Insulin-like Growth Factor 1 (IGF1) and Its Isoforms: Insights into the Mechanisms of Endometrial Cancer
Simple Summary
Abstract
1. Introduction
2. Insulin-like Growth Factor 1 (IGF1)
3. The IGF1 and Cancer Development
4. Therapeutic Potential and Challenges of IGF1 Targeting in Cancer
5. Circulating IGF1 Levels and EC Development
6. Alternative Splicing (AS)—A Phenomenon in Physiology and Pathophysiology in EC
7. IGF1 Gene and Its Isoforms
8. IGF1 Isoforms in Physiology
9. IGF1 Isoforms in Pathophysiology and Cancer Biology
10. Potential Role of IGF1 Isoforms in the Biology of EC
11. Interaction Between the IGF1 Isoforms and Oestrogen in EC
12. Future Perspectives
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amin, M.N.; Hussain, M.S.; Sarwar, M.S.; Rahman Moghal, M.M.; Das, A.; Hossain, M.Z.; Chowdhury, J.A.; Millat, M.S.; Islam, M.S. How the association between obesity and inflammation may lead to insulin resistance and cancer. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1213–1224. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, M.N.; Ortori, C.A.; Barrett, D.A.; Mongan, N.P.; Abu, J.; Atiomo, W. Lipidomic Biomarkers in Polycystic Ovary Syndrome and Endometrial Cancer. Int. J. Mol. Sci. 2020, 21, 4753. [Google Scholar] [CrossRef] [PubMed]
- Abdul Karim, A.K.; Shafiee, M.N.; Abd Aziz, N.H.; Omar, M.H.; Abdul Ghani, N.A.; Lim, P.S.; Md Zin, R.R.; Mokhtar, N. Reviewing the role of progesterone therapy in endometriosis. Gynecol. Endocrinol. 2019, 35, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, N.M.; Ramzi, N.H.; Yin-Ling, W.; Rose, I.M.; Hatta Mohd Dali, A.Z.; Jamal, R. Laser capture microdissection with genome-wide expression profiling displayed gene expression signatures in endometrioid endometrial cancer. Cancer Investig. 2012, 30, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Sidorkiewicz, I.; Jóźwik, M.; Niemira, M.; Krętowski, A. Insulin resistance and endometrial cancer: Emerging role for microRNA. Cancers 2020, 12, 2559. [Google Scholar] [CrossRef]
- Shafiee, M.N.; Seedhouse, C.; Mongan, N.; Chapman, C.; Deen, S.; Abu, J.; Atiomo, W. Up-regulation of genes involved in the insulin signalling pathway (IGF1, PTEN and IGFBP1) in the endometrium may link polycystic ovarian syndrome and endometrial cancer. Mol. Cell. Endocrinol. 2016, 424, 94–101. [Google Scholar] [CrossRef]
- Ipsa, E.; Cruzat, V.F.; Kagize, J.N.; Yovich, J.L.; Keane, K.N. Growth Hormone and Insulin-Like Growth Factor Action in Reproductive Tissues. Front. Endocrinol. 2019, 10, 777. [Google Scholar] [CrossRef]
- Liu, Y.; Yi, Y.; Wu, W.; Wu, K.; Zhang, W. Bioinformatics prediction and analysis of hub genes and pathways of three types of gynecological cancer. Oncol. Lett. 2019, 18, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, T.M.; Dhanani, S.; Ahmad, S. An Overview of Endometrial Cancer with Novel Therapeutic Strategies. Curr. Oncol. 2023, 30, 7904–7919. [Google Scholar] [CrossRef]
- Rubinstein, M.; Shen, S.; Monk, B.J.; Tan, D.S.P.; Nogueira-Rodrigues, A.; Aoki, D.; Sehouli, J.; Makker, V. Looking beyond carboplatin and paclitaxel for the treatment of advanced/recurrent endometrial cancer. Gynecol. Oncol. 2022, 167, 540–546. [Google Scholar] [CrossRef]
- Pignata, S.; Scambia, G.; Schettino, C.; Arenare, L.; Pisano, C.; Lombardi, D.; De Giorgi, U.; Andreetta, C.; Cinieri, S.; De Angelis, C.; et al. Carboplatin and paclitaxel plus avelumab compared with carboplatin and paclitaxel in advanced or recurrent endometrial cancer (MITO END-3): A multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2023, 24, 286–296. [Google Scholar] [CrossRef]
- Oda, K.; Ikeda, Y.; Kawana, K.; Osuga, Y.; Fujii, T. mTOR Signaling in Endometrial Cancer: From a Molecular and Therapeutic Point of View. Curr. Obstet. Gynecol. Rep. 2015, 4, 1–10. [Google Scholar] [CrossRef]
- Werner, H.; Sarfstein, R.; Bruchim, I. Investigational IGF1R inhibitors in early stage clinical trials for cancer therapy. Expert. Opin. Investig. Drugs 2019, 28, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Mamat @ Yusof, M.N.; Chew, K.T.; Hafizz, A.M.H.A.; Abd Azman, S.H.; Ab Razak, W.S.; Hamizan, M.R.u.; Kampan, N.C.; Shafiee, M.N. Efficacy and Safety of PD-1/PD-L1 Inhibitor as Single-Agent Immunotherapy in Endometrial Cancer: A Systematic Review and Meta-Analysis. Cancers 2023, 15, 4032. [Google Scholar] [CrossRef] [PubMed]
- Mamat @ Yusof, M.N.; Chew, K.T.; Kampan, N.C.; Shafiee, M.N. Expression of PD-1 and PD-L1 in Endometrial Cancer: Molecular and Clinical Significance. Int. J. Mol. Sci. 2023, 24, 15233. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, C.; Cao, F.; Wu, Y.; Chen, S.; Han, X.; Mo, J.; Qiu, Z.; Fan, W.; Zhou, P.; et al. Pan-Cancer Analysis of IGF-1 and IGF-1R as Potential Prognostic Biomarkers and Immunotherapy Targets. Front. Oncol. 2021, 11, 755341. [Google Scholar] [CrossRef] [PubMed]
- Kineman, R.D.; Del Rio-Moreno, M.; Sarmento-Cabral, A. 40 YEARS of IGF1: Understanding the tissue-specific roles of IGF1/IGF1R in regulating metabolism using the Cre/loxP system. J. Mol. Endocrinol. 2018, 61, T187–T198. [Google Scholar] [CrossRef] [PubMed]
- Werner, H. The IGF1 Signaling Pathway: From Basic Concepts to Therapeutic Opportunities. Int. J. Mol. Sci. 2023, 24, 14882. [Google Scholar] [CrossRef]
- Poreba, E.; Durzynska, J. Nuclear localization and actions of the insulin-like growth factor 1 (IGF-1) system components: Transcriptional regulation and DNA damage response. Mutat. Res. Rev. Mutat. Res. 2020, 784, 108307. [Google Scholar] [CrossRef] [PubMed]
- Forbes, B.E.; Blyth, A.J.; Wit, J.M. Disorders of IGFs and IGF-1R signaling pathways. Mol. Cell. Endocrinol. 2020, 518, 111035. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, S.; Roth, J.S.; Hernandez, E.R.; Kowalczyk, J.T.; Sealover, N.E.; Hebron, K.E.; James, A.; Isanogle, K.A.; Riffle, L.A.; Ileva, L.; et al. Preclinical Therapeutic Efficacy of RAF/MEK/ERK and IGF1R/AKT/mTOR Inhibition in Neuroblastoma. Cancers 2024, 16, 2320. [Google Scholar] [CrossRef] [PubMed]
- Rieger, L.; O’Connor, R. Controlled Signaling—Insulin-Like Growth Factor Receptor Endocytosis and Presence at Intracellular Compartments. Front. Endocrinol. 2021, 11, 620013. [Google Scholar] [CrossRef]
- McCampbell, A.S.; Broaddus, R.R.; Loose, D.S.; Davies, P.J. Overexpression of the insulin-like growth factor I receptor and activation of the AKT pathway in hyperplastic endometrium. Clin. Cancer Res. 2006, 12, 6373–6378. [Google Scholar] [CrossRef]
- Qian, F.; Huo, D. Circulating Insulin-Like Growth Factor-1 and Risk of Total and 19 Site-Specific Cancers: Cohort Study Analyses from the UK Biobank. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2332–2342. [Google Scholar] [CrossRef]
- Werner, H.; Laron, Z. Role of the GH-IGF1 system in progression of cancer. Mol. Cell. Endocrinol. 2020, 518, 111003. [Google Scholar] [CrossRef] [PubMed]
- Christopoulos, P.F.; Philippou, A.; Koutsilieris, M. Pattern of IGF-1 variants’ expression in human cancer cell lines using a novel q-RT-PCR approach. Anticancer Res. 2015, 35, 107–115. [Google Scholar] [PubMed]
- Zorea, J.; Prasad, M.; Cohen, L.; Li, N.; Schefzik, R.; Ghosh, S.; Rotblat, B.; Brors, B.; Elkabets, M. IGF1R upregulation confers resistance to isoform-specific inhibitors of PI3K in PIK3CA-driven ovarian cancer. Cell Death Dis. 2018, 9, 944. [Google Scholar] [CrossRef] [PubMed]
- Ayub, A.; Yip, W.K.; Seow, H.F. Dual treatments targeting IGF-1R, PI3K, mTORC or MEK synergize to inhibit cell growth, induce apoptosis, and arrest cell cycle at G1 phase in MDA-MB-231 cell line. Biomed. Pharmacother. 2015, 75, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yin, L.; Sun, X. CircRNA hsa_circ_0002577 accelerates endometrial cancer progression through activating IGF1R/PI3K/Akt pathway. J. Exp. Clin. Cancer Res. 2020, 39, 169. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Mak, V.C.Y.; Cheung, L.W.T. Drugging IGF-1R in cancer: New insights and emerging opportunities. Genes Dis. 2023, 10, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Galifi, C.A.; Wood, T.L. Insulin-like growth factor-1 receptor crosstalk with integrins, cadherins, and the tumor microenvironment: Sticking points in understanding IGF1R function in cancer. Endocr. Relat. Cancer 2023, 30, e230031. [Google Scholar] [CrossRef]
- Soni, U.K.; Jenny, L.; Hegde, R.S. IGF-1R targeting in cancer—does sub-cellular localization matter? J. Exp. Clin. Cancer Res. 2023, 42, 273. [Google Scholar] [CrossRef] [PubMed]
- Ianza, A.; Sirico, M.; Bernocchi, O.; Generali, D. Role of the IGF-1 Axis in Overcoming Resistance in Breast Cancer. Front. Cell Dev. Biol. 2021, 9, 641449. [Google Scholar] [CrossRef] [PubMed]
- Joehlin-Price, A.S.; Stephens, J.A.; Zhang, J.; Backes, F.J.; Cohn, D.E.; Suarez, A.A. Endometrial Cancer Insulin-like Growth Factor 1 Receptor (IGF1R) Expression Increases with Body Mass Index and Is Associated with Pathologic Extent and Prognosis. Cancer Epidemiol. Biomark. Prev. 2016, 25, 438–445. [Google Scholar] [CrossRef]
- Merritt, M.A.; Strickler, H.D.; Hutson, A.D.; Einstein, M.H.; Rohan, T.E.; Xue, X.; Sherman, M.E.; Brinton, L.A.; Yu, H.; Miller, D.S.; et al. Sex Hormones, Insulin, and Insulin-like Growth Factors in Recurrence of High-Stage Endometrial Cancer. Cancer Epidemiol. Biomark. Prev. 2021, 30, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Kumaravel, S.; Sharma, A.; Duran, C.L.; Bayless, K.J.; Chakraborty, S. Hypoxic tumor microenvironment: Implications for cancer therapy. Exp. Biol. Med. 2020, 245, 1073–1086. [Google Scholar] [CrossRef]
- Nwabo Kamdje, A.H.; Seke Etet, P.F.; Kipanyula, M.J.; Vecchio, L.; Tagne Simo, R.; Njamnshi, A.K.; Lukong, K.E.; Mimche, P.N. Insulin-like growth factor-1 signaling in the tumor microenvironment: Carcinogenesis, cancer drug resistance, and therapeutic potential. Front. Endocrinol. 2022, 13, 927390. [Google Scholar] [CrossRef] [PubMed]
- Wicks, E.E.; Semenza, G.L. Hypoxia-inducible factors: Cancer progression and clinical translation. J. Clin. Investig. 2022, 132, e159839. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xu, Z.; Mao, S.; Chen, W.; Zeng, R.; Zhou, S.; Liu, J. Effect of hypoxia on hypoxia inducible factor-1α, insulin-like growth factor I and vascular endothelial growth factor expression in hepatocellular carcinoma HepG2 cells. Oncol. Lett. 2015, 9, 1142–1148. [Google Scholar] [CrossRef]
- Ayabe, T.; Tsutsumi, O.; Sakai, H.; Yoshikawa, H.; Yano, T.; Kurimoto, F.; Taketani, Y. Increased circulating levels of insulin-like growth factor-I and decreased circulating levels of insulin-like growth factor binding protein-1 in postmenopausal women with endometrial cancer. Endocr. J. 1997, 44, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Petridou, E.; Koukoulomatis, P.; Alexe, D.M.; Voulgaris, Z.; Spanos, E.; Trichopoulos, D. Endometrial cancer and the IGF system: A case-control study in Greece. Oncology 2003, 64, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Gunter, M.J.; Hoover, D.R.; Yu, H.; Wassertheil-Smoller, S.; Manson, J.E.; Li, J.; Harris, T.G.; Rohan, T.E.; Xue, X.; Ho, G.Y. A prospective evaluation of insulin and insulin-like growth factor-I as risk factors for endometrial cancer. Cancer Epidemiol. Biomark. Prev. 2008, 17, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Lacey, J.V., Jr.; Potischman, N.; Madigan, M.P.; Berman, M.L.; Mortel, R.; Twiggs, L.B.; Barrett, R.J.; Wilbanks, G.D.; Lurain, J.R.; Fillmore, C.-M. Insulin-like growth factors, insulin-like growth factor-binding proteins, and endometrial cancer in postmenopausal women: Results from a US case-control study. Cancer Epidemiol. Biomark. Prev. 2004, 13, 607–612. [Google Scholar] [CrossRef]
- Lukanova, A.; Zeleniuch-Jacquotte, A.; Lundin, E.; Micheli, A.; Arslan, A.A.; Rinaldi, S.; Muti, P.; Lenner, P.; Koenig, K.L.; Biessy, C.; et al. Prediagnostic levels of C-peptide, IGF-I, IGFBP -1, -2 and -3 and risk of endometrial cancer. Int. J. Cancer 2004, 108, 262–268. [Google Scholar] [CrossRef]
- Weiderpass, E.; Brismar, K.; Bellocco, R.; Vainio, H.; Kaaks, R. Serum levels of insulin-like growth factor-I, IGF-binding protein 1 and 3, and insulin and endometrial cancer risk. Br. J. Cancer 2003, 89, 1697–1704. [Google Scholar] [CrossRef]
- McGrath, M.; Lee, I.M.; Buring, J.; De Vivo, I. Common genetic variation within IGFI, IGFII, IGFBP-1, and IGFBP-3 and endometrial cancer risk. Gynecol. Oncol. 2011, 120, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Baloglu, A.; Bezircioglu, I.; Cetinkaya, B.; Hicyilmaz, L. Prospective clinical study of the association between plasma level of free IGF-1 and myometrial invasion min patients with endometrial adenocarcinoma. Ginekol. Pol. 2010, 81, 501–505. [Google Scholar] [PubMed]
- Rutanen, E.M.; Stenman, S.; Blum, W.; Kärkkäinen, T.; Lehtovirta, P.; Stenman, U.H. Relationship between carbohydrate metabolism and serum insulin-like growth factor system in postmenopausal women: Comparison of endometrial cancer patients with healthy controls. J. Clin. Endocrinol. Metab. 1993, 77, 199–204. [Google Scholar]
- Rajpathak, S.N.; Gunter, M.J.; Wylie-Rosett, J.; Ho, G.Y.; Kaplan, R.C.; Muzumdar, R.; Rohan, T.E.; Strickler, H.D. The role of insulin-like growth factor-I and its binding proteins in glucose homeostasis and type 2 diabetes. Diabetes Metab. Res. Rev. 2009, 25, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Juul, A.; Scheike, T.; Pedersen, A.T.; Main, K.M.; Andersson, A.M.; Pedersen, L.M.; Skakkebaek, N.E. Changes in serum concentrations of growth hormone, insulin, insulin-like growth factor and insulin-like growth factor-binding proteins 1 and 3 and urinary growth hormone excretion during the menstrual cycle. Hum. Reprod. 1997, 12, 2123–2128. [Google Scholar] [CrossRef]
- Waksmański, B.; Dudkiewicz, J.; Dabrowski, S. Function of insulin-like growth factor (IGF-I) and its binding protein (IGFBP-1) in pathological proliferation of endometrium. Wiad. Lek. 2001, 54, 656–661. [Google Scholar] [PubMed]
- Trobec, K.; von Haehling, S.; Anker, S.D.; Lainscak, M. Growth hormone, insulin-like growth factor 1, and insulin signaling-a pharmacological target in body wasting and cachexia. J. Cachexia Sarcopenia Muscle 2011, 2, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Al-Samerria, S.; Radovick, S. Exploring the Therapeutic Potential of Targeting GH and IGF-1 in the Management of Obesity: Insights from the Interplay between These Hormones and Metabolism. Int. J. Mol. Sci. 2023, 24, 9556. [Google Scholar] [CrossRef]
- Liu, Q.; Fang, L.; Wu, C. Alternative Splicing and Isoforms: From Mechanisms to Diseases. Genes 2022, 13, 401. [Google Scholar] [CrossRef]
- Climente-González, H.; Porta-Pardo, E.; Godzik, A.; Eyras, E. The functional impact of alternative splicing in cancer. Cell Rep. 2017, 20, 2215–2226. [Google Scholar] [CrossRef]
- Popli, P.; Richters, M.M.; Chadchan, S.B.; Kim, T.H.; Tycksen, E.; Griffith, O.; Thaker, P.H.; Griffith, M.; Kommagani, R. Splicing factor SF3B1 promotes endometrial cancer progression via regulating KSR2 RNA maturation. Cell Death Dis. 2020, 11, 842. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yoshimi, A.; Wang, J.; Cho, H.; Chun-Wei Lee, S.; Ki, M.; Bitner, L.; Chu, T.; Shah, H.; Liu, B. Mutations in the RNA splicing factor SF3B1 promote tumorigenesis through MYC stabilization. Cancer Discov. 2020, 10, 806–821. [Google Scholar] [CrossRef]
- Philippou, A.; Maridaki, M.; Pneumaticos, S.; Koutsilieris, M. The complexity of the IGF1 gene splicing, posttranslational modification and bioactivity. Mol. Med. 2014, 20, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Philippou, A.; Papageorgiou, E.; Bogdanis, G.; Halapas, A.; Sourla, A.; Maridaki, M.; Pissimissis, N.; Koutsilieris, M. Expression of IGF-1 isoforms after exercise-induced muscle damage in humans: Characterization of the MGF E peptide actions in vitro. Vivo 2009, 23, 567–575. [Google Scholar]
- Gallego-Colon, E.; Villalba, M.; Tonkin, J.; Cruz, F.; Bernal, J.A.; Jimenez-Borregureo, L.J.; Schneider, M.D.; Lara-Pezzi, E.; Rosenthal, N. Intravenous delivery of adeno-associated virus 9-encoded IGF-1Ea propeptide improves post-infarct cardiac remodelling. NPJ Regen. Med. 2016, 1, 16001. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, L.A.; Brisson, B.K.; Lei, H.; Barton, E.R. The insulin-like growth factor (IGF)-I E-peptides modulate cell entry of the mature IGF-I protein. Mol. Biol. Cell 2009, 20, 3810–3817. [Google Scholar] [CrossRef]
- Vassilakos, G.; Philippou, A.; Koutsilieris, M. Identification of the IGF-1 processing product human Ec/rodent Eb peptide in various tissues: Evidence for its differential regulation after exercise-induced muscle damage in humans. Growth Horm. IGF Res. 2017, 32, 22–28. [Google Scholar] [CrossRef]
- Armakolas, N.; Armakolas, A.; Antonopoulos, A.; Dimakakos, A.; Stathaki, M.; Koutsilieris, M. The role of the IGF-1 Ec in myoskeletal system and osteosarcoma pathophysiology. Crit. Rev. Oncol./Hematol. 2016, 108, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Ascenzi, F.; Barberi, L.; Dobrowolny, G.; Villa Nova Bacurau, A.; Nicoletti, C.; Rizzuto, E.; Rosenthal, N.; Scicchitano, B.M.; Musarò, A. Effects of IGF-1 isoforms on muscle growth and sarcopenia. Aging Cell 2019, 18, e12954. [Google Scholar] [CrossRef] [PubMed]
- Santini, M.P.; Lexow, J.; Borsellino, G.; Slonimski, E.; Zarrinpashneh, E.; Poggioli, T.; Rosenthal, N. IGF-1Ea induces vessel formation after injury and mediates bone marrow and heart cross-talk through the expression of specific cytokines. Biochem. Biophys. Res. Commun. 2011, 410, 201–207. [Google Scholar] [CrossRef]
- Rutanen, E.M. Insulin-like growth factors in endometrial function. Gynecol. Endocrinol. 1998, 12, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, S.C.; Li, Y.; Li, L.; Korach, K.S. Estrogen-mediated Regulation of Igf1 Transcription and Uterine Growth Involves Direct Binding of Estrogen Receptor α to Estrogen-responsive Elements. J. Biol. Chem. 2010, 285, 2676–2685. [Google Scholar] [CrossRef] [PubMed]
- Milingos, D.S.; Philippou, A.; Armakolas, A.; Papageorgiou, E.; Sourla, A.; Protopapas, A.; Liapi, A.; Antsaklis, A.; Mastrominas, M.; Koutsilieris, M. Insulinlike Growth Factor-1Ec (MGF) Expression in Eutopic and Ectopic Endometrium: Characterization of the MGF E-Peptide Actions In Vitro. Mol. Med. 2011, 17, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Bian, A.; Ma, Y.; Zhou, X.; Guo, Y.; Wang, W.; Zhang, Y.; Wang, X. Association between sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly. BMC Musculoskelet. Disord. 2020, 21, 214. [Google Scholar] [CrossRef] [PubMed]
- Milingos, D.; Katopodis, H.; Milingos, S.; Protopapas, A.; Creatsas, G.; Michalas, S.; Antsaklis, A.; Koutsilieris, M. Insulin-Like Growth Factor–1 Isoform mRNA Expression in Women with Endometriosis. Ann. NY. Acad. Sci. 2006, 1092, 434–439. [Google Scholar] [CrossRef]
- Kasprzak, A.; Szaflarski, W.; Szmeja, J.; Andrzejewska, M.; Przybyszewska, W.; Kaczmarek, E.; Koczorowska, M.; Kościński, T.; Zabel, M.; Drews, M. Differential expression of IGF-1 mRNA isoforms in colorectal carcinoma and normal colon tissue. Int. J. Oncol. 2013, 42, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, A.; Szaflarski, W.; Szmeja, J.; Andrzejewska, M.; Przybyszewska, W.; Koczorowska, M.; Drews, M.; Kaczmarek, E. Expression of various insulin-like growth factor-1 mRNA isoforms in colorectal cancer. Contemp. Oncol. Współczesna Onkol. 2012, 16, 147–153. [Google Scholar] [CrossRef]
- Koczorowska, M.M.; Kwasniewska, A.; Gozdzicka-Jozefiak, A. IGF1 mRNA isoform expression in the cervix of HPV-positive women with pre-cancerous and cancer lesions. Exp. Ther. Med. 2011, 2, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Durzyńska, J.; Barton, E. IGF expression in HPV-related and HPV-unrelated human cancer cells. Oncol. Rep. 2014, 32, 893–900. [Google Scholar] [CrossRef] [PubMed]
- De Santi, M.; Annibalini, G.; Barbieri, E.; Villarini, A.; Vallorani, L.; Contarelli, S.; Berrino, F.; Stocchi, V.; Brandi, G. Human IGF1 pro-forms induce breast cancer cell proliferation via the IGF1 receptor. Cell. Oncol. 2016, 39, 149–159. [Google Scholar] [CrossRef]
- Christopoulos, F.P.; Papageorgiou, E.; Petraki, C.; Koutsilieris, M. The COOH-terminus of the IGF-1Ec Isoform Enhances the Proliferation and Migration of Human MCF-7 Breast Cancer Cells. Anticancer Res. 2017, 37, 2899–2912. [Google Scholar] [PubMed]
- Alexandraki, K.I.; Philippou, A.; Boutzios, G.; Theohari, I.; Koutsilieris, M.; Delladetsima, I.K.; Kaltsas, G.A. IGF-IEc expression is increased in secondary compared to primary foci in neuroendocrine neoplasms. Oncotarget 2017, 8, 79003–79011. [Google Scholar] [CrossRef] [PubMed]
- Armakolas, A.; Kaparelou, M.; Dimakakos, A.; Papageorgiou, E.; Armakolas, N.; Antonopoulos, A.; Petraki, C.; Lekarakou, M.; Lelovas, P.; Stathaki, M.; et al. Oncogenic Role of the Ec Peptide of the IGF-1Ec Isoform in Prostate Cancer. Mol. Med. 2015, 21, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.H.; Chen, T.T. Production of bioactive recombinant human Eb-peptide of pro-IGF-I and identification of binding components from the plasma membrane of human breast cancer cells (MDA-MB-231). Exp. Cell Res. 2018, 362, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Durzyńska, J. IGF axis and other factors in HPV-related and HPV-unrelated carcinogenesis (Review). Oncol. Rep. 2014, 32, 2295–2306. [Google Scholar] [CrossRef]
- Kasprzak, A.; Adamek, A.; Przybyszewska, W.; Pyda, P.; Szmeja, J.; Seraszek-Jaros, A.; Lanzafame, A.; Surdacka, A.; Mozer-Lisewska, I.; Koczorowska, M. Insulin-like growth factor-1 mRNA isoforms and insulin-like growth factor-1 receptor mRNA expression in chronic hepatitis C. World J. Gastroenterol. 2015, 21, 3867–3875. [Google Scholar] [CrossRef]
- Karagiannis, A.K.; Philippou, A.; Sofia, T.-B.; Zevolis, E.; Maria, T.N.; Tsopanomichalou-Glotsou, M.; Psarras, V.; Koutsilieris, M. IGF-IEc Expression Is Associated With Advanced Differentiated Thyroid Cancer. Anticancer Res. 2019, 39, 2811–2819. [Google Scholar] [CrossRef]
- Durzyńska, J.; Wardziński, A.; Koczorowska, M.; Goździcka-Józefiak, A.; Barton, E. Human Eb peptide: Not just a by-product of pre-pro-IGF1b processing? Horm. Metab. Res. 2013, 45, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Argyro, S.; Constantina, P.; Pavlos, M.; Evangelia, D.; Ioannis, X.; Michael, K. IGF-IEc Expression Is Associated with Advanced Clinical and Pathological Stage of Prostate Cancer. Anticancer Res. 2013, 33, 2441–2445. [Google Scholar]
- Papageorgiou, E.; Philippou, A.; Armakolas, A.; Christopoulos, P.F.; Dimakakos, A.; Koutsilieris, M. The human Ec peptide: The active core of a progression growth factor with species-specific mode of action. Hormones 2016, 15, 423–434. [Google Scholar] [CrossRef]
- Stavropoulos, A.; Varras, M.; Philippou, A.; Vasilakaki, T.; Varra, V.-K.; Varra, F.-N.; Tsavari, A.; Lazaris, A.C.; Koutsilieris, M. Immunohistochemical expression of insulin-like growth factor-1Ec in primary endometrial carcinoma: Association with PTEN, p53 and survivin expression. Oncol. Lett. 2020, 20, 395. [Google Scholar] [CrossRef]
- Tao, Y.; Liang, B. PTEN mutation: A potential prognostic factor associated with immune infiltration in endometrial carcinoma. Pathol. Res. Pract. 2020, 216, 152943. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Maki, C.G. The IGF-1R/AKT pathway determines cell fate in response to p53. Transl. Cancer. Res. 2016, 5, 664–675. [Google Scholar] [CrossRef]
- Liu, F.; Sun, Y.; Liu, B.; Lu, J.; Li, H.; Zhu, H.; Gao, H.; Zhou, X.; Chang, H. Insulin-like growth factor-1 induces epithelial-mesenchymal transition in hepatocellular carcinoma by activating survivin. Oncol. Rep. 2018, 40, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Thiel, K.W.; Leslie, K.K. Progesterone: The ultimate endometrial tumor suppressor. Trends Endocrinol. Metab. 2011, 22, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, J. The Role of Metabolic Syndrome in Endometrial Cancer: A Review. Front. Oncol. 2019, 9, 744. [Google Scholar] [CrossRef]
- Ito, K.; Utsunomiya, H.; Yaegashi, N.; Sasano, H. Biological roles of estrogen and progesterone in human endometrial carcinoma—New developments in potential endocrine therapy for endometrial cancer. Endocr. J. 2007, 54, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuki, T.; Otsuki, M.; Murakami, Y.; Maekawa, T.; Yamamoto, T.; Akasaka, K.; Takeuchi, S.; Takahashi, S. Organ-specific and age-dependent expression of insulin-like growth factor-I (IGF-I) mRNA variants: IGF-IA and IB mRNAs in the mouse. Zool. Sci. 2005, 22, 1011–1021. [Google Scholar] [CrossRef]
- Blontzos, N.; Mavrogianni, D.; Ntzeros, K.; Kathopoulis, N.; Moustogiannis, A.; Philippou, A.; Koutsilieris, M.; Protopapas, A. Differential Expression of Insulin Growth Factor 1 (IGF-1) Isoforms in Different Types of Endometriosis: Preliminary Results of a Single-Center Study. Biomolecules 2023, 14, 7. [Google Scholar] [CrossRef] [PubMed]
Cancer Type | Study Type | Summary of Findings | Source | |||
---|---|---|---|---|---|---|
Expression of IGF1 Isoforms | Significant Findings | |||||
IGF1-Ea | IGF1-Eb | IGF1-Ec | ||||
BC | In Vitro | Anti-IGF1R fully inhibits IGF pro-forms, while anti-IGF1 partially inhibits their biological activity. | [75] | |||
In Vitro | IGF1-Ec (hEc) enhances intracellular ERK1/2 pathway activity, promoting proliferation and migration in MCF7 cells. | [76] | ||||
In Vitro | N/A | N/A | IGF1-Eb (hEb) acts independently of IGF-IR and enhances its biological activity against cancer cells. | [79] | ||
CRC | In Vivo | IGF1-Ea is quantitatively dominant, followed by IGF1-Eb and IGF1-Ec in CRC tissues. IGF1-Eb mRNA is significantly higher in the control large intestine compared to CRC. | [72] | |||
In Vivo | All IGF1 transcripts exhibit lower expression in CRC samples compared to controls. | [71] | ||||
In Vitro | IGF1-Ea and IGF1-Eb isoforms exhibit similar high expression, while IGF1-Ec isoform expression is relatively low in DLD1 cell line. | [26] | ||||
In Vivo | N/A | N/A | IGF1-Ec expression is higher in specimens from metastatic sites compared to primary tumours (p = 0.024). | [77] | ||
CC | In Vivo | = | IGF1-Ea mRNA downregulated in both HPV-positive and HPV-negative cases compared to precancerous lesions (LSIL and HSIL with HPV-positive). IGF1-Eb is increased in CC. | [73] | ||
In Vitro | N/A | N/A | Synthetic IGF1-Eb (hEb) promotes HeLa cell proliferation. | [83] | ||
In Vitro | DOC | DOC | DOC | Viral proteins impact IGF1 gene splicing and stabilise proteins in crucial cellular processes. IGF1 isoforms exhibit differential expression across various CC cell lines. | [74] | |
In Vitro | In HeLa cells, IGF1-Ea and IGF1-Eb expression levels were similar, while IGF1-Ec exhibited higher expression. | [26] | ||||
In Vivo | N/A | N/A | Positive cytoplasmic expression of IGF1-Ec in neuroendocrine uterine CC. | [77] | ||
HCC | In Vitro | Overall IGF1 isoforms expression level lower in HepG2 cells compared to K562 cells, which might be influenced by HPV subtypes. | [74] | |||
In Vivo | Hepatitis C virus (HCV) can alter the IGF1 splicing profile in HCC. IGF1-Ea and IGF1-Eb decreased in advance grade of HCC. | [81] | ||||
In Vitro | Overall IGF1 isoforms expression level lower in HuH7 cell lines. | [26] | ||||
LC | In Vitro | A549 cell lines exhibit elevated IGF1 isoform expression, with IGF1-Ea showing the highest levels, followed by IGF1-Ec and IGF1-Eb. | [26] | |||
In Vivo | N/A | N/A | Positive cytoplasmic expression of IGF1-Ec in half of neuroendocrine LC cases. | [77] | ||
OS | In Vitro | N/A | N/A | Synthetic hEb enhances cell growth and motility in stable U2OS cells. | [83] | |
In Vitro | IGF1-Eb is predominantly expressed in U2OS cells compared to other cell lines (HepG2, HeLa, K562) | [74] | ||||
In Vitro | Higher expression of IGF1-Eb than IGF1-Ea in MG63 cell lines. | [26] | ||||
PC | In Vivo | N/A | N/A | IGF1-Ec expression is higher in locally advanced tumours (stage > III). | [84] | |
In Vivo and In Vitro | N/A | N/A | IGF1-Ec overexpressed in advanced PC; leads to EMT through ERK1/2 pathway activation and ZEB1 expression. | [78] | ||
In Vitro | IGF-1Ea and Eb are highly expressed in lnCaP cell lines; Ec peptide reduced under hormonal conditions (oestradiol, dexamethasone and GH- treatment). | [26] | ||||
In Vivo and In Vitro | N/A | N/A | Synthetic human Ec peptide (hEc) stimulates the human PC3 cell growth through activating ERK1/2 pathway, without affecting Akt phosphorylation. | [85] | ||
TC | In Vivo | N/A | N/A | IGF1-Ec overexpressed in TC, and associated with TNM staging (prominently seen in more aggressive papillary TC) and capsule invasion of TC | [82] | |
GC | In Vivo | N/A | N/A | IGF1Ec peptide (MGF) was restricted to the tumour cell cytoplasm in gastric mucosa of GC cases. | [77] | |
PPC | In Vivo | N/A | N/A | IGF1Ec peptide (MGF) was restricted to the tumour cell cytoplasm in pancreatic tissue of PPC cases. | [77] | |
SBC | In Vivo | N/A | N/A | IGF1Ec peptide (MGF) was restricted to the tumour cell cytoplasm in columnar epithelium in SBC cases. | [77] | |
MEL | In Vitro | IGF1-Ea is highly expressed in human melanoma SK-MEL28 cell lines, followed by IGF1Ec and IGF1-Eb. | [26] |
Study Type | Summary of Findings | Source |
---|---|---|
In Vivo | IGF1-Ec is overexpressed in non-endometrioid carcinoma (serous papillary or clear cell carcinoma) compared to EEC and is highly expressed in areas of tumoral necrosis. It may function oppositely to PTEN, a tumour suppressor gene, while promoting tumour growth via pathways similar to survivin in EC. | [86] |
In Vitro | IGF1-Ea and IGF1-Eb levels were found to be elevated in KLE cell line | [26] |
In Vitro | IGF1 isoforms are expressed in KLE cells, with IGF1-Ea being most abundant. IGF1-Ec peptides stimulate KLE cell growth independently of IGF1R and INSR. | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Hafizz, A.M.H.; Mohd Mokthar, N.; Md Zin, R.R.; P. Mongan, N.; Mamat @ Yusof, M.N.; Kampan, N.C.; Chew, K.T.; Shafiee, M.N. Insulin-like Growth Factor 1 (IGF1) and Its Isoforms: Insights into the Mechanisms of Endometrial Cancer. Cancers 2025, 17, 129. https://doi.org/10.3390/cancers17010129
Abdul Hafizz AMH, Mohd Mokthar N, Md Zin RR, P. Mongan N, Mamat @ Yusof MN, Kampan NC, Chew KT, Shafiee MN. Insulin-like Growth Factor 1 (IGF1) and Its Isoforms: Insights into the Mechanisms of Endometrial Cancer. Cancers. 2025; 17(1):129. https://doi.org/10.3390/cancers17010129
Chicago/Turabian StyleAbdul Hafizz, Abdul Muzhill Hannaan, Norfilza Mohd Mokthar, Reena Rahayu Md Zin, Nigel P. Mongan, Mohd Nazzary Mamat @ Yusof, Nirmala Chandralega Kampan, Kah Teik Chew, and Mohamad Nasir Shafiee. 2025. "Insulin-like Growth Factor 1 (IGF1) and Its Isoforms: Insights into the Mechanisms of Endometrial Cancer" Cancers 17, no. 1: 129. https://doi.org/10.3390/cancers17010129
APA StyleAbdul Hafizz, A. M. H., Mohd Mokthar, N., Md Zin, R. R., P. Mongan, N., Mamat @ Yusof, M. N., Kampan, N. C., Chew, K. T., & Shafiee, M. N. (2025). Insulin-like Growth Factor 1 (IGF1) and Its Isoforms: Insights into the Mechanisms of Endometrial Cancer. Cancers, 17(1), 129. https://doi.org/10.3390/cancers17010129