Anti-Obesity Medications and the Risk of Obesity-Related Cancers in Older Women: A Propensity Score Matching Analysis of 2007–2015 SEER-Medicare Data
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Population
2.3. AOM Exposure
2.4. ORCs Outcomes
2.5. Covariates
2.6. Propensity Score Matching (PMS)
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADSCs-CM | Adipose tissue-derived stem cells-conditioned medium |
aHR | Adjusted hazard ratio |
AJCC | American joint committee on cancer |
AMPKα2 | Adenosine monophosphate–activated protein kinase alpha-2 |
AOM | Anti-obesity medication |
BrCa | Breast cancer |
CI | Confidence interval |
CPT | Current procedural terminology |
CRC | Colorectal cancer |
ECa | Endometrial cancer |
GLP-1RAs | Glucagon-like peptide-1 receptor agonists |
IARC | International agency for research on cancer |
IGF | Insulin-like growth factor |
MCF-7 | Michigan cancer foundation-7 |
NDC | National drug codes |
NF-κB | Nuclear factor-kappa B |
OCa | Ovarian cancer |
ORCs | Obesity-related cancers |
PI3K/Akt | Phosphatidylinositol 3-kinase/protein kinase B |
SEER | Surveillance, epidemiology, and end results |
sHR | Subdistribution hazard ratios |
SES | Socioeconomic status |
STAT3 | Signal transducer and activator of transcription 3 |
TAAR1 | Trace amine-associated receptor 1 |
VIF | Variance inflation factor |
VMAT2 | Vesicular monoamine transporter 2 |
References
- Calle, E.E.; Kaaks, R. Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 2004, 4, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Renehan, A.G.; Zwahlen, M.; Egger, M. Adiposity and cancer risk: New mechanistic insights from epidemiology. Nat. Rev. Cancer 2015, 15, 484–498. [Google Scholar] [CrossRef]
- Furuncuoğlu, Y.; Tulgar, S.; Dogan, A.N.; Cakar, S.; Tulgar, Y.K.; Cakiroglu, B. How obesity affects the neutrophil/lymphocyte and platelet/lymphocyte ratio, systemic immune-inflammatory index and platelet indices: A retrospective study. Eur. Rev. Med. Pharmacol Sci. 2016, 20, 1300–1306. [Google Scholar]
- Freitas, D.F.; Colón, D.F.; Silva, R.L.; Santos, E.M.; Guimarães, V.H.D.; Ribeiro, G.H.M.; de Paula, A.M.B.; Guimarães, A.L.S.; Dos Reis, S.T.; Cunha, F.Q.; et al. Neutrophil extracellular traps (NETs) modulate inflammatory profile in obese humans and mice: Adipose tissue role on NETs levels. Mol. Biol. Rep. 2022, 49, 3225–3236. [Google Scholar] [CrossRef] [PubMed]
- Leite, N.R.; Siqueira de Medeiros, M.; Mury, W.V.; Matsuura, C.; Perszel, M.B.; Noronha Filho, G.; Brunini, T.M.; Mendes-Ribeiro, A.C. Platelet hyperaggregability in obesity: Is there a role for nitric oxide impairment and oxidative stress? Clin. Exp. Pharmacol. Physiol. 2016, 43, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Divella, R.; De Luca, R.; Abbate, I.; Naglieri, E.; Daniele, A. Obesity and cancer: The role of adipose tissue and adipo-cytokines-induced chronic inflammation. J. Cancer 2016, 7, 2346–2359. [Google Scholar] [CrossRef]
- Pati, S.; Irfan, W.; Jameel, A.; Ahmed, S.; Shahid, R.K. Obesity and Cancer: A Current Overview of Epidemiology, Pathogenesis, Outcomes, and Management. Cancers 2023, 15, 485. [Google Scholar] [CrossRef]
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017–2018. NCHS Data Brief 2020, 360, 1–8. [Google Scholar]
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef]
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation 2014, 129 (Suppl. S2), S102–S138, Erratum in Circulation 2014, 129 (Suppl. S2), S139–S140. [Google Scholar] [CrossRef]
- Khera, R.; Murad, M.H.; Chandar, A.K.; Dulai, P.S.; Wang, Z.; Prokop, L.J.; Loomba, R.; Camilleri, M.; Singh, S. Association of Pharmacological Treatments for Obesity with Weight Loss and Adverse Events: A Systematic Review and Meta-analysis. JAMA 2016, 315, 2424–2434. [Google Scholar] [CrossRef] [PubMed]
- Coulter, A.A.; Rebello, C.J.; Greenway, F.L. Centrally Acting Agents for Obesity: Past, Present, and Future. Drugs 2018, 78, 1113–1132. [Google Scholar] [CrossRef]
- Gudzune, K.A.; Kushner, R.F. Medications for Obesity: A Review. JAMA 2024, 332, 571–584. [Google Scholar] [CrossRef]
- The US Food and Drug Administration. FDA Drug Safety Communication [Internet]; The US Food and Drug Administration: Silver Spring, MD, USA, 2020. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/safety-clinical-trial-shows-possible-increased-risk-cancer-weight-loss-medicine-belviq-belviq-xr (accessed on 18 October 2024).
- Funch, D.; Mortimer, K.; Ziyadeh, N.J.; Funch, D.; Mortimer, K.; Ziyadeh, N.J.; Seeger, J.D.; Zhou, L.; Ng, E.; Ross, D.; et al. Risk of Thyroid Cancer Associated with Use of Liraglutide and Other Antidiabetic Drugs in a US Commercially Insured Population. Diabetes Metab. Syndr. Obes. 2021, 14, 2619–2629. [Google Scholar] [CrossRef]
- Bjerre Knudsen, L.; Madsen, L.W.; Andersen, S.; Almholt, K.; de Boer, A.S.; Drucker, D.J.; Gotfredsen, C.; Egerod, F.L.; Hegelund, A.C.; Jacobsen, H.; et al. Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology 2010, 151, 1473–1486, Erratum in Endocrinology 2012, 153, 1000. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.; Batel-Marques, F.; Macedo, A.F. A meta-analysis of serious adverse events reported with exenatide and liraglutide: Acute pancreatitis and cancer. Diabetes Res. Clin. Pract. 2012, 98, 271–284. [Google Scholar] [CrossRef]
- Luo, J.; Chlebowski, R.T.; Hendryx, M.; Rohan, T.; Wactawski-Wende, J.; Thomson, C.A.; Felix, A.S.; Chen, C.; Barrington, W.; Coday, M.; et al. Intentional Weight Loss and Endometrial Cancer Risk. J. Clin. Oncol. 2017, 35, 1189–1193. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Berndt, S.I.; Kunzmann, A.T.; Kitahara, C.M.; Huang, W.Y.; Barry, K.H. Weight Change and Incident Distal Colorectal Adenoma Risk in the PLCO Cancer Screening Trial. JNCI Cancer Spectr. 2022, 6, pkab098. [Google Scholar] [CrossRef]
- Park, J.; Morley, T.S.; Kim, M.; Clegg, D.J.; Scherer, P.E. Obesity and cancer--mechanisms underlying tumor progression and recurrence. Nat. Rev. Endocrinol. 2014, 10, 455–465. [Google Scholar] [CrossRef]
- Warren, J.L.; Klabunde, C.N.; Schrag, D.; Bach, P.B.; Riley, G.F. Overview of the SEER-Medicare data: Content, research applications, and generalizability to the United States elderly population. Med. Care 2002, 40 (Suppl. S8), IV-3–IV-18. Available online: http://www.jstor.org/stable/3767919 (accessed on 10 September 2024). [CrossRef]
- Zippin, C.; Lum, D.; Hankey, B.F. Completeness of hospital cancer case reporting from the SEER Program of the National Cancer Institute. Cancer 1995, 76, 2343–2350. [Google Scholar] [CrossRef]
- Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Grosse, Y.; Bianchini, F.; Straif, K. International Agency for Research on Cancer Handbook Working Group. Body Fatness and Cancer--Viewpoint of the IARC Working Group. N. Engl. J. Med. 2016, 375, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Hernán, M.A.; Hernández-Díaz, S.; Werler, M.M.; Mitchell, A.A. Causal knowledge as a prerequisite for confounding evaluation: An application to birth defects epidemiology. Am. J. Epidemiol. 2002, 155, 176–184. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivar. Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef]
- Parsons, L.S. Performing a 1:N case-control match on propensity score. In Proceedings of the Twenty-Sixth Annual SAS Users Group International Conference, Montreal, QC, Canada, 9–12 May 2004; Paper 165-29. SAS Institute: Cary, NC, USA, 2004. Available online: https://support.sas.com/resources/papers/proceedings/proceedings/sugi29/165-29.pdf (accessed on 10 September 2024).
- Austin, P.C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat. Med. 2009, 28, 3083–3107. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, C.; Mathew Stephen, M.; Ruan, Y.; Warkentin, M.T.; Brenner, D.R. Next Generation Weight Loss Drugs for the Prevention of Cancer? Cancer Control 2024, 1, 10732748241241158. [Google Scholar] [CrossRef]
- Fidan-Yaylalı, G.; Dodurga, Y.; Seçme, M.; Elmas, L. Antidiabetic exendin-4 activates apoptotic pathway and inhibits growth of breast cancer cells. Tumour. Biol. 2016, 37, 2647–2653. [Google Scholar] [CrossRef]
- Iwaya, C.; Nomiyama, T.; Komatsu, S.; Kawanami, T.; Tsutsumi, Y.; Hamaguchi, Y.; Horikawa, T.; Yoshinaga, Y.; Yamashita, S.; Tanaka, T.; et al. Exendin-4, a Glucagonlike Peptide-1 Receptor Agonist, Attenuates Breast Cancer Growth by Inhibiting NF-κB Activation. Endocrinology 2017, 158, 4218–4232. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Dian, Y.; Zeng, F.; Deng, G.; Lei, S. Association of glucagon-like peptide-1 receptor agonists with risk of cancers-evidence from a drug target Mendelian randomization and clinical trials. Int. J. Surg. 2024, 110, 4688–4694. [Google Scholar] [CrossRef]
- Piccoli, G.F.; Mesquita, L.A.; Stein, C.; Aziz, M.; Zoldan, M.; Degobi, N.A.H.; Spiazzi, B.F.; Lopes Junior, G.L.; Colpani, V.; Gerchman, F. Do GLP-1 Receptor Agonists Increase the Risk of Breast Cancer? A Systematic Review and Meta-analysis. J. Clin. Endocrinol. Metab. 2021, 106, 912–921. [Google Scholar] [CrossRef] [PubMed]
- Hicks, B.M.; Yin, H.; Yu, O.H.; Pollak, M.N.; Platt, R.W.; Azoulay, L. Glucagon-like peptide-1 analogues and risk of breast cancer in women with type 2 diabetes: Population based cohort study using the UK Clinical Practice Research Datalink. BMJ 2016, 355, i5340. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, R.; Kaelber, D.C.; Berger, N.A. Glucagon-Like Peptide 1 Receptor Agonists and 13 Obesity-Associated Cancers in Patients with Type 2 Diabetes. JAMA Netw. Open. 2024, 7, e2421305. [Google Scholar] [CrossRef]
- Jin, B.R.; Kim, H.J.; Sim, S.A.; Lee, M.; An, H.J. Anti-Obesity Drug Orlistat Alleviates Western-Diet-Driven Colitis-Associated Colon Cancer via Inhibition of STAT3 and NF-κB-Mediated Signaling. Cells 2021, 10, 2060. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, W.; Kaelber, D.C.; Xu, R.; Berger, N.A. GLP-1 Receptor Agonists and Colorectal Cancer Risk in Drug-Naive Patients with Type 2 Diabetes, with and Without Overweight/Obesity. JAMA Oncol. 2024, 10, 256–258. [Google Scholar] [CrossRef]
- Hong, J.L.; Meier, C.R.; Sandler, R.S.; Jick, S.S.; Stürmer, T. Risk of colorectal cancer after initiation of orlistat: Matched cohort study. BMJ 2013, 347, f5039. [Google Scholar] [CrossRef]
- Wysham, W.Z.; Roque, D.R.; Han, J.; Zhang, L.; Guo, H.; Gehrig, P.A.; Zhou, C.; Bae-Jump, V.L. Effects of Fatty Acid Synthase Inhibition by Orlistat on Proliferation of Endometrial Cancer Cell Lines. Target. Oncol. 2016, 11, 763–769. [Google Scholar] [CrossRef]
- Peng, H.; Wang, Q.; Qi, X.; Wang, X.; Zhao, X. Orlistat induces apoptosis and protective autophagy in ovarian cancer cells: Involvement of Akt-mTOR-mediated signaling pathway. Arch. Gynecol. Obstet. 2018, 298, 597–605. [Google Scholar] [CrossRef]
- He, W.; Yu, S.; Wang, L.; He, M.; Cao, X.; Li, Y.; Xiao, H. Exendin-4 inhibits growth and augments apoptosis of ovarian cancer cells. Mol. Cell Endocrinol. 2016, 436, 240–249. [Google Scholar] [CrossRef]
- Barak, L.S.; Salahpour, A.; Zhang, X.; Masri, B.; Sotnikova, T.D.; Ramsey, A.J.; Violin, J.D.; Lefkowitz, R.J.; Caron, M.G.; Gainetdinov, R.R. Pharmacological characterization of membrane-expressed human trace amine-associated receptor 1 (TAAR1) by a bioluminescence resonance energy transfer cAMP biosensor. Mol. Pharmacol. 2008, 74, 585–594. [Google Scholar] [CrossRef]
- Rothman, R.B.; Baumann, M.H.; Dersch, C.M.; Romero, D.V.; Rice, K.C.; Carroll, F.I.; Partilla, J.S. Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 2001, 39, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Haslam, D. Weight management in obesity—Past and present. Int. J. Clin. Pract. 2016, 70, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Hunter, K.; Hölscher, C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci. 2012, 13, 33. [Google Scholar] [CrossRef]
- Alanteet, A.A.; Attia, H.A.; Shaheen, S.; Alfayez, M.; Alshanawani, B. Anti-Proliferative Activity of Glucagon-Like Peptide-1 Receptor Agonist on Obesity-Associated Breast Cancer: The Impact on Modulating Adipokines’ Expression in Adipocytes and Cancer Cells. Dose Response 2021, 19, 1559325821995651. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, X.; Zhou, Z.; Sun, B.; Gu, W.; Liu, J.; Zhang, H. Liraglutide inhibits the proliferation and promotes the apoptosis of MCF-7 human breast cancer cells through downregulation of microRNA-27a expression. Mol. Med. Rep. 2018, 17, 5202–5212. [Google Scholar] [CrossRef] [PubMed]
- Clontz, A.D.; Gan, E.; Hursting, S.D.; Bae-Jump, V.L. Effects of Weight Loss on Key Obesity-Related Biomarkers Linked to the Risk of Endometrial Cancer: A Systematic Review and Meta-Analysis. Cancers 2024, 16, 2197. [Google Scholar] [CrossRef]
- Martinez-Tapia, C.; Diot, T.; Oubaya, N.; Paillaud, E.; Poisson, J.; Gisselbrecht, M.; Morisset, L.; Caillet, P.; Baudin, A.; Pamoukdjian, F. The obesity paradox for mid- and long-term mortality in older cancer patients: A prospective multicenter cohort study. Am. J. Clin. Nutr. 2021, 113, 129–141. [Google Scholar] [CrossRef]
- Lévesque, L.E.; Hanley, J.A.; Kezouh, A.; Suissa, S. Problem of immortal time bias in cohort studies: Example using statins for preventing progression of diabetes. BMJ 2010, 340, b5087. [Google Scholar] [CrossRef]
- SEER-Medicare Linked Data Resource. Analytic Support for Researchers. Measures that Are Limited or Not Available in the Data. Available online: https://healthcaredelivery.cancer.gov/seermedicare/considerations/measures.html (accessed on 16 April 2025).
Characteristics | No. (%) | |||||||
---|---|---|---|---|---|---|---|---|
Pre- 1:2 Propensity Score Matching (n = 160,230) | Post- 1:2 Propensity Score Matching (n = 10,830) | |||||||
AOM Never-User 156,619 (97.7) | AOM Ever-User 3611 (2.3) | p-Value | % Std.Diff | AOM Never-User 7220 (66.6) | AOM Ever-User 3610 (33.4) | p-Value | % Std.diff | |
Age at index date | <0.0001 * | 0.3206 | 0.8277 | 0.0413 | ||||
65–70 | 16,907 (10.8) | 605 (16.8) | 1210 (16.8) | 605 (16.8) | ||||
70–75 | 38,488 (24.6) | 1208 (33.5) | 2421 (33.5) | 1208 (33.5) | ||||
75–80 | 39,166 (25.0) | 882 (24.4) | 1761 (24.4) | 882 (24.4) | ||||
≥80 | 62,058 (39.6) | 619 (25.3) | 1827 (25.3) | 915 (25.3) | ||||
Race/Ethnicity | <0.0001 * | 0.1377 | 0.6006 | 0.0546 | ||||
White | 123,298 (78.7) | 2967 (82.2) | 5949 (82.4) | 2966 (82.2) | ||||
Black | 15,398 (9.8) | 336 (9.3) | 673 (9.3) | 336 (9.3) | ||||
Hispanic | 4825 (3.1) | 131 (3.63) | 250 (3.5) | 131 (3.6) | ||||
Other | 13,098 (8.4) | 177 (4.9) | 347 (4.8) | 177 (4.9) | ||||
CCI | <0.0001 * | 0.4974 | 0.9545 | 0.0303 | ||||
0 | 77,196 (49.3) | 958 (26.5) | 1906 (26.4) | 958 (26.4) | ||||
1 | 44,705 (28.5) | 1231 (34.1) | 2464 (34.1) | 1231 (34.1) | ||||
2 | 20,092 (12.8) | 746 (20.7) | 1480 (20.5) | 746 (20.6) | ||||
3 or more | 14,626 (9.4) | 676 (18.7) | 1369 (18.9) | 675 (18.7) | ||||
Diabetes | 46,668 (29.8) | 1656 (45.9) | <0.0001 * | 0.3359 | 3327 (46.1) | 1656 (45.9) | 0.5763 | −0.0114 |
Use of insulin | 7462 (4.76) | 421 (11.7) | <0.0001 * | 0.2531 | 946 (11.7) | 421 (11.7) | 0.8152 | 0.0048 |
Use of metformin | 36,449 (23.3) | 1383 (38.3) | <0.0001 * | 0.3206 | 2831 (39.2) | 1383 (38.3) | 0.3650 | −0.0185 |
Hypertension | 94,951 (60.6) | 2636 (73.0) | <0.0001 * | 0.2651 | 5287 (73.2) | 2635 (73.0) | 0.7242 | −0.0072 |
Hyperlipidemia | 66,442 (42.4) | 1936 (53.6) | <0.0001 * | 0.2254 | 3828 (53.0) | 1935 (53.1) | 0.5953 | 0.0108 |
CVD | 75,677 (48.3) | 2205 (61.1) | <0.0001 * | 0.2581 | 4429 (61.4) | 2204 (61.1) | 0.6252 | −0.0100 |
Malaise and fatigue | 24,529 (15.7) | 976 (27.0) | <0.0001 * | 0.2801 | 1927 (26.7) | 975 (27.0) | 0.9390 | 0.0016 |
Muscular wasting | 1530 (0.9) | 100 (2.8) | <0.0001 * | 0.1325 | 184 (2.6) | 100 (2.8) | 0.2802 | 0.0218 |
Hypogonadism † | 28 (0.1) | 0 (0.0) | 1.0000 | −0.0189 | <11 (<0.1) ‡ | 0 (0.0) | 0.5555 | −0.0288 |
APD † | 93 (0.1) | <11 (<0.2) ‡ | 0.1760 | 0.0176 | <11 (<0.1) ‡ | <11 (<0.2) ‡ | 1.0000 | −0.0040 |
Depression disorder | 8784 (5.6) | 506 (14.0) | <0.0001 * | 0.2854 | 999 (13.8) | 505 (13.9) | 0.9063 | 0.0024 |
Osteoporosis | 20,379 (13.0) | 552 (15.3) | <0.0001 * | 0.0653 | 1100 (15.2) | 552 (15.3) | 0.8055 | 0.0050 |
Cushing’s syndrome | 40 (0.1) | <11 (<0.1) ‡ | 0.0726 | 0.0247 | <11 (<0.1) ‡ | <11 (<0.1) ‡ | 1.0000 | −0.0046 |
Hypothyroidism | 28,878 (18.4) | 1023 (28.3) | <0.0001 * | 0.2353 | 2052 (28.2) | 1023 (28.3) | 0.8566 | −0.0037 |
Hyperthyroidism | 1797 (1.15) | 53 (1.5) | 0.0748 | 0.0282 | 100 (1.4) | 53 (1.5) | 0.6591 | −0.0090 |
PCOS † | 19 (0.1) | <11 (<0.1) ‡ | 0.3661 | 0.0110 | <11 (<0.1) ‡ | <11 (<0.1) ‡ | 1.0000 | 0.0000 |
Poverty, mean (SD) § | 11.5 (8.8) | 11.8 (8.7) | 0.0271 * | 0.0373 | 12.0 (8.9) | 11.9 (8.7) | 0.2434 | −0.0237 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelgadir, O.; Hussain, M.R.; Hollis-Hansen, K.; Barcenas, C.H.; Kuo, Y.-F.; Skinner, C.S.; Cowell, L.G.; Messiah, S.E.; Lopez, D.S. Anti-Obesity Medications and the Risk of Obesity-Related Cancers in Older Women: A Propensity Score Matching Analysis of 2007–2015 SEER-Medicare Data. Cancers 2025, 17, 1624. https://doi.org/10.3390/cancers17101624
Abdelgadir O, Hussain MR, Hollis-Hansen K, Barcenas CH, Kuo Y-F, Skinner CS, Cowell LG, Messiah SE, Lopez DS. Anti-Obesity Medications and the Risk of Obesity-Related Cancers in Older Women: A Propensity Score Matching Analysis of 2007–2015 SEER-Medicare Data. Cancers. 2025; 17(10):1624. https://doi.org/10.3390/cancers17101624
Chicago/Turabian StyleAbdelgadir, Omer, Maryam R. Hussain, Kelseanna Hollis-Hansen, Carlos H. Barcenas, Yong-Fang Kuo, Celette S. Skinner, Lindsay G. Cowell, Sarah E. Messiah, and David S. Lopez. 2025. "Anti-Obesity Medications and the Risk of Obesity-Related Cancers in Older Women: A Propensity Score Matching Analysis of 2007–2015 SEER-Medicare Data" Cancers 17, no. 10: 1624. https://doi.org/10.3390/cancers17101624
APA StyleAbdelgadir, O., Hussain, M. R., Hollis-Hansen, K., Barcenas, C. H., Kuo, Y.-F., Skinner, C. S., Cowell, L. G., Messiah, S. E., & Lopez, D. S. (2025). Anti-Obesity Medications and the Risk of Obesity-Related Cancers in Older Women: A Propensity Score Matching Analysis of 2007–2015 SEER-Medicare Data. Cancers, 17(10), 1624. https://doi.org/10.3390/cancers17101624