Review of Psilocybin Use for Depression among Cancer Patients after Approval in Oregon
Abstract
:Simple Summary
Abstract
1. Introduction
2. Depression and Cancer
2.1. Exploring the Burden of Depression in the Cancer Population
2.2. Psychiatric Treatment of Depression in Cancer Patients
3. Role of Psilocybin in the Treatment of Depression
3.1. Background on Psilocybin and Its Antidepressant Effects
3.2. Psilocybin for End-of-Life Care and Cancer-Related Depression
3.3. Risk of Combining Psilocybin and Traditional Antidepressants in Cancer Patients
4. Psilocybin in Oregon
5. Conclusions
Funding
Conflicts of Interest
References
- Smith, W.R.; Sisti, D.A.; Appelbaum, P.S. The safety of supported psilocybin use in Oregon. Nat. Med. 2024, 30, 17–18. [Google Scholar] [CrossRef]
- Sheppard, B. A Trip Through Employment Law: Protecting Therapeutic Psilocybin Users in the Workplace. J. Law Health 2021, 35, 146–180. [Google Scholar]
- Mejareh, Z.N.; Abdollahi, B.; Hoseinipalangi, Z.; Jeze, M.S.; Hosseinifard, H.; Rafiei, S.; Aghajani, F.; Dehnad, A.; Ardakani, M.F.; Ahmadi, S.; et al. Global, regional, and national prevalence of depression among cancer patients: A systematic review and meta-analysis. Indian J. Psychiatry 2021, 63, 527–535. [Google Scholar] [CrossRef]
- Krebber, A.; Buffart, L.; Kleijn, G.; Riepma, I.; Bree, R.; Leemans, C.; Becker, A.; Brug, J.; Van Straten, A.; Cuijpers, P. Prevalence of depression in cancer patients: A meta-analysis of diagnostic interviews and self-report instruments. Psycho-Oncology 2013, 23, 121–130. [Google Scholar] [CrossRef]
- Kouhestani, M.; Gharaei, H.; Fararouei, M.; Ghahremanloo, H.; Ghaiasvand, R.; Dianatinasab, M. Global and regional geographical prevalence of depression in gastric cancer: A systematic review and meta-analysis. BMJ Support. Palliat. Care 2020, 12, e526–e536. [Google Scholar] [CrossRef]
- Colizzi, M.; Lasalvia, A.; Ruggeri, M. Prevention and early intervention in youth mental health: Is it time for a multidisciplinary and trans-diagnostic model for care? Int. J. Ment. Health Syst. 2020, 14, 23. [Google Scholar] [CrossRef]
- Alwhaibi, M.; AlRuthia, Y.; Sales, I. The impact of depression and anxiety on adult cancer patients’ health-related quality of life. J. Clin. Med. 2023, 12, 2196. [Google Scholar] [CrossRef]
- Nakhlband, A.; Farahzadi, R.; Saeedi, N.; Barzegar, H.; Montazersaheb, S.; Soofiyani, S.R. Bidirectional relations between anxiety, depression, and cancer: A review. Curr. Drug Targets 2023, 24, 118–130. [Google Scholar] [CrossRef]
- Naser, A.Y.; Hameed, A.N.; Mustafa, N.; Alwafi, H.; Dahmash, E.Z.; Alyami, H.S.; Khalil, H. Depression and Anxiety in Patients with Cancer: A Cross-Sectional Study. Front. Psychol. 2021, 12, 585534. [Google Scholar] [CrossRef]
- Pinquart, M.; Duberstein, P.R. Depression and cancer mortality: A meta-analysis. Psychol. Med. 2010, 40, 1797–1810. [Google Scholar] [CrossRef]
- Archer, J.; Hutchison, I.; Korszun, A. Mood and malignancy: Head and neck cancer and depression. J. Oral Pathol. Med. 2008, 37, 255–270. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H.; Ji, Q.; Wu, Q.; Wei, J.; Zhu, P. Prevalence, associated factors and adverse outcomes of demoralization in cancer patients: A decade of systematic review. Am. J. Hosp. Palliat. Med. 2023, 40, 1216–1230. [Google Scholar] [CrossRef]
- Tang, P.; Wang, H.; Chou, F. A systematic review and meta-analysis of demoralization and depression in patients with cancer. Psychosomatics 2015, 56, 634–643. [Google Scholar] [CrossRef]
- Liu, S.T.; Wu, X.; Wang, N.; Zhao, Q.Q.; Xiao, L.; Fang, C.K.; Yu, Y.; Lin, D.M.; Zhang, L.L. Serial multiple mediation of demoralization and depression in the relationship between hopelessness and suicidal ideation. Psycho-Oncology 2020, 29, 1321–1328. [Google Scholar] [CrossRef]
- Figueiredo, J.; Zhu, B.; Patel, A.; Kohn, R.; Koo, B.; Louis, E. From perceived stress to demoralization in Parkinson disease: A path analysis. Front. Psychiatry 2022, 13, 876445. [Google Scholar] [CrossRef]
- Fang, C.K.; Chang, M.C.; Chen, P.J.; Lin, C.C.; Chen, G.S.; Lin, J.; Hsieh, R.K.; Chang, Y.F.; Chen, H.W.; Wu, C.L.; et al. A correlational study of suicidal ideation with psychological distress, depression, and demoralization in patients with cancer. Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer 2014, 22, 3165–3174. [Google Scholar] [CrossRef]
- Chang, T.; Hung, C.; Huang, P.; Hsu, C.; Yen, T. Demoralization and its association with quality of life, sleep quality, spiritual interests, and suicide risk in breast cancer inpatients: A cross-sectional study. Int. J. Environ. Res. Public Health 2022, 19, 12815. [Google Scholar] [CrossRef]
- Nanni, M.G.; Caruso, R.; Travado, L.; Ventura, C.; Palma, A.; Berardi, A.M.; Meggiolaro, E.; Ruffilli, F.; Martins, C.; Kissane, D.; et al. Relationship of demoralization with anxiety, depression, and quality of life: A Southern European study of Italian and Portuguese cancer patients. Psycho-Oncology 2018, 27, 2616–2622. [Google Scholar] [CrossRef]
- Bovero, A.; Opezzo, M.; Tesio, V. Relationship between demoralization and quality of life in end-of-life cancer patients. Psycho-Oncology 2023, 32, 429–437. [Google Scholar] [CrossRef]
- Kouhpas, E.; Karimi, Z.; Rahmani, B.; Shoaee, F. The relationship between existential anxiety and demoralization syndrome in predicting psychological well-being of patient with cancer. Pract. Clin. Psychol. 2020, 8, 175–182. [Google Scholar] [CrossRef]
- Scandurra, C.; Mangiapia, F.; La Rocca, R.; Di Bello, F.; De Lucia, N.; Muzii, B.; Cantone, M.; Zampi, R.; Califano, G.; Maldonato, N.M.; et al. A cross-sectional study on demoralization in prostate cancer patients: The role of masculine self-esteem, depression, and resilience. Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer 2022, 30, 7021–7030. [Google Scholar] [CrossRef]
- Hong, Y.T.; Lin, Y.A.; Pan, Y.X.; Lin, J.L.; Lin, X.J.; Zhang, J.; Huang, F.F. Understanding factors influencing demoralization among cancer patients based on the bio-psycho-social model: A systematic review. Psycho-Oncology 2022, 31, 2036–2049. [Google Scholar] [CrossRef]
- Koo, B.B.; Chow, C.A.; Shah, D.R.; Khan, F.H.; Steinberg, B.; Derlein, D.; Nalamada, K.; Para, K.S.; Kakade, V.M.; Patel, A.S.; et al. Demoralization in Parkinson disease. Neurology 2018, 90, e1613–e1617. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.; Yu, C.; Kwok, D.; Wan, J. Prevalence and factors associated with demoralization in palliative care patients: A cross-sectional study from Hong Kong. Palliat. Support. Care 2022, 30, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Costanza, A.; Baertschi, M.; Richard-Lepouriel, H.; Weber, K.; Berardelli, I.; Pompili, M.; Canuto, A. Demoralization and Its Relationship with Depression and Hopelessness in Suicidal Patients Attending an Emergency Department. Int. J. Environ. Res. Public Health 2020, 17, 2232. [Google Scholar] [CrossRef]
- Andersen, B.L.; Lacchetti, C.; Ashing, K.; Berek, J.S.; Berman, B.S.; Bolte, S.; Dizon, D.S.; Given, B.; Nekhlyudov, L.; Pirl, W.; et al. Management of Anxiety and Depression in Adult Survivors of Cancer: ASCO Guideline Update. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 3426–3453. [Google Scholar] [CrossRef]
- Niedzwiedz, C.L.; Knifton, L.; Robb, K.A.; Katikireddi, S.V.; Smith, D.J. Depression and anxiety among people living with and beyond cancer: A growing clinical and research priority. BMC Cancer 2019, 19, 943. [Google Scholar] [CrossRef] [PubMed]
- Mehnert, A.; Vehling, S.; Höcker, A.; Lehmann, C.; Koch, U. Demoralization and depression in patients with advanced cancer: Validation of the German version of the demoralization scale. J. Pain Symptom Manag. 2011, 42, 768–776. [Google Scholar] [CrossRef]
- Smith, H. Depression in cancer patients: Pathogenesis, implications and treatment (review). Oncol. Lett. 2015, 9, 1509–1514. [Google Scholar] [CrossRef]
- Williams, S.; Dale, J. The effectiveness of treatment for depression/depressive symptoms in adults with cancer: A systematic review. Br. J. Cancer 2006, 94, 372–390. [Google Scholar] [CrossRef]
- Okamura, M.; Akizuki, N.; Nakano, T.; Shimizu, K.; Ito, T.; Akechi, T.; Uchitomi, Y. Clinical experience of the use of a pharmacological treatment algorithm for major depressive disorder in patients with advanced cancer. Psycho-Oncology 2008, 17, 154–160. [Google Scholar] [CrossRef]
- Henry, N.; Stearns, V.; Flockhart, D.; Hayes, D.; Riba, M. Drug interactions and pharmacogenomics in the treatment of breast cancer and depression. Am. J. Psychiatry 2008, 165, 1251–1255. [Google Scholar] [CrossRef]
- Wedret, J.; Tu, T.; Paul, D.; Rousseau, C.; Bonta, A.; Bota, R. Interactions between antidepressants, sleep aids and selected breast cancer therapy. Ment. Illn. 2019, 11, 36–38. [Google Scholar] [CrossRef]
- Schmauss, C. An hdac-dependent epigenetic mechanism that enhances the efficacy of the antidepressant drug fluoxetine. Sci. Rep. 2015, 5, 8171. [Google Scholar] [CrossRef]
- Cho, Y.W.; Kim, E.J.; Nyiramana, M.M.; Shin, E.J.; Jin, H.; Ryu, J.H.; Kang, K.R.; Lee, G.W.; Kim, H.J.; Han, J.; et al. Paroxetine Induces Apoptosis of Human Breast Cancer MCF-7 Cells through Ca2+-and p38 MAP Kinase-Dependent ROS Generation. Cancers 2019, 11, 64. [Google Scholar] [CrossRef]
- Mehta, R.D.; Roth, A.J. Psychiatric considerations in the oncology setting. CA A Cancer J. Clin. 2015, 65, 300–314. [Google Scholar] [CrossRef] [PubMed]
- Voican, C.S.; Corruble, E.; Naveau, S.; Perlemuter, G. Antidepressant-induced liver injury: A review for clinicians. Am. J. Psychiatry 2014, 171, 404–415. [Google Scholar] [CrossRef]
- Li, M.; Kennedy, E.; Byrne, N.; Gérin-Lajoie, C.; Katz, M.; Keshavarz, H.; Sellick, S.; Green, E. Systematic review and meta-analysis of collaborative care interventions for depression in patients with cancer. Psycho-Oncology 2016, 26, 573–587. [Google Scholar] [CrossRef] [PubMed]
- Shoval, G.; Balicer, R.D.; Feldman, B.; Hoshen, M.; Eger, G.; Weizman, A.; Zalsman, G.; Stubbs, B.; Golubchik, P.; Gordon, B.; et al. Adherence to antidepressant medications is associated with reduced premature mortality in patients with cancer: A nationwide cohort study. Depress. Anxiety 2019, 36, 921–929. [Google Scholar] [CrossRef]
- Park, S.C.; Oh, H.S.; Oh, D.H.; Jung, S.A.; Na, K.S.; Lee, H.Y.; Kang, R.H.; Choi, Y.K.; Lee, M.S.; Park, Y.C. Evidence-based, non-pharmacological treatment guideline for depression in Korea. J. Korean Med. Sci. 2014, 29, 12–22. [Google Scholar] [CrossRef]
- Pu, B.; Wang, N.; Wang, C.; Sun, B. Clinical observation on the benefits of antidepressant intervention in advanced cancer patients. Medicine 2022, 101, e29771. [Google Scholar] [CrossRef] [PubMed]
- Young, K.; Singh, G. Biological mechanisms of cancer-induced depression. Front. Psychiatry 2018, 9, 299. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Zhu, X.; Hasegawa, Y.; Karma, S.; Obayashi, M.; Alway, E.; Kamiya, A. Inflamed brain: Targeting immune changes and inflammation for treatment of depression. Psychiatry Clin. Neurosci. 2021, 75, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Dhir, A. Current investigational drugs for major depression. Expert Opin. Investig. Drugs 2009, 18, 767–788. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cai, Y.; Li, M.; Zhang, Y.; Li, H.; Tan, Z. Oxymatrine promotes S-phase arrest and inhibits cell proliferation of human breast cancer cells in vitro through mitochondrial-mediated apoptosis. Biol. Pharm. Bull. 2017, 40, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, R.R.; Johnson, M.W.; Carducci, M.A.; Umbricht, A.; Richards, W.A.; Richards, B.D.; Cosimano, M.P.; Klinedinst, M.A. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: A randomized double-blind trial. J. Psychopharmacol. 2016, 30, 1181–1197. [Google Scholar] [CrossRef]
- Ross, S.; Bossis, A.; Guss, J.; Agin-Liebes, G.; Malone, T.; Cohen, B.; Mennenga, S.E.; Belser, A.; Kalliontzi, K.; Babb, J.; et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: A randomized controlled trial. J. Psychopharmacol. 2016, 30, 1165–1180. [Google Scholar] [CrossRef]
- Johnson, M.; Griffiths, R.; Hendricks, P.; Henningfield, J. The abuse potential of medical psilocybin according to the 8 factors of the controlled substances act. Neuropharmacology 2018, 142, 143–166. [Google Scholar] [CrossRef] [PubMed]
- Thrul, J. Innovations in group-based psilocybin-assisted therapy of major depression in patients with cancer. Cancer 2023, 130, 1028–1030. [Google Scholar] [CrossRef]
- Swift, T.C.; Belser, A.B.; Agin-Liebes, G.; Devenot, N.; Terrana, S.; Friedman, H.L.; Guss, J.; Bossis, A.P.; Ross, S. Cancer at the Dinner Table: Experiences of Psilocybin-Assisted Psychotherapy for the Treatment of Cancer-Related Distress. J. Humanist. Psychol. 2017, 57, 488–519. [Google Scholar] [CrossRef]
- Hesselgrave, N.; Troppoli, T.; Wulff, A.; Cole, A.; Thompson, S. Harnessing psilocybin: Antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-ht2r activation in mice. Proc. Natl. Acad. Sci. USA 2021, 118, e2022489118. [Google Scholar] [CrossRef]
- Nutt, D.; Carhart-Harris, R. The current status of psychedelics in psychiatry. JAMA Psychiatry 2021, 78, 121. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P. Psilocybin history, action and reaction: A narrative clinical review. J. Psychopharmacol. 2023, 37, 849–865. [Google Scholar] [CrossRef] [PubMed]
- Golden, C.; Chadderton, P. Psilocybin reduces low frequency oscillatory power and neuronal phase-locking in the anterior cingulate cortex of awake rodents. Sci. Rep. 2022, 12, 12702. [Google Scholar] [CrossRef] [PubMed]
- Daws, R.E.; Timmermann, C.; Giribaldi, B.; Sexton, J.D.; Wall, M.B.; Erritzoe, D.; Roseman, L.; Nutt, D.; Carhart-Harris, R. Increased global integration in the brain after psilocybin therapy for depression. Nat. Med. 2022, 28, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Mertens, L.; Wall, M.; Roseman, L.; Demetriou, L.; Nutt, D.; Carhart-Harris, R. Therapeutic mechanisms of psilocybin: Changes in amygdala and prefrontal functional connectivity during emotional processing after psilocybin for treatment-resistant depression. J. Psychopharmacol. 2020, 34, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Doss, M.; Považan, M.; Rosenberg, M.; Sepeda, N.; Davis, A.; Finan, P.; Smith, G.S.; Pekar, J.J.; Barker, P.B.; Griffiths, R.R.; et al. Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder. Transl. Psychiatry 2021, 11, 574. [Google Scholar] [CrossRef] [PubMed]
- Lowe, H.; Toyang, N.; Steele, B.; Valentine, H.; Grant, J.; Ali, A.; Ngwa, W.; Gordon, L. The therapeutic potential of psilocybin. Molecules 2021, 26, 2948. [Google Scholar] [CrossRef] [PubMed]
- Jones, N. In vivo validation of psilacetin as a prodrug yielding modestly lower peripheral psilocin exposure than psilocybin. Front. Psychiatry 2024, 14, 1303365. [Google Scholar] [CrossRef]
- Gomonit, M. Quantification of psilocin in human whole blood using liquid chromatography–tandem mass spectrometry (lc–ms/ms). J. Forensic Sci. 2023, 69, 678–687. [Google Scholar] [CrossRef]
- Cumming, P.; Scheidegger, M.; Dornbierer, D.; Palner, M.; Quednow, B.; Martin-Soelch, C. Molecular and functional imaging studies of psychedelic drug action in animals and humans. Molecules 2021, 26, 2451. [Google Scholar] [CrossRef] [PubMed]
- Sherwood, A. Psychedelic-like activity of norpsilocin analogues. ACS Chem. Neurosci. 2024, 15, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Swamy, H.; Smith, T.; MacDonald, E.; Boermans, H.; Squires, E. Effects of feeding a blend of grains naturally contaminated with fusarium mycotoxins on swine performance, brain regional neurochemistry, and serum chemistry and the efficacy of a polymeric glucomannan mycotoxin adsorbent1. J. Anim. Sci. 2002, 80, 3257–3267. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liang, M.; Shang, Q.; Qian, H.; An, R.; Liu, H.; Shao, G.; Li, T.; Liu, X. Psilocin suppresses methamphetamine-induced hyperlocomotion and acquisition of conditioned place preference via D2R-mediated ERK signaling. CNS Neurosci. Ther. 2023, 29, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Kometer, M.; Schmidt, A.; Jäncke, L.; Vollenweider, F. Activation of serotonin 2a receptors underlies the psilocybin-induced effects on oscillations, n170 visual-evoked potentials, and visual hallucinations. J. Neurosci. 2013, 33, 10544–10551. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.K.; Chatha, M.; Laskowski, L.J.; Anderson, E.I.; Brandt, S.D.; Chapman, S.J.; McCorvy, J.D.; Halberstadt, A.L. Investigation of the Structure-Activity Relationships of Psilocybin Analogues. ACS Pharmacol. Transl. Sci. 2020, 4, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Glatfelter, G.C.; Pottie, E.; Partilla, J.S.; Sherwood, A.M.; Kaylo, K.; Pham, D.N.K.; Naeem, M.; Sammeta, V.R.; DeBoer, S.; Golen, J.A.; et al. Structure-Activity Relationships for Psilocybin, Baeocystin, Aeruginascin, and Related Analogues to Produce Pharmacological Effects in Mice. ACS Pharmacol. Transl. Sci. 2022, 5, 1181–1196. [Google Scholar] [CrossRef] [PubMed]
- Vargas, A.S.; Luís, Â.; Barroso, M.; Gallardo, E.; Pereira, L. Psilocybin as a New Approach to Treat Depression and Anxiety in the Context of Life-Threatening Diseases-A Systematic Review and Meta-Analysis of Clinical Trials. Biomedicines 2020, 8, 331. [Google Scholar] [CrossRef] [PubMed]
- Preller, K.H.; Pokorny, T.; Hock, A.; Kraehenmann, R.; Stämpfli, P.; Seifritz, E.; Scheidegger, M.; Vollenweider, F.X. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing. Proc. Natl. Acad. Sci. USA 2016, 113, 5119–5124. [Google Scholar] [CrossRef]
- Madsen, M.K.; Fisher, P.M.; Stenbæk, D.S.; Kristiansen, S.; Burmester, D.; Lehel, S.; Páleníček, T.; Kuchař, M.; Svarer, C.; Ozenne, B.; et al. A single psilocybin dose is associated with long-term increased mindfulness, preceded by a proportional change in neocortical 5-HT2A receptor binding. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2020, 33, 71–80. [Google Scholar] [CrossRef]
- Singleton, S.P.; Luppi, A.I.; Carhart-Harris, R.L.; Cruzat, J.; Roseman, L.; Nutt, D.J.; Deco, G.; Kringelbach, M.L.; Stamatakis, E.A.; Kuceyeski, A. Receptor-informed network control theory links LSD and psilocybin to a flattening of the brain’s control energy landscape. Nat. Commun. 2022, 13, 5812. [Google Scholar] [CrossRef] [PubMed]
- Carter, O.; Burr, D.; Pettigrew, J.; Wallis, G.; Hasler, F.; Vollenweider, F. Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1a and 2a receptors. J. Cogn. Neurosci. 2005, 17, 1497–1508. [Google Scholar] [CrossRef] [PubMed]
- Erkizia-Santamaría, I.; Alles-Pascual, R.; Horrillo, I.; Meana, J.J.; Ortega, J.E. Serotonin 5-HT2A, 5-HT2c and 5-HT1A receptor involvement in the acute effects of psilocybin in mice. In vitro pharmacological profile and modulation of thermoregulation and head-twich response. Biomed. Pharmacother. = Biomed. Pharmacother. 2022, 154, 113612. [Google Scholar] [CrossRef]
- Odland, A.U.; Kristensen, J.L.; Andreasen, J.T. Investigating the role of 5-HT2A and 5-HT2C receptor activation in the effects of psilocybin, DOI, and citalopram on marble burying in mice. Behav. Brain Res. 2021, 401, 3093. [Google Scholar] [CrossRef] [PubMed]
- Wells, A.; Muthukumaraswamy, A.P.S.; Morunga, E.; Evans, W.; Cavadino, A.; Bansal, M.; Lawrence, N.J.; Ashley, A.; Hoeh, N.R.; Sundram, F.; et al. PAM trial protocol: A randomised feasibility study of psychedelic microdosing-assisted meaning-centred psychotherapy in advanced stage cancer patients. Pilot Feasibility Stud. 2024, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Ziff, S.; Stern, B.; Lewis, G.; Majeed, M.; Gorantla, V.R. Analysis of psilocybin-assisted therapy in medicine: A narrative review. Cureus 2022, 14, e21944. [Google Scholar] [CrossRef] [PubMed]
- Reiff, C.M.; Richman, E.E.; Nemeroff, C.B.; Carpenter, L.L.; Widge, A.S.; Rodriguez, C.I.; Kalin, N.H.; McDonald, W.M. Work Group on Biomarkers and Novel Treatments, a Division of the American Psychiatric Association Council of Research Psychedelics and psychedelic-assisted psychotherapy. Focus (Am. Psychiatr. Publ.) 2021, 19, 95–115. [Google Scholar] [CrossRef] [PubMed]
- Maia, L.O.; Beaussant, Y.; Garcia, A.C.M. The therapeutic potential of psychedelic-assisted therapies for symptom control in patients diagnosed with serious illness: A systematic review. J. Pain Symptom Manag. 2022, 63, e725–e738. [Google Scholar] [CrossRef]
- Corrigan, K.; Haran, M.; McCandliss, C.; McManus, R.; Cleary, S.; Trant, R.; Kelly, Y.; Ledden, K.; Rush, G.; O’Keane, V.; et al. Psychedelic perceptions: Mental health service user attitudes to psilocybin therapy. Ir. J. Med. Sci. 2022, 191, 1385–1397. [Google Scholar] [CrossRef]
- DellaCrosse, M.; Pleet, M.; Morton, E.; Ashtari, A.; Sakai, K.; Woolley, J.; Michalak, E. "A sense of the bigger picture:" A qualitative analysis of follow-up interviews with people with bipolar disorder who self-reported psilocybin use. PLoS ONE 2022, 17, e0279073. [Google Scholar] [CrossRef]
- Garakani, A. Psychedelics, with a focus on psilocybin: Issues for the clinician. J. Psychiatr. Pract. 2023, 29, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Tucker, K.L. Oregon’s pioneering effort to enact state law to allow access to psilocybin. Willamette Law Rev. 2020, 57, 12. Available online: https://ssrn.com/abstract=3783484 (accessed on 1 April 2024).
- Geiger, H.; Wurst, M.; Daniels, R. Dark classics in chemical neuroscience: Psilocybin. ACS Chem. Neurosci. 2018, 9, 2438–2447. [Google Scholar] [CrossRef] [PubMed]
- Heilman, J. The history, legalization and potentials of psilocybin-assisted psychotherapy. J. Sci. Explor. 2023, 36, 623–640. [Google Scholar] [CrossRef]
- Husain, M. Psilocybin for treatment-resistant depression without psychedelic effects: Study protocol for a 4-week, double-blind, proof-of-concept randomised controlled trial. Bjpsych Open 2023, 9, e134. [Google Scholar] [CrossRef] [PubMed]
- Sloshower, J.; Skosnik, P.D.; Safi-Aghdam, H.; Pathania, S.; Syed, S.; Pittman, B.; D’Souza, D.C. Psilocybin-assisted therapy for major depressive disorder: An exploratory placebo-controlled, fixed-order trial. J. Psychopharmacol. 2023, 37, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Watts, R.; Day, C.; Krzanowski, J.; Nutt, D.; Carhart-Harris, R. Patients’ accounts of increased “connectedness” and “acceptance” after psilocybin for treatment-resistant depression. J. Humanist. Psychol. 2017, 57, 520–564. [Google Scholar] [CrossRef]
- Whelan, A.; Johnson, M. Lysergic Acid Diethylamide Psilocybin Manag. Patients Persistent Pain: A Potential Role? Pain Manag. 2018, 8, 217–229. [Google Scholar] [CrossRef]
- Gukasyan, N.; Davis, A.K.; Barrett, F.S.; Cosimano, M.P.; Sepeda, N.D.; Johnson, M.W.; Griffiths, R.R. Efficacy and safety of psilocybin-assisted treatment for major depressive disorder: Prospective 12-month follow-up. J. Psychopharmacol. 2022, 36, 151–158. [Google Scholar] [CrossRef]
- Barber, G.S.; Aaronson, S.T. The emerging field of psychedelic psychotherapy. Curr. Psychiatry Rep. 2022, 24, 583–590. [Google Scholar] [CrossRef]
- Carhart-Harris, R.L.; Bolstridge, M.; Day, C.M.J.; Rucker, J.; Watts, R.; Erritzoe, D.E.; Kaelen, M.; Giribaldi, B.; Bloomfield, M.; Pilling, S.; et al. Psilocybin with psychological support for treatment-resistant depression: Six-month follow-up. Psychopharmacology 2018, 235, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Chiruta, V.; Zemla, P.K.; Miller, P.; Santarossa, N.; Hannan, J.A. Critique of the Royal Australian and New Zealand College of Psychiatrists Psychedelic Therapy Clinical Memorandum, Dated May 2020. J. Med. Health Stud. 2021, 2, 145–160. [Google Scholar] [CrossRef]
- Bienemann, B.; Ruschel, N.S.; Campos, M.L.; Negreiros, M.A.; Mograbi, D.C. Self-reported negative outcomes of psilocybin users: A quantitative textual analysis. PLoS ONE 2020, 15, e0229067. [Google Scholar] [CrossRef] [PubMed]
- Kargbo, R. Psilocybin therapeutic research: The present and future paradigm. ACS Med. Chem. Lett. 2020, 11, 399–402. [Google Scholar] [CrossRef]
- Madsen, M. CCH attack frequency reduction after psilocybin correlates with hypothalamic functional connectivity. Headache J. Head Face Pain 2024, 64, 55–67. [Google Scholar] [CrossRef]
- Madsen, M.K.; Petersen, A.S.; Stenbaek, D.S.; Sorensen, I.M.; Schionning, H.; Fjeld, T.; Nykjaer, C.; Larsen, S.M.U.; Grzywacz, M.; Mathiesen, T.; et al. Psilocybin-induced reduction in chronic cluster headache attack frequency correlates with changes in hypothalamic functional connectivity. medRxiv 2022. [Google Scholar] [CrossRef]
- Wang, K.; Sun, Y.; Nava, B.; Sampiere, L.; Jacobs, R. Predictors of medical students’ perceptions of psilocybin-assisted therapy for use in medical practice. Cureus 2023, 15, e37450. [Google Scholar] [CrossRef] [PubMed]
- Kopra, E.I.; Ferris, J.A.; Winstock, A.R.; Young, A.H.; Rucker, J.J. Adverse experiences resulting in emergency medical treatment seeking following the use of magic mushrooms. J. Psychopharmacol. 2022, 36, 965–973. [Google Scholar] [CrossRef]
- Yerubandi, A.; Thomas, J.E.; Bhuiya, N.M.M.A.; Harrington, C.; Villa Zapata, L.; Caballero, J. Acute adverse effects of therapeutic doses of psilocybin: A systematic review and meta-analysis. JAMA Netw. Open 2024, 7, e245960. [Google Scholar] [CrossRef]
- Agin-Liebes, G.I.; Malone, T.; Yalch, M.M.; Mennenga, S.E.; Ponté, K.L.; Guss, J.; Bossis, A.P.; Grigsby, J.; Fischer, S.; Ross, S. Long-term follow-up of psilocybin-assisted psychotherapy for psychiatric and existential distress in patients with life-threatening cancer. J. Psychopharmacol. 2020, 34, 155–166. [Google Scholar] [CrossRef]
- Blei, F.; Dörner, S.; Fricke, J.; Baldeweg, F.; Trottmann, F.; Komor, A.; Meyer, F.; Hertweck, C.; Hoffmeister, D. Simultaneous Production of Psilocybin and a Cocktail of β-Carboline Monoamine Oxidase Inhibitors in "Magic" Mushrooms. Chemistry 2020, 26, 729–734. [Google Scholar] [CrossRef]
- Erritzoe, D.; Barba, T.; Spriggs, M.J.; Rosas, F.E.; Nutt, D.J.; Carhart-Harris, R. Effects of discontinuation of serotonergic antidepressants prior to psilocybin therapy versus escitalopram for major depression. J. Psychopharmacol. 2024, 02698811241237870. [Google Scholar] [CrossRef]
- Pędzich, B.D.; Medrano, M.; Buckinx, A.; Smolders, I.; De Bundel, D. Psychedelic-Induced Serotonin 2A Receptor Downregulation Does Not Predict Swim Stress Coping in Mice. Int. J. Mol. Sci. 2022, 23, 15284. [Google Scholar] [CrossRef]
- Bonson, K.R.; Buckholtz, J.W.; Murphy, D.L. Chronic administration of serotonergic antidepressants attenuates the subjective effects of LSD in humans. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 1996, 14, 425–436. [Google Scholar] [CrossRef]
- Sarparast, A.; Thomas, K.; Malcolm, B.; Stauffer, C.S. Drug-drug interactions between psychiatric medications and MDMA or psilocybin: A systematic review. Psychopharmacology 2022, 239, 1945–1976. [Google Scholar] [CrossRef]
- Strumila, R.; Nobile, B.; Korsakova, L.; Lengvenyte, A.; Olie, E.; Lopez-Castroman, J.; Guillaume, S.; Courtet, P. Psilocybin, a Naturally Occurring Indoleamine Compound, Could Be Useful to Prevent Suicidal Behaviors. Pharmaceuticals 2021, 14, 1213. [Google Scholar] [CrossRef]
- Halman, A.; Kong, G.; Sarris, J.; Perkins, D. Drug-drug interactions involving classic psychedelics: A systematic review. J. Psychopharmacol. 2024, 38, 3–18. [Google Scholar] [CrossRef]
- Cuomo, A.; Ballerini, A.; Bruni, A.C.; Decina, P.; Di Sciascio, G.; Fiorentini, A.; Scaglione, F.; Vampini, C.; Fagiolini, A. Clinical guidance for the use of trazodone in major depressive disorder and concomitant conditions: Pharmacology and clinical practice. Riv. Psichiatr. 2019, 54, 137–149. [Google Scholar] [CrossRef]
- Jaffer, K.Y.; Chang, T.; Vanle, B.; Dang, J.; Steiner, A.J.; Loera, N.; Abdelmesseh, M.; Danovitch, I.; Ishak, W.W. Trazodone for Insomnia: A Systematic Review. Innov. Clin. Neurosci. 2017, 14, 24–34. [Google Scholar]
- Pokorny, T.; Preller, K.H.; Kraehenmann, R.; Vollenweider, F.X. Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2016, 26, 756–766. [Google Scholar] [CrossRef]
- Halberstadt, A.L. Behavioral and pharmacokinetic interactions between monoamine oxidase inhibitors and the hallucinogen 5-methoxy-N,N-dimethyltryptamine. Pharmacol. Biochem. Behav. 2016, 143, 1–10. [Google Scholar] [CrossRef]
- Van den Eynde, V.; Abdelmoemin, W.R.; Abraham, M.M.; Amsterdam, J.D.; Anderson, I.M.; Andrade, C.; Baker, G.B.; Beekman, A.T.F.; Berk, M.; Birkenhäger, T.K.; et al. The prescriber’s guide to classic MAO inhibitors (phenelzine, tranylcypromine, isocarboxazid) for treatment-resistant depression. CNS Spectr. 2022, 1–14. [Google Scholar] [CrossRef]
- Boehnke, K.; Davis, A.; McAfee, J. Applying lessons from cannabis to the psychedelic highway. JAMA Health Forum 2022, 3, e221618. [Google Scholar] [CrossRef]
- Wexler, A.; Sisti, D. Brain wellness “spas”—Anticipating the off-label promotion of psychedelics. JAMA Psychiatry 2022, 79, 748. [Google Scholar] [CrossRef]
- Tai, S.J.; Nielson, E.M.; Lennard-Jones, M.; Johanna Ajantaival, R.L.; Winzer, R.; Richards, W.A.; Reinholdt, F.; Richards, B.D.; Gasser, P.; Malievskaia, E. Development and Evaluation of a Therapist Training Program for Psilocybin Therapy for Treatment-Resistant Depression in Clinical Research. Front. Psychiatry 2021, 12, 586682. [Google Scholar] [CrossRef]
- Nichols, D. Psilocybin: From ancient magic to modern medicine. J. Antibiot. 2020, 73, 679–686. [Google Scholar] [CrossRef]
- Sandbrink, J.D.; Johnson, K.; Gill, M.; Yaden, D.B.; Savulescu, J.; Hannikainen, I.R.; Earp, B.D. Strong Bipartisan Support for Controlled Psilocybin Use as Treatment or Enhancement in a Representative Sample of US Americans: Need for Caution in Public Policy Persists. AJOB Neurosci. 2024, 15, 82–89. [Google Scholar] [CrossRef]
- DiCarlo, G. Majority of Oregon Counties Vote against Psilocybin Therapy. Oregon Public Broadcasting (“OPB”). Available online: https://www.opb.org/article/2022/11/13/think-out-loud-majority-of-oregon-counties-vote-against-psilocybin-therapy/ (accessed on 6 March 2024).
- McInally, M. Thousands of Oregonians Vote against Psilocybin Centers. Oregon Capital Chronicle. Available online: https://oregoncapitalchronicle.com/2022/11/14/thousands-of-oregonians-vote-against-psilocybin-centers/ (accessed on 6 March 2024).
- Belouin, S.J.; Averill, L.A.; Henningfield, J.E.; Xenakis, S.N.; Donato, I.; Grob, C.S.; Berger, A.; Magar, V.; Danforth, A.L.; Anderson, B.T. Policy considerations that support equitable access to responsible, accountable, safe, and ethical uses of psychedelic medicines. Neuropharmacology 2022, 219, 109214. [Google Scholar] [CrossRef]
- Villiger, D. Giving consent to the ineffable. Neuroethics 2024, 17, 11. [Google Scholar] [CrossRef]
- Beaussant, Y.; Tulsky, J.; Guérin, B.; Schwarz-Plaschg, C.; Sanders, J.J. Radcliffe Institute for Advanced Study Working Group on Psychedelic Research in Serious Illness Mapping an agenda for psychedelic-assisted therapy research in patients with serious illness. J. Palliat. Med. 2021, 24, 1657–1666. [Google Scholar] [CrossRef]
- Barber, G.S.; Dike, C.C. Ethical and practical considerations for the use of psychedelics in psychiatry. Psychiatr. Serv. 2023, 74, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Marks, M. The varieties of Psychedelic Law. Neuropharmacology, NIH Special Issue on Psilocybin (2023), FSU College of Law, Public Law Research Paper. Available online: https://ssrn.com/abstract=4286450 (accessed on 25 November 2022).
- Licensed Premises Location Requirements. In Public Health Division—Chapter 333 (No. 333-333–4300). Oregon Health Authority. Available online: https://secure.sos.state.or.us/oard/viewSingleRule.action?ruleVrsnRsn=309262 (accessed on 8 March 2024).
- Bathje, G.J.; Majeski, E.; Kudowor, M. Psychedelic integration: An analysis of the concept and its practice. Front. Psychol. 2022, 13, 824077. [Google Scholar] [CrossRef] [PubMed]
- Pilecki, B.; Luoma, J.B.; Bathje, G.J.; Rhea, J.; Narloch, V.F. Ethical and legal issues in psychedelic harm reduction and integration therapy. Harm Reduct. J. 2021, 18, 40. [Google Scholar] [CrossRef] [PubMed]
- Facilitator Scope of Practice. Oregon Health Authority. Public Health Division—Chapter 333. Available online: https://secure.sos.state.or.us/oard/viewSingleRule.action;JSESSIONID_OARD=xbMMYQBXykOhsAtpk6H6d209c41BdGdaQkC4jVvEOFCnbpSV37WM!1131481227?ruleVrsnRsn=297867 (accessed on 27 December 2022).
- Kopilak, D. Oregon Psilocybin Services Act: It’s Non-Medical, but Not Anti-Medical. Emerge Law Group. Available online: https://emergelawgroup.com/blog/oregon-psilocybin-services-act-its-non-medical-but-not-anti-medical/ (accessed on 8 March 2024).
- Chesak, J. Will Health Insurance Providers Cover Psychedelic-Assisted Therapy? Verywell Health. Available online: https://www.verywellhealth.com/psychedelic-therapy-will-insurance-cover-it-7564887 (accessed on 27 July 2023).
- Holoyda, B.J. Malpractice and other civil liability in psychedelic psychiatry. Psychiatr. Serv. 2023, 74, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Marks, M.; Cohen, I.G. Psychedelic therapy: A roadmap for wider acceptance and utilization. Nat. Med. 2021, 27, 1669–1671. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.S.; Daily, J.E.; Perry, D.A.; Nicol, G.E. Psychedelic drug legislative reform and legalization in the US. JAMA Psychiatry 2023, 80, 77–83. [Google Scholar] [CrossRef]
- Mocanu, V.; Mackay, L.; Christie, D.; Argento, E. Safety considerations in the evolving legal landscape of psychedelic-assisted psychotherapy. Subst. Abus. Treat. Prev. Policy 2022, 17, 37. [Google Scholar] [CrossRef] [PubMed]
- Goldhill, O. ‘It’s Not Medical’: Oregon Wrestles with How to Offer Psychedelics outside the Health Care System. STAT. Available online: https://www.statnews.com/2022/03/10/oregon-wrestles-with-offering-psychedelic-therapy-outside-health-care-system/ (accessed on 8 March 2024).
- Yaden, D.B.; Earp, B.D.; Griffiths, R.R. Ethical issues regarding nonsubjective psychedelics as standard of care. Camb. Q. Healthc. Ethics CQ Int. J. Healthc. Ethics Comm. 2022, 31, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, N.; Oliveira Da Silva, M.; Madeira, L. Ethics of psychedelic use in psychiatry and beyond—Drawing upon legal, social and clinical challenges. Philosophies 2023, 8, 76. [Google Scholar] [CrossRef]
- Harrison, T.R. Altered stakes: Identifying gaps in the informed consent process for psychedelic-assisted therapy trials. J. Psychedelic Stud. 2023, 7, 48–60. [Google Scholar] [CrossRef]
- Division 333 Psilocybin Informed Consent. In Oregon Health Authority Public Health Division—Chapter 333 (No. 333-333–5040). Oregon Health Authority. Available online: https://secure.sos.state.or.us/oard/viewSingleRule.action?ruleVrsnRsna=309282 (accessed on 8 March 2024).
- OHA Public Health Division—Chapter 333 Psilocybin. (N.D.). In Oregon Health Authority. Available online: https://secure.sos.state.or.us/oard/displayDivisionRules.action?selectedDivision=7102 (accessed on 5 March 2024).
- Belser, A.B.; Agin-Liebes, G.; Swift, T.C.; Terrana, S.; Devenot, N.; Friedman, H.L.; Guss, J.; Bossis, A.; Ross, S. Patient experiences of psilocybin-assisted psychotherapy: An interpretative phenomenological analysis. J. Humanist. Psychol. 2017, 57, 354–388. [Google Scholar] [CrossRef]
- Notice of Proposed Rulemaking. Including Statement of Need Fiscal Impact. Chapter 333 Oregon Health Authority Public Health Division. In Office of the Secretary of State. Archives Division. Oregon Health Authority. Oregon Psilocybin Services. Available online: https://www.oregon.gov/oha/PH/PREVENTIONWELLNESS/Documents/333-333-Notice-of-Proposed-Rulemaking-11.1.2023.pdf (accessed on 6 March 2024).
- Keridwen, C. Cancer Patients Struggle to Access Psilocybin before They Die. Medscape. Available online: https://www.medscape.com/viewarticle/985501 (accessed on 5 March 2024).
- Abbas, A.I.; Carter, A.; Jeanne, T.; Knox, R.; Korthuis, P.T.; Hamade, A.; Stauffer, C.; Uehling, J. Oregon Psilocybin Advisory Board Rapid Evidence Review and Recommendations; Oregon Psilocybin Advisory Board: Salem, OR, USA, 2021. [Google Scholar]
- Atakan, Z. Cannabis, a complex plant: Different compounds and different effects on individuals. Ther. Adv. Psychopharmacol. 2012, 2, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Strauss, D.; Ghosh, S.; Murray, Z.; Gryzenhout, M. Global species diversity and distribution of the psychedelic fungal genus Panaeolus. Heliyon 2023, 9, e16338. [Google Scholar] [CrossRef] [PubMed]
- Van Court, R.C.; Wiseman, M.S.; Meyer, K.W.; Ballhorn, D.J.; Amses, K.R.; Slot, J.C.; Dentinger, B.T.M.; Garibay-Orijel, R.; Uehling, J.K. Diversity, biology, and history of psilocybin-containing fungi: Suggestions for research and technological development. Fungal Biol. 2022, 126, 308–319. [Google Scholar] [CrossRef]
- Basky, G. Policy in focus: Is psilocybin the next cannabis? CMAJ Can. Med. Assoc. J. = J. De L’association Medicale Can. 2021, 193, E1741–E1742. [Google Scholar] [CrossRef]
- Evans, J. Waiting for a Miracle: Medical Psilocybin and Mdma under ’Right to Try’. 2021. Available online: https://ssrn.com/abstract=3762134 (accessed on 23 April 2024).
- Whinkin, E.; Opalka, M.; Watters, C.; Jaffe, A.; Aggarwal, S. Psilocybin in Palliative Care: An Update. Curr. Geriatr. Rep. 2023, 12, 50–59. [Google Scholar] [CrossRef]
- Kurtz, J.S.; Patel, N.A.; Gendreau, J.L.; Yang, C.; Brown, N.; Bui, N.; Picton, B.; Harris, M.; Hatter, M.; Beyer, R.; et al. The use of psychedelics in the treatment of medical conditions: An analysis of currently registered psychedelics studies in the American Drug Trial Registry. Cureus 2022, 14, e29167. [Google Scholar] [CrossRef]
Medication | Comment |
---|---|
Bupropion | Beneficial for alleviating fatigue and indifference. Beneficial for individuals seeking to quit smoking. When to avoid: anxiety, brain tumors, risk of alcohol withdrawal [36]. |
Fluoxetine | Appropriate for patients who are NPO (nothing by mouth) or with intermittent bowel obstruction. The longest-acting SSRI [36]. |
SNRI | Beneficial for individuals experiencing concurrent neuropathy. A viable option for pain that is not fully alleviated by opioid medication [36]. |
Venlafaxine | Primary choice for patients with breast cancer using tamoxifen. Lacks inhibition of 2D6 enzymes. Suitable for concurrent use with other medications. |
Duloxetine | Should not be used in individuals with liver or kidney impairment [37]. |
Levomilnacipran | Only approved for fibromyalgia. |
Mirtazapine | Can be given as a sublingual or orally dissolving tablet. Beneficial for individuals having trouble swallowing. Can aid sleep at doses of 7.5–15 mg per day. May assist in reducing nausea and increasing appetite [36]. |
Tricyclic Antidepressants | Not typically the initial treatment option. Used for neuropathy or persistent headaches. |
Methylphenidate | Given at doses of 2.5–10 mg. Used for individuals experiencing profound depression and those with extremely low energy levels. Used for patients unable to endure the typical 3–4 week waiting period for SSRI/SNRI effectiveness [36]. |
Dextroamphetamines | Given to terminally ill patients with persistent fatigue. Used for patients unable to endure the typical 3–4 week waiting period for SSRI/SNRI effectiveness [36]. |
Modafinil | Used as a second line. The cost of this medication can be a barrier for patients. |
Receptor | Location | Targets | Comment(s) |
---|---|---|---|
5-HT1AR | CNS: high density in cerebral cortex, hippocampus, septum, amygdala, and raphe nucleus; small amounts in basal ganglia and thalamus | CNS: aggression, anxiety, appetite, memory, mood CVS: vasoconstriction, BP, HR | Psilocybin has a moderate affinity for the 5-HT1A receptor, which is involved in regulating serotonin release and neuronal excitability [69,70,73]. |
5-HT2AR | CNS: basal ganglia and other structures | CNS: anxiety, imagination, learning, perception SM: contraction Platelet: aggregation | Activation of 5-HT2A is thought to be responsible for profound alterations in perception, mood, and cognition. Other effects include visual distortions, altered perceptions of time and space, and changes in thought patterns [65,66,67,68,73,74]. |
5-HT2CR | CNS: hippocampus and substantia nigra | CNS: mood, sleep, anxiety | Lower potency than the 5-HT2A receptor. Activation of the 5-HT2C receptor contributes to the emotional and cognitive effects of psilocybin, such as altered mood states and increased introspection [51,73,74]. |
Medications | Psilocybin Use |
---|---|
SSRI/SNRI | Consider tapering and discontinuing antidepressant medication at least two weeks before psilocybin use (except for fluoxetine, which necessitates a six-week interval) to mitigate potential diminishment of the psychedelic effect. Prolonged antidepressant use might lead to the down-regulation of 5HT2A receptors, resulting in diminished psychedelic experiences for some individuals [89,103,104,105]. |
Bupropion | The loss of effect is not predicted to occur; consider tapering and discontinuation prior to psychedelic use [105]. |
Mirtazapine | Taper and discontinue 2+ weeks prior to avoid loss of psychedelic effect. Mirtazapine blocks the 5H2A receptor, which is predicted to result in blunting or loss of psychedelic effects [106]. |
Tricyclic Antidepressants (TCA) | Consider tapering and discontinuing at least 2 weeks prior due to potential intensified effects [107]. |
Trazodone | Taper and discontinue at least 5 days prior due to the potential loss of psychedelic effect. Trazodone, at lower doses (25–150 mg), blocks 5HT2A receptors and begins to block the serotonin reuptake pump at doses exceeding 150 mg [108,109]. It also possesses an active metabolite that blocks 5HT2A receptors and modulates numerous other 5HT receptors. |
Buspirone | Gradually reduce and stop the medication at least five days before to mitigate the risk of diminished psychedelic effects. Buspirone functions as a non-psychedelic partial activator at serotonin receptors, potentially resulting in reduced psychedelic effects [110]. Minimal risk of serotonin syndrome |
MAO-A Inhibitors * | Consider tapering and discontinuing the medication two weeks before to prevent diminished psychedelic effects. Risk of cardiovascular collapse [111]. |
MAO-B Inhibitors | Psilocybin combination poses low physical toxicity risks [112] |
Licensing and registration |
|
Role of service centers |
|
Oversight |
|
Reason | Details |
---|---|
Concerns about public health and safety |
|
Social and cultural stigma surrounding psychedelics |
|
Lack of education and awareness in general public |
|
Healthcare system integration |
|
Regulatory challenges |
|
Professional licensing |
|
Insurance coverage |
|
Liability |
|
Moral and ethical considerations | |
Informed consent |
|
Limited administration methods |
|
Research |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellman, V. Review of Psilocybin Use for Depression among Cancer Patients after Approval in Oregon. Cancers 2024, 16, 1702. https://doi.org/10.3390/cancers16091702
Bellman V. Review of Psilocybin Use for Depression among Cancer Patients after Approval in Oregon. Cancers. 2024; 16(9):1702. https://doi.org/10.3390/cancers16091702
Chicago/Turabian StyleBellman, Val. 2024. "Review of Psilocybin Use for Depression among Cancer Patients after Approval in Oregon" Cancers 16, no. 9: 1702. https://doi.org/10.3390/cancers16091702
APA StyleBellman, V. (2024). Review of Psilocybin Use for Depression among Cancer Patients after Approval in Oregon. Cancers, 16(9), 1702. https://doi.org/10.3390/cancers16091702