; et al. An international field study of the reliability and validity of a disease-specific questionnaire module (the QLQ-OV28) in assessing the quality of life of patients with ovarian cancer. Eur. J. Cancer 2003, 39, 1402–1408, Correction in Eur. J. Cancer 2003, 39, 2570. [Google Scholar] [CrossRef]
- Bjordal, K.; Hammerlid, E.; Ahlner-Elmqvist, M.; de Graeff, A.; Boysen, M.; Evensen, J.F.; Biörklund, A.; de Leeuw, J.R.; Fayers, P.M.; Jannert, M.; et al. Quality of life in head and neck cancer patients: Validation of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-H&N35. J. Clin. Oncol. 1999, 17, 1008–1019. [Google Scholar] [CrossRef]
- Bergman, B.; Aaronson, N.K.; Ahmedzai, S.; Kaasa, S.; Sullivan, M. The EORTC QLQ-LC13: A modular supplement to the EORTC Core Quality of Life Questionnaire (QLQ-C30) for use in lung cancer clinical trials. EORTC Study Group on Quality of Life. Eur. J. Cancer 1994, 30A, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Kessel, K.A.; Vogel, M.M.; Alles, A.; Dobiasch, S.; Fischer, H.; Combs, S.E. Mobile App Delivery of the EORTC QLQ-C30 Questionnaire to Assess Health-Related Quality of Life in Oncological Patients: Usability Study. JMIR mHealth and uHealth 2018, 6, e45. [Google Scholar] [CrossRef]
- Michalos, A.C. Encyclopedia of Quality of Life and Well-Being Research; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Cheng, J.X.; Liu, B.L.; Zhang, X.; Zhang, Y.Q.; Lin, W.; Wang, R.; Zhang, Y.Q.; Zhang, H.Y.; Xie, L.; Huo, J.L. The validation of the standard Chinese version of the European Organization for Research and Treatment of Cancer Quality of Life Core Questionnaire 30 (EORTC QLQ-C30) in pre-operative patients with brain tumor in China. BMC Med. Res. Methodol. 2011, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- El Alami, Y.; Essangri, H.; Majbar, M.A.; Boutayeb, S.; Benamr, S.; El Malki, H.O.; Souadka, A. Psychometric validation of the Moroccan version of the EORTC QLQ-C30 in colorectal Cancer patients: Cross-sectional study and systematic literature review. BMC Cancer 2021, 21, 99. [Google Scholar] [CrossRef]
- Ihn, M.H.; Lee, S.M.; Son, I.T.; Park, J.T.; Oh, H.K.; Kim, D.W.; Kang, S.B. Cultural adaptation and validation of the Korean version of the EORTC QLQ-CR29 in patients with colorectal cancer. Support. Care Cancer 2015, 23, 3493–3501. [Google Scholar] [CrossRef] [PubMed]
- Magaji, B.A.; Moy, F.M.; Roslani, A.C.; Law, C.W.; Raduan, F.; Sagap, I. Psychometric Validation of the Bahasa Malaysia Version of the EORTC QLQ-CR29. Asian Pac. J. Cancer Prev. 2015, 16, 8101–8105. [Google Scholar] [CrossRef]
- Guzelant, A.; Goksel, T.; Ozkok, S.; Tasbakan, S.; Aysan, T.; Bottomley, A. The European Organization for Research and Treatment of Cancer QLQ-C30: An examination into the cultural validity and reliability of the Turkish version of the EORTC QLQ-C30. Eur. J. Cancer Care 2004, 13, 135–144. [Google Scholar] [CrossRef]
- Dirven, L.; Musoro, J.Z.; Coens, C.; Reijneveld, J.C.; Taphoorn, M.J.B.; Boele, F.W.; Groenvold, M.; van den Bent, M.J.; Stupp, R.; Velikova, G.; et al. Establishing anchor-based minimally important differences for the EORTC QLQ-C30 in glioma patients. Neuro-Oncology 2021, 23, 1327–1336. [Google Scholar] [CrossRef]
- Taphoorn, M.J.; Claassens, L.; Aaronson, N.K.; Coens, C.; Mauer, M.; Osoba, D.; Stupp, R.; Mirimanoff, R.O.; van den Bent, M.J.; Bottomley, A.; et al. An international validation study of the EORTC brain cancer module (EORTC QLQ-BN20) for assessing health-related quality of life and symptoms in brain cancer patients. Eur. J. Cancer 2010, 46, 1033–1040. [Google Scholar] [CrossRef]
- Osoba, D.; Aaronson, N.K.; Muller, M.; Sneeuw, K.; Hsu, M.A.; Yung, W.K.; Brada, M.; Newlands, E. The development and psychometric validation of a brain cancer quality-of-life questionnaire for use in combination with general cancer-specific questionnaires. Qual. Life Res. 1996, 5, 139–150. [Google Scholar] [CrossRef]
- Coates, A.; Gebski, V.; Signorini, D.; Murray, P.; McNeil, D.; Byrne, M.; Forbes, J.F. Prognostic value of quality-of-life scores during chemotherapy for advanced breast cancer. Australian New Zealand Breast Cancer Trials Group. J. Clin. Oncol. 1992, 10, 1833–1838. [Google Scholar] [CrossRef] [PubMed]
- Bosma, I.; Reijneveld, J.C.; Douw, L.; Vos, M.J.; Postma, T.J.; Aaronson, N.K.; Muller, M.; Vandertop, W.P.; Slotman, B.J.; Taphoorn, M.J.; et al. Health-related quality of life of long-term high-grade glioma survivors. Neuro-Oncology 2009, 11, 51–58. [Google Scholar] [CrossRef]
- Cella, D.; Yount, S.; Rothrock, N.; Gershon, R.; Cook, K.; Reeve, B.; Ader, D.; Fries, J.F.; Bruce, B.; Rose, M.; et al. The Patient-Reported Outcomes Measurement Information System (PROMIS): Progress of an NIH Roadmap cooperative group during its first two years. Med. Care 2007, 45 (Suppl. S1), S3. [Google Scholar] [CrossRef]
- Baron, J.E.; Parker, E.A.; Wolf, B.R.; Duchman, K.R.; Westermann, R.W. PROMIS Versus Legacy Patient-Reported Outcome Measures for Sports Medicine Patients Undergoing Arthroscopic Knee, Shoulder, and Hip Interventions: A Systematic Review. Iowa Orthop. J. 2021, 41, 58. [Google Scholar] [PubMed]
- Kadri, O.; Jildeh, T.R.; Meldau, J.E.; Blanchett, J.; Borowsky, P.; Muh, S.; Moutzouros, V.; Makhni, E.C. How Long Does It Take for Patients to complete PROMIS Scores?: An Assessment of PROMIS CAT Questionnaires Administered at an Ambulatory Sports Medicine Clinic. Orthop. J. Sports Med. 2018, 6, 2325967118791180. [Google Scholar] [CrossRef]
- Hays, R.D.; Spritzer, K.L.; Schalet, B.D.; Cella, D. PROMIS®-29 v2.0 profile physical and mental health summary scores. Qual. Life Res. 2018, 27, 1885–1891. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.M.; Flood, L.S.; Gasiewicz, N.K.; Rovin, R.; Conklin, S. Validation of the National Institutes of Health Patient-Reported Outcomes Measurement Information System Survey as a Quality-of-Life Instrument for Patients with Malignant Brain Tumors and Their Caregivers. Nurs. Clin. N. Am. 2015, 50, 679–690. [Google Scholar] [CrossRef]
- Cella, D.; Lai, J.S.; Nowinski, C.J.; Victorson, D.; Peterman, A.; Miller, D.; Bethoux, F.; Heinemann, A.; Rubin, S.; Cavazos, J.E.; et al. Neuro-QOL: Brief measures of health-related quality of life for clinical research in neurology. Neurology 2012, 78, 1860–1867. [Google Scholar] [CrossRef]
- Ware, J.E., Jr.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef]
- Ware, J., Jr.; Kosinski, M.; Keller, S.D. A 12-Item Short-Form Health Survey: Construction of scales and preliminary tests of reliability and validity. Med. Care 1996, 34, 220–233. [Google Scholar] [CrossRef]
- Hays, R.D.; Sherbourne, C.D.; Mazel, R.M. The RAND 36-Item Health Survey 1.0. Health Econ. 1993, 2, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Priestman, T.J.; Baum, M. Evaluation of quality of life in patients receiving treatment for advanced breast cancer. Lancet 1976, 1, 899–900. [Google Scholar] [CrossRef] [PubMed]
- Coates, A.; Dillenbeck, C.F.; McNeil, D.R.; Kaye, S.B.; Sims, K.; Fox, R.M.; Woods, R.L.; Milton, G.W.; Solomon, J.; Tattersall, M.H. On the receiving end--II. Linear analogue self-assessment (LASA) in evaluation of aspects of the quality of life of cancer patients receiving therapy. Eur. J. Cancer Clin. Oncol. 1983, 19, 1633–1637. [Google Scholar] [CrossRef]
- Locke, D.E.; Decker, P.A.; Sloan, J.A.; Brown, P.D.; Malec, J.F.; Clark, M.M.; Rummans, T.A.; Ballman, K.V.; Schaefer, P.L.; Buckner, J.C. Validation of single-item linear analog scale assessment of quality of life in neuro-oncology patients. J. Pain Symptom Manag. 2007, 34, 628–638. [Google Scholar] [CrossRef]
- Brown, P.D.; Buckner, J.C.; O’Fallon, J.R.; Iturria, N.L.; Brown, C.A.; O’Neill, B.P.; Scheithauer, B.W.; Dinapoli, R.P.; Arusell, R.M.; Curran, W.J.; et al. Effects of radiotherapy on cognitive function in patients with low-grade glioma measured by the folstein mini-mental state examination. J. Clin. Oncol. 2003, 21, 2519–2524. [Google Scholar] [CrossRef]
- Brown, P.D.; Buckner, J.C.; O’Fallon, J.R.; Iturria, N.L.; O’Neill, B.P.; Brown, C.A.; Scheithauer, B.W.; Dinapoli, R.P.; Arusell, R.M.; Curran, W.J.; et al. Importance of baseline mini-mental state examination as a prognostic factor for patients with low-grade glioma. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 117–125. [Google Scholar] [CrossRef]
- Cella, D.F.; Tulsky, D.S.; Gray, G.; Sarafian, B.; Linn, E.; Bonomi, A.; Silberman, M.; Yellen, S.B.; Winicour, P.; Brannon, J.; et al. The Functional Assessment of Cancer Therapy scale: Development and validation of the general measure. J. Clin. Oncol. 1993, 11, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Weitzner, M.A.; Meyers, C.A.; Gelke, C.K.; Byrne, K.S.; Cella, D.F.; Levin, V.A. The Functional Assessment of Cancer Therapy (FACT) scale. Development of a brain subscale and revalidation of the general version (FACT-G) in patients with primary brain tumors. Cancer 1995, 75, 1151–1161. [Google Scholar] [CrossRef]
- Schloss, J.; Lacey, J.; Sinclair, J.; Steel, A.; Sughrue, M.; Sibbritt, D.; Teo, C. A Phase 2 Randomised Clinical Trial Assessing the Tolerability of Two Different Ratios of Medicinal Cannabis in Patients With High Grade Gliomas. Front. Oncol. 2021, 11, 649555. [Google Scholar] [CrossRef]
- Golla, H.; Nettekoven, C.; Bausewein, C.; Tonn, J.C.; Thon, N.; Feddersen, B.; Schnell, O.; Böhlke, C.; Becker, G.; Rolke, R.; et al. Effect of early palliative care for patients with glioblastoma (EPCOG): A randomised phase III clinical trial protocol. BMJ Open. 2020, 10, e034378. [Google Scholar] [CrossRef]
- Omuro, A.; Beal, K.; Gutin, P.; Karimi, S.; Correa, D.D.; Kaley, T.J.; DeAngelis, L.M.; Chan, T.A.; Gavrilovic, I.T.; Nolan, C.; et al. Phase II study of bevacizumab, temozolomide, and hypofractionated stereotactic radiotherapy for newly diagnosed glioblastoma. Clin. Cancer Res. 2014, 20, 5023–5031. [Google Scholar] [CrossRef] [PubMed]
- Ownsworth, T.; Chambers, S.; Damborg, E.; Casey, L.; Walker, D.G.; Shum, D.H. Evaluation of the making sense of brain tumor program: A randomized controlled trial of a home-based psychosocial intervention. Psychooncology 2015, 24, 540–547. [Google Scholar] [CrossRef]
- Peters, K.B.; West, M.J.; Hornsby, W.E.; Waner, E.; Coan, A.D.; McSherry, F.; Herndon JE2nd Friedman, H.S.; Desjardins, A.; Jones, L.W. Impact of health-related quality of life and fatigue on survival of recurrent high-grade glioma patients. J. Neurooncol. 2014, 120, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, T.S.; Cohen, M.Z.; Eriksen, L.; Cleeland, C. Content validity of self-report measurement instruments: An illustration from the development of the Brain Tumor Module of the MD Anderson Symptom Inventory. Oncol. Nurs. Soc. 2005, 32, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, T.S.; Mendoza, T.; Gning, I.; Coco, C.; Cohen, M.Z.; Eriksen, L.; Hsu, M.A.; Gilbert, M.R.; Cleeland, C. Validation of the MD Anderson symptom inventory brain tumor module (MDASI-BT). J. Neuro-Oncol. 2006, 80, 27–35. [Google Scholar] [CrossRef]
- Acquaye, A.A.; Payén, S.S.; Vera, E.; Williams, L.A.; Gilbert, M.R.; Weathers, S.P.; Armstrong, T.S. Identifying symptom recurrences in primary brain tumor patients using the MDASI-BT and qualitative interviews. J. Patient-Rep. Outcomes 2019, 3, 58. [Google Scholar] [CrossRef]
- Vera, E.; Acquaye, A.A.; Mendoza, T.R.; Gilbert, M.R.; Armstrong, T.S. Relationship between symptom burden and health status: Analysis of the MDASI-BT and EQ-5D. Neuro-Oncol. Pract. 2018, 5, 56–63. [Google Scholar] [CrossRef]
- Mackworth, N.; Fobair, P.; Prados, M.D. Quality of life self-reports from 200 brain tumor patients: Comparisons with Karnofsky performance scores. J. Neurooncol. 1992, 14, 243–253. [Google Scholar] [CrossRef]
- Ung, T.H.; Ney, D.E.; Damek, D.; Rusthoven, C.G.; Youssef, A.S.; Lillehei, K.O.; Ormond, D.R. The Neurologic Assessment in Neuro-Oncology (NANO) Scale as an Assessment Tool for Survival in Patients With Primary Glioblastoma. Neurosurgery 2019, 84, 687–695. [Google Scholar] [CrossRef]
- Péus, D.; Newcomb, N.; Hofer, S. Appraisal of the Karnofsky Performance Status and proposal of a simple algorithmic system for its evaluation. BMC Med. Inform. Decis. Mak. 2013, 13, 72. [Google Scholar] [CrossRef]
- Heimans, J.J.; Taphoorn, M.J. Impact of brain tumour treatment on quality of life. J. Neurol. 2002, 249, 955–960. [Google Scholar] [CrossRef]
- Bush, N.A.; Chang, S.M.; Berger, M.S. Current and future strategies for treatment of glioma. Neurosurg. Rev. 2017, 40, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Nayak, L.; DeAngelis, L.M.; Brandes, A.A.; Peereboom, D.M.; Galanis, E.; Lin, N.U.; Soffietti, R.; Macdonald, D.R.; Chamberlain, M.; Perry, J.; et al. The Neurologic Assessment in Neuro-Oncology (NANO) scale: A tool to assess neurologic function for integration into the Response Assessment in Neuro-Oncology (RANO) criteria. Neuro-Oncology 2017, 19, 625–635. [Google Scholar] [CrossRef]
- Ellingson, B.M.; Sanvito, F.; Cloughesy, T.F.; Huang, R.Y.; Villanueva-Meyer, J.E.; Pope, W.B.; Barboriak, D.P.; Shankar, L.K.; Smits, M.; Kaufmann, T.J.; et al. A Neuroradiologist’s Guide to Operationalizing the Response Assessment in Neuro-Oncology (RANO) Criteria Version 2.0 for Gliomas in Adults. AJNR Am. J. Neuroradiol. 2024, 45, 1846–1856. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, P.Y.; Islam, A.A.; July, J.; Patellongi, I.; Nasrum, M.; Aninditha, T. Karnofsky Performance Scale and Neurological Assessment of Neuro-Oncology Scale as Early Predictor in Glioma. Asian Pac. J. Cancer Prev. 2020, 21, 3387–3392. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.Y.; van den Bent, M.; Youssef, G.; Cloughesy, T.F.; Ellingson, B.M.; Weller, M.; Galanis, E.; Barboriak, D.P.; de Groot, J.; Gilbert, M.R.; et al. RANO 2.0: Update to the Response Assessment in Neuro-Oncology Criteria for High- and Low-Grade Gliomas in Adults. J. Clin. Oncol. 2023, 41, 5187–5199. [Google Scholar] [CrossRef]
- Tymowski, M.; Kaspera, W.; Metta-Pieszka, J.; Zarudzki, Ł.; Ładziński, P. Neuropsychological assessment of patients undergoing surgery due to low-grade glioma involving the supplementary motor area. Clin. Neurol. Neurosurg. 2018, 175, 1–8. [Google Scholar] [CrossRef]
- Skufca Smrdel, A.C.; Podlesek, A.; Skoblar Vidmar, M.; Markovic, J.; Jereb, J.; Okorn, M.K.; Smrdel, U. Cognitive functioning in a cohort of high-grade glioma patients. Radiol. Oncol. 2023, 57, 201–210. [Google Scholar] [CrossRef]
- Noll, K.R.; Weinberg, J.S.; Ziu, M.; Wefel, J.S. Verbal Learning Processes in Patients with Glioma of the Left and Right Temporal Lobes. Arch. Clin. Neuropsychol. 2016, 31, 37–46. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699, Correction in J. Am. Geriatr. Soc. 2019, 67, 1991. https://doi.org/10.1111/jgs.15925. [Google Scholar] [CrossRef]
- Wang, Q.; Xiao, F.; Qi, F.; Song, X.; Yu, Y. Risk Factors for Cognitive Impairment in High-Grade Glioma Patients Treated with Postoperative Radiochemotherapy. Cancer Res. Treat. 2020, 52, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.; Durand, T.; Roussel, M.; Feuvret, L.; Jacob, J.; Psimaras, D.; Noel, G.; Keller, A.; Bompaire, F.; Hoang-Xuan, K.; et al. Sensitivity of the Montreal Cognitive Assessment in screening for cognitive impairment in patients with newly diagnosed high-grade glioma. J. Neurooncol. 2020, 148, 335–342. [Google Scholar] [CrossRef]
- Bowie, C.R.; Harvey, P.D. Administration and interpretation of the Trail Making Test. Nat. Protoc. 2006, 1, 2277–2281. [Google Scholar] [CrossRef]
- Llinàs-Reglà, J.; Vilalta-Franch, J.; López-Pousa, S.; Calvó-Perxas, L.; Torrents Rodas, D.; Garre-Olmo, J. The Trail Making Test. Assessment 2017, 24, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Fang, S.; Peng, Y. A research of preoperative neurocognitive functioning and contributing factors in patients with supratentorial gliomas. Neurosci. Lett. 2022, 775, 136527. [Google Scholar] [CrossRef]
- Lee, S.T.; Park, C.K.; Kim, J.W.; Park, M.J.; Lee, H.; Lim, J.A.; Choi, S.H.; Kim, T.M.; Lee, S.H.; Park, S.H.; et al. Early cognitive function tests predict early progression in glioblastoma. Neuro-Oncol. Pract. 2015, 2, 137–143. [Google Scholar] [CrossRef]
- Cutler, L.; Abeare, C.A.; Messa, I.; Holcomb, M.; Erdodi, L.A. This will only take a minute: Time cutoffs are superior to accuracy cutoffs on the forced choice recognition trial of the Hopkins Verbal Learning Test—Revised. Appl. Neuropsychol. Adult 2022, 29, 1425–1439. [Google Scholar] [CrossRef] [PubMed]
- Grenfell-Essam, R.; Hogervorst, E.; WRahardjo, T.B. The Hopkins Verbal Learning Test: An in-depth analysis of recall patterns. Memory 2018, 26, 385–405. [Google Scholar] [CrossRef]
- Almahariq, M.F.; Quinn, T.J.; Arden, J.D.; Roskos, P.T.; Wilson, G.D.; Marples, B.; Grills, I.S.; Chen, P.Y.; Krauss, D.J.; Chinnaiyan, P.; et al. Pulsed radiation therapy for the treatment of newly diagnosed glioblastoma. Neuro-Oncology 2021, 23, 447–456. [Google Scholar] [CrossRef]
- Wefel, J.S.; Cloughesy, T.; Zazzali, J.L.; Zheng, M.; Prados, M.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.K.; et al. Neurocognitive function in patients with recurrent glioblastoma treated with bevacizumab. Neuro-Oncology 2011, 13, 660–668. [Google Scholar] [CrossRef]
- Valiulyte, I.; Pranckeviciene, A.; Bunevicius, A.; Tamasauskas, A.; Svitina, H.; Skrypkina, I.; Vaitkiene, P. Associations of miR-181a with Health-Related Quality of Life, Cognitive Functioning, and Clinical Data of Patients with Different Grade Glioma Tumors. Int. J. Mol. Sci. 2022, 23, 11149. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Mystakidou, K.; Tsilika, E.; Parpa, E.; Galanos, A.; Vlahos, L. Brief cognitive assessment of cancer patients: Evaluation of the Mini-Mental State Examination (MMSE) psychometric properties. Psychooncology 2007, 16, 352–357. [Google Scholar] [CrossRef]
- Taylor, B.V.; Buckner, J.C.; Cascino, T.L.; O’Fallon, J.R.; Schaefer, P.L.; Dinapoli, R.P.; Schomberg, P. Effects of radiation and chemotherapy on cognitive function in patients with high-grade glioma. J. Clin. Oncol. 1998, 16, 2195–2201. [Google Scholar] [CrossRef] [PubMed]
- Gorlia, T.; van den Bent, M.J.; Hegi, M.E.; Mirimanoff, R.O.; Weller, M.; Cairncross, J.G.; Eisenhauer, E.; Belanger, K.; Brandes, A.A.; Allgeier, A.; et al. Nomograms for predicting survival of patients with newly diagnosed glioblastoma: Prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE. 3. Lancet Oncol. 2008, 9, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Renovanz, M.; Hechtner, M.; Kohlmann, K.; Janko, M.; Nadji-Ohl, M.; Singer, S.; Ringel, F.; Coburger, J.; Hickmann, A.K. Compliance with patient-reported outcome assessment in glioma patients: Predictors for drop out. Neuro-Oncol. Pract. 2018, 5, 129–138. [Google Scholar] [CrossRef]
- Dirven, L.; Armstrong, T.S.; Taphoorn, M.J. Health-related quality of life and other clinical outcome assessments in brain tumor patients: Challenges in the design, conduct and interpretation of clinical trials. Neuro-Oncol. Pract. 2015, 2, 2–5. [Google Scholar] [CrossRef]
- Surbeck, W.; Herbet, G.; Duffau, H. Sexuality after surgery for diffuse low-grade glioma. Neuro-Oncology 2015, 17, 574–579. [Google Scholar] [CrossRef]
Instrument Name | Description | Number of Items | Domains | Time to Complete | Study Characterizing Use | Study Cohort |
---|---|---|---|---|---|---|
EQ-5D | EQ-5D is a generalized measure of QOL for patients with chronic diseases | 5 individual items and 1 visual analogue scale | anxiety and depression, discomfort and pain, lack of mobility, inability to perform self-care activities, and inability to perform normal activities | 1–5 min | Sagberg et al. [13] | 164 patients undergoing surgical resection of a glioma |
EORTC QLQ-C30 | EORTC-QLQ30 is a modular approach for defining QOL in cancer patients. The original version of this tool was developed for patients participating in international clinical trials | 30 | physical, role, cognitive, emotional, and social | 10–15 min | Mauer et al. [14] | 490 patients with glioblastoma |
EORTC QLQ-BN20-BCM | Brain tumor-specific module for use with the generalized QOL instrument EORTC QLQ-C30 | 24 | future uncertainty, visual disorder, communication deficits, motor dysfunction, and emotional distress | 15–20 min | Osoba et al. [15] | 105 patients with brain cancer |
PROMIS-10/29 | Developed as a subset of the primary PROMIS tool, the PROMIS- 10 and -29 aim to determine the health of patients and their capacity to function over time | 10 | overall health, quality of life, physical health, mental health, social health, satisfaction with social activities and relationships, independence, pain, fatigue, and emotional health | 10–15 min | Gabel et al. [16] | 79 patients with glioma |
Neuro-QOL | Neuro-QOL is a modular approach to defining QOL in patients with neurological conditions. Researchers select from a question bank and may administer the survey through a computerized adaptive test (CAT) | 15–30 | Physical, mental, and social health (further categorized into subdomains, including anxiety, depression, fatigue, activities of daily living, lower-extremity function–mobility, cognition–general concerns, cognition–executive function, emotional and behavioral control, overall well-being, sleep quality, ability to participate in social roles and activities, satisfaction with social roles, and sexual function and stigma) | 15 min | Rogers et al. [4] | 248 long-term survivors with primary CNS tumors |
SF-12/SF-36/RAND-36 | SF-12 is a short-form version of SF-36, a tool used to measure patient healthcare utilization, mental health, and physical health | 12 or 36 | physical pain, energy, fatigue, general health perceptions, general mental health, and limitations in physical, social, and usual role activities | 10–15 min | Bunevicius et al. [17] | 227 patients with brain tumors |
LASA | LASA is a self-reported measure of patient QOL, relying on 5 items individual items: physical, spiritual, intellectual, emotional, and overall well-being | 5 | physical, spiritual, intellectual, emotional, and overall well-being | 1–5 min | Coates et al. [18] | 205 patients with high-grade glioma |
FACT-Br | FACT-BR is a brain tumor-specific version of FACT-G. Includes symptom- and treatment-specific questions for brain tumor patients | 27 | physical, functional, social, and emotional well-being, and satisfaction with treatment | 10–15 min | Roa et al. [19] | 100 patients with glioblastoma |
MDASI-BT | MDASI-BT is a brain tumor-specific version of MDASI, a general symptom assessment tool for cancer patients | 22 | pain, fatigue, nausea, disturbed sleep, distress, shortness of breath, difficulty remembering, lack of appetite, drowsiness, dry mouth, sadness, vomiting, numbess and tingling, unilateral body weakness, changes in appearance, changes in bowel pattern, vision problems, seizures, irritability, and difficulty with understanding, speaking, or concentrating | 10 min | Piil et al. [20] | 120 patients with brain tumors |
Instrument Name | Description | Number of Items | Domains | Time to Complete | Study Characterizing Use | Study Cohort |
---|---|---|---|---|---|---|
KPS | Karnofsky Performance Status (KPS) is a clinician-rated scale that assesses a patient’s functional status and ability to perform daily activities. | N/A | N/A | 1–2 min | Mackworth et al. [69] | 200 brain tumor patients |
Neurologic Assessment in Neuro-Oncology (NANO) | The Neurologic Assessment in Neuro-Oncology (NANO) is a standardized clinician-reported outcome measure specifically designed to assess neurological function in neuro-oncology patients through an objective evaluation of nine neurological domains, including gait, strength, ataxia, facial strength, language, visual fields, level of consciousness, behavior, and sensation. | N/A | 9 | 5–10 min | Ung et al. [70] | 78 glioma patients |
Instrument Name | Description | Number of Items | Domains | Time to Complete | Study Characterizing Use | Study Cohort |
---|---|---|---|---|---|---|
Montreal Cognitive Assessment (MoCA) | The MoCA is a tool designed to detect mild cognitive impairment by assessing multiple cognitive domains, including executive function, visuospatial abilities, attention, language, memory, and orientation. | N/A | 6 | 10–15 min | Tymowski et al. [78] | 21 patients with low-grade glioma |
Trail Making Test (TMT) | The TMT measures visual attention, processing speed, and cognitive flexibility by having patients connect numbered dots (Part A) or alternating numbers and letters (Part B) in sequence as quickly as possible. | N/A | N/A | 5–10 min | Smrdl et al. [79] | 275 patients with high-grade glioma |
Hopkins Verbal Learning Test (HVLT) | The HVLT is a brief verbal learning and memory assessment that evaluates immediate recall, delayed recall, and recognition memory through repeated trials of a 12-word list. | N/A | N/A | 15–20 min | Noll et al. [80] | 84 patients with temporal lobe glioma |
Mini-Mental State Examination (MMSE) | Mini-Mental State Examination (MMSE) is a clinician-administered cognitive screening tool that assesses orientation, attention, memory, language, and visuospatial abilities to identify cognitive impairment. | N/A | 5 | 5–10 min | Brown et al. [57] | 203 patients with low-grade glioma |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakravarti, S.; Gupta, S.R.; Myneni, S.; Elshareif, M.; Rogers, J.L.; Caraway, C.; Ahmed, A.K.; Schreck, K.C.; Kamson, D.O.; Holdhoff, M.; et al. Clinical Outcome Assessment Tools for Evaluating the Management of Gliomas. Cancers 2025, 17, 1659. https://doi.org/10.3390/cancers17101659
Chakravarti S, Gupta SR, Myneni S, Elshareif M, Rogers JL, Caraway C, Ahmed AK, Schreck KC, Kamson DO, Holdhoff M, et al. Clinical Outcome Assessment Tools for Evaluating the Management of Gliomas. Cancers. 2025; 17(10):1659. https://doi.org/10.3390/cancers17101659
Chicago/Turabian StyleChakravarti, Sachiv, Sneha R. Gupta, Saket Myneni, Mazin Elshareif, James L. Rogers, Chad Caraway, A. Karim Ahmed, Karisa C. Schreck, David O. Kamson, Matthias Holdhoff, and et al. 2025. "Clinical Outcome Assessment Tools for Evaluating the Management of Gliomas" Cancers 17, no. 10: 1659. https://doi.org/10.3390/cancers17101659
APA StyleChakravarti, S., Gupta, S. R., Myneni, S., Elshareif, M., Rogers, J. L., Caraway, C., Ahmed, A. K., Schreck, K. C., Kamson, D. O., Holdhoff, M., Croog, V., Redmond, K. J., Bettegowda, C., & Mukherjee, D. (2025). Clinical Outcome Assessment Tools for Evaluating the Management of Gliomas. Cancers, 17(10), 1659. https://doi.org/10.3390/cancers17101659