Latest Insights and Therapeutic Advances in Myelodysplastic Neoplasms
Abstract
:Simple Summary
Abstract
1. Introduction
2. Search Strategy and Selection Criteria
3. Disease Overview and Pathogenesis
4. Diagnosis and Classifications
5. Prognostic Systems and Risk-Stratification
6. Clinical Management
7. Lower-Risk MDS
8. Higher-Risk MDS
9. Allogenic SCT
10. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef] [PubMed]
- Rotter, L.K.; Shimony, S.; Ling, K.; Chen, E.; Shallis, R.M.; Zeidan, A.M.; Stahl, M. Epidemiology and Pathogenesis of Myelodysplastic Syndrome. Cancer J. 2023, 29, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Zhang, Y.; Kallen, M.A.; Emadi, A.; Baer, M.R. Cytogenetics and molecular genetics of myelodysplastic neoplasms. Best Pract. Res. Clin. Haematol. 2023, 36, 101512. [Google Scholar] [CrossRef] [PubMed]
- Bersanelli, M.; Travaglino, E.; Meggendorfer, M.; Matteuzzi, T.; Sala, C.; Mosca, E.; Chiereghin, C.; Di Nanni, N.; Gnocchi, M.; Zampini, M.; et al. Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes. J. Clin. Oncol. 2021, 39, 1223–1233. [Google Scholar] [CrossRef] [PubMed]
- Casalin, I.; De Stefano, A.; Ceneri, E. Deciphering signaling pathways in hematopoietic stem cells: The molecular complexity of Myelodysplastic Syndromes (MDS) and leukemic progression. Adv. Biol. Regul. 2024, 12, 101014. [Google Scholar] [CrossRef]
- Filipek-Gorzała, J.; Kwiecińska, P.; Szade, A.; Szade, K. The dark side of stemness—The role of hematopoietic stem cells in development of blood malignancies. Front. Oncol. 2024, 14, 1308709. [Google Scholar] [CrossRef] [PubMed]
- Fontenay, M.; Farhat, B.; Boussaid, I. Pathophysiology of Myelodysplastic Syndromes. Hemato 2021, 2, 477–495. [Google Scholar] [CrossRef]
- Kanagal-Shamanna, R.; Beck, D.B.; Calvo, K.R. Clonal Hematopoiesis, Inflammation, and Hematologic Malignancy. Annu. Rev. Pathol. 2024, 19, 479–506. [Google Scholar] [CrossRef] [PubMed]
- Guarnera, L.; Jha, B.K. TET2 mutation as prototypic clonal hematopoiesis lesion. Semin. Hematol. 2024, 61, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Kishtagari, A.; Corty, R.W.; Visconte, V. Clonal hematopoiesis and autoimmunity. Semin. Hematol. 2024, 61, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Manero, G. Myelodysplastic syndromes: 2023 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2023, 98, 1307–1325. [Google Scholar] [CrossRef] [PubMed]
- Efficace, F.; Gaidano, G.; Breccia, M.; Criscuolo, M.; Cottone, F.; Caocci, G.; Bowen, D.; Lübbert, M.; Angelucci, E.; Stauder, R.; et al. Prevalence, severity and correlates of fatigue in newly diagnosed patients with myelodysplastic syndromes. Br. J. Haematol. 2015, 168, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Adrianzen-Herrera, D.; Sparks, A.D.; Singh, R.; Alejos-Castillo, D.; Batra, A.; Glushakow-Smith, S.; Pradhan, K.; Shastri, A.; Neil, A. ZakaiImpact of preexisting autoimmune disease on myelodysplastic syndromes outcomes: A population analysis. Blood Adv. 2023, 28, 6913–6922. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Sevilla, J.J.; Colla, S. T cell dysfunctions in myelodysplastic syndromes. Blood 2024, 143, 1329–1343. [Google Scholar] [CrossRef] [PubMed]
- Calabretto, G.; Attardi, E.; Teramo, A.; Trimarco, V.; Carraro, S.; Mossuto, S.; Barilà, G.; Vicenzetto, C.; Gasparini, V.R.; Crugnola, M.; et al. Hypocellular myelodysplastic syndromes (h-MDS): From clinical description to immunological characterization in the Italian multi-center experience. Leukemia 2022, 36, 1947–1950. [Google Scholar] [CrossRef] [PubMed]
- Beck, D.B.; Ferrada, M.A.; Sikora, K.A.; Ombrello, A.K.; Collins, J.C.; Pei, W.; Balanda, N.; Ross, D.L.; Ospina Cardona, D.; Wu, Z.; et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 2020, 383, 2628–2638. [Google Scholar] [CrossRef] [PubMed]
- Loeza-Uribe, M.P.; Hinojosa-Azaola, A.; Sánchez-Hernández, B.E.; Crispín, J.C.; Apodaca-Chávez, E.; Ferrada, M.A.; Martín-Nares, E. VEXAS syndrome: Clinical manifestations, diagnosis, and treatment. Reumatol. Clin. (Engl. Ed.) 2024, 20, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Gurnari, C.; Pascale, M.R.; Vitale, A.; Diral, E.; Tomelleri, A.; Galossi, E.; Falconi, G.; Bruno, A.; Crisafulli, F.; Frassi, M.; et al. Diagnostic capabilities, clinical features, and longitudinal UBA1 clonal dynamics of a nationwide VEXAS cohort. Am. J. Hematol. 2024, 99, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Kanagal-Shamanna, R.; Schafernak, K.T.; Calvo, K.R. Diagnostic work-up of hematological malignancies with underlying germline predisposition disorders (GPD). Semin. Diagn. Pathol. 2023, 40, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Arai, H.; Matsui, H.; Chi, S.; Utsu, Y.; Masuda, S.; Aotsuka, N.; Minami, Y. Germline Variants and Characteristic Features of Hereditary Hematological Malignancy Syndrome. Int. J. Mol. Sci. 2024, 4, 652. [Google Scholar] [CrossRef] [PubMed]
- Gurnari, C.; Robin, M.; Godley, L.A.; Drozd-Sokołowska, J.; Włodarski, M.W.; Raj, K.; Onida, F.; Worel, N.; Ciceri, F.; Carbacioglu, S.; et al. Germline predisposition traits in allogeneic hematopoietic stem-cell transplantation for myelodysplastic syndromes: A survey-based study and position paper on behalf of the Chronic Malignancies Working Party of the EBMT. Lancet Haematol. 2023, 10, e994–e1005. [Google Scholar] [CrossRef] [PubMed]
- Leone, G.; Fabiani, E.; Voso, M.T. De Novo and Therapy-Related Myelodysplastic Syndromes: Analogies and Differences. Mediterr. J. Hematol. Infect. Dis. 2022, 1, e2022030. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Le Beau, M.M.; Huo, D.; Karrison, T.; Sobecks, R.M.; Anastasi, J.; Vardiman, J.W.; Rowley, J.D.; Larson, R.A. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: The University of Chicago series. Blood 2003, 102, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Larson, R.A. Therapy-related myeloid neoplasms. Haematologica 2009, 94, 454–459. [Google Scholar] [CrossRef]
- Dhaliwal, A.; Ravi, S. Myelodysplastic Syndrome After Anti-CD19 Chimeric Antigen Receptor T-cell Therapy: A Case Series. Cureus 2023, 4, e44677. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, A.M.; Al Ali, N.; Barnard, J.; Padron, E.; Lancet, J.E.; Sekeres, M.A.; Steensma, D.P.; DeZern, A.; Roboz, G.; Jabbour, E.; et al. Comparison of clinical outcomes and prognostic utility of risk stratification tools in patients with therapy-related vs de novo myelodysplastic syndromes: A report on behalf of the MDS Clinical Research Consortium. Leukemia 2017, 31, 1391–1397. [Google Scholar] [CrossRef]
- Berggren, D.M.; Garelius, H.; Hjelm, P.W.; Nilsson, L.; Rasmussen, B.; Weibull, C.E.; Lambe, M.; Lehmann, S.; Hellström-Lindberg, E.; Jädersten, M.; et al. Therapy-related MDS dissected based on primary disease and treatment—A nationwide perspective. Leukemia 2023, 37, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Hasserjian, R.P.; Germing, U.; Malcovati, L. Diagnosis and classification of myelodysplastic syndromes. Blood 2023, 142, 2247–2257. [Google Scholar] [CrossRef] [PubMed]
- Yuen, L.D.; Hasserjian, R.P. Morphologic Characteristics of Myelodysplastic Syndromes. Clin. Lab. Med. 2023, 43, 577–596. [Google Scholar] [CrossRef] [PubMed]
- Zavras, P.D.; Sinanidis, I.; Tsakiroglou, P.; Karantanos, T. Understanding the Continuum between High-Risk Myelodysplastic Syndrome and Acute Myeloid Leukemia. Int. J. Mol. Sci. 2023, 6, 5018. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Guo, J.; Zhao, S.; Wang, R.; Wu, D.; Chang, C. Incorporating mutations and bone marrow fibrosis into the revised international prognostic scoring system in myelodysplastic syndromes. Leuk. Lymphoma 2024, 65, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Kayano, H. Histopathology in the diagnosis of high-risk myelodysplastic syndromes. J. Clin. Exp. Hematop. 2018, 58, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Auger, N.; Douet-Guilbert, N.; Quessada, J.; Theisen, O.; Lafage-Pochitaloff, M.; Troadec, M.B. Cytogenetics in the management of myelodysplastic neoplasms (myelodysplastic syndromes, MDS): Guidelines from the groupe francophone de cytogénétique hématologique (GFCH). Curr. Res. Transl. Med. 2023, 71, 103409. [Google Scholar] [CrossRef] [PubMed]
- DeZern, A.E.; Greenberg, P.L. The trajectory of prognostication and risk stratification for patients with myelodysplastic syndromes. Blood 2023, 142, 2258–2267. [Google Scholar] [CrossRef] [PubMed]
- Stahl, M.; Bewersdorf, J.P.; Xie, Z.; Della Porta, M.G.; Komrokji, R.; Xu, M.L.; Abdel-Wahab, O.; Taylor, J.; Steensma, D.P.; Starczynowski, D.T.; et al. Classification, risk stratification and response assessment in myelodysplastic syndromes/neoplasms (MDS): A state-of-the-art report on behalf of the International Consortium for MDS (icMDS). Blood Rev. 2023, 19, 101128. [Google Scholar] [CrossRef] [PubMed]
- Campagna, A.; De Benedittis, D.; Fianchi, L.; Scalzulli, E.; Rizzo, L.; Niscola, P.; Piccioni, A.L.; Di Veroli, A.; Mancini, S.; Villivà, N.; et al. Myelodysplastic Syndromes with Isolated 20q Deletion: A New Clinical–Biological Entity? J. Clin. Med. 2022, 11, 2596. [Google Scholar] [CrossRef] [PubMed]
- Acha, P.; Mallo, M.; Solé, F. Myelodysplastic Syndromes with Isolated del(5q): Value of Molecular Alterations for Diagnostic and Prognostic Assessment. Cancers 2022, 14, 5531. [Google Scholar] [CrossRef] [PubMed]
- Malcovati, L.; Stevenson, K.; Papaemmanuil, E.; Neuberg, D.; Bejar, R.; Boultwood, J.; Bowen, D.T.; Campbell, P.J.; Ebert, B.L.; Fenaux, P.; et al. SF3B1-mutant MDS as a distinct disease subtype: A proposal from the International Working Group for the Prognosis of MDS. Blood 2020, 9, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Chen, M.; Liu, Q.; Jin, Z.; Yang, X.; Zhang, W. SF3B1 mutations in myelodysplastic syndromes: A potential therapeutic target for modulating the entire disease process. Front. Oncol. 2023, 13, 1116438. [Google Scholar] [CrossRef] [PubMed]
- Porwit, A.; Béné, M.C.; Duetz, C.; Matarraz, S.; Oelschlaegel, U.; Westers, T.M.; Wagner-Ballon, O.; Kordasti, S.; Valent, P.; Preijers, F.; et al. Multiparameter flow cytometry in the evaluation of myelodysplasia: Analytical issues: Recommendations from the European LeukemiaNet/International Myelodysplastic Syndrome Flow Cytometry Working Group. Cytometry B Clin. Cytom. 2023, 104, 27–50. [Google Scholar] [CrossRef] [PubMed]
- Bernard, E.; Tuechler, H.; Greenberg, P.L.; Hasserjian, R.P.; Arango Ossa, J.E.; Nannya, Y.; Devlin, S.M.; Creignou, M.; Pinel, P.; Monnier, L.; et al. Molecular international prognostic scoring system for myelodysplastic syndromes. NEJM Evid. 2022, 1, EVIDoa2200008. [Google Scholar] [CrossRef] [PubMed]
- Fattizzo, B.; Levati, G.V.; Giannotta, J.A.; Cassanello, G.; Cro, L.M.; Zaninoni, A.; Barbieri, M.; Croci, G.A.; Revelli, N.; Barcellini, W. Low-Risk Myelodysplastic Syndrome Revisited: Morphological, Autoimmune, and Molecular Features as Predictors of Outcome in a Single Center Experience. Front. Oncol. 2022, 12, 795955. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.B.; Siddon, A.J. Molecular findings in myeloid neoplasms. Int. J. Lab. Hematol. 2023, 45, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Siddon, A.J.; Weinberg, O.K. Diagnosis and Classification of Myelodysplastic Syndromes with Mutated TP53. Clin. Lab. Med. 2023, 43, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Versluis, J.; Lindsley, R.C. Transplant for TP53-mutated MDS and AML: Because we can or because we should? Hematology Am. Soc. Hematol. Educ. Program 2022, 9, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Loschi, M.; Fenaux, P.; Cluzeau, T. How I Treat TP53-Mutated Acute Myeloid Leukemia and Myelodysplastic Syndromes. Cancers 2022, 14, 4519. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.P.; Herrity, E.; Kim, D.D.H. TP53-mutated acute myeloid leukemia and myelodysplastic syndrome: Biology, treatment challenges, and upcoming approaches. Ann. Hematol. 2023, 28, 1049–1067. [Google Scholar] [CrossRef] [PubMed]
- Mortuza, S.; Chin-Yee, B.; James, T.E.; Chin-Yee, I.H.; Hedley, B.D.; Ho, J.M.; Saini, L.; Lazo-Langner, A.; Schenkel, L.; Bhai, P.; et al. Myelodysplastic Neoplasms (MDS) with Ring Sideroblasts or SF3B1 Mutations: The Improved Clinical Utility of World Health Organization and International Consensus Classification 2022 Definitions, a Single-Centre Retrospective Chart Review. Curr. Oncol. 2024, 31, 1762–1773. [Google Scholar] [CrossRef]
- Falini, B.; Martelli, M.P. Comparison of the International Consensus and 5th WHO edition classifications of adult myelodysplastic syndromes and acute myeloid leukemia. Am. J. Hematol. 2023, 98, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Bruehl, F.K.; Osman, M.M.; Chen, D.; Dalland, J.C. The new WHO and ICC classification systems for myelodysplastic syndromes and their impact on the clinical laboratory. J. Hematop. 2023, 16, 65–71. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, Y.; Zhao, K.; Zhou, L.; Zhou, Y.; Xuan, L.; Cao, R.; Xu, J.; Dai, M.; Liu, Q.; et al. Somatic mutations predict prognosis in myelodysplastic syndrome patients with normal karyotypes. Signal Transduct. Target Ther. 2021, 26, 274. [Google Scholar] [CrossRef] [PubMed]
- Toribio-Castelló, S.; Castaño, S.; Villaverde-Ramiro, Á.; Such, E.; Arnán, M.; Solé, F.; Díaz-Beyá, M.; Díez-Campelo, M.; del Rey, M.; González, T.; et al. Mutational Profile Enables the Identification of a High-Risk Subgroup in Myelodysplastic Syndromes with Isolated Trisomy 8. Cancers 2023, 27, 3822. [Google Scholar] [CrossRef] [PubMed]
- Khanna, V.; Lu, R.; Kumar, J.; Molina, A.; Stehr, H.; Spiteri, E.; Spinner, M.; Silva, O.; Fernandez-Pol, S.; Tan, B.; et al. The clinical, molecular, and prognostic features of the 2022 WHO and ICC classification systems for myelodysplastic neoplasms. Leuk. Res. 2024, 136, 107433. [Google Scholar] [CrossRef] [PubMed]
- Nachtkamp, K.; Strupp, C.; Vukelja, M.; Kasprzak, A.; Haase, D.; Ganster, C.; Hildebrandt, B.; Betz, B.; Giagounidis, A.; Aul, C.; et al. The new WHO 2022 and ICC proposals for the classification of myelodysplastic neoplasms. Validation based on the Düsseldorf MDS Registry and proposals for a merged classification. Leukemia 2024, 38, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, P.L.; Tuechler, H.; Schanz, J.; Sanz, G.; Garcia-Manero, G.; Solé, F.; Bennett, J.M.; Bowen, D.; Fenaux, P.; Dreyfus, F.; et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood 2012, 120, 2454–2465. [Google Scholar] [CrossRef] [PubMed]
- Sauta, E.; Robin, M.; Bersanelli, M.; Travaglino, E.; Meggendorfer, M.; Zhao, L.P.; Caballero Berrocal, J.C.; Sala, C.; Maggioni, G.; Bernardi, M.; et al. Real-world validation of Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. J. Clin. Oncol. 2023, 41, 2827–2842. [Google Scholar] [CrossRef] [PubMed]
- Efficace, F.; Cottone, F.; Abel, G.; Niscola, P.; Gaidano, G.; Bonnetain, F.; Anota, A.; Caocci, G.; Cronin, A.; Fianchi, L.; et al. Patient-reported outcomes enhance the survival prediction of traditional disease risk classifications: An international study in patients with myelodysplastic syndromes. Cancer 2018, 124, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Niscola, P.; Mandelli, F.; Efficace, F. Improving accuracy of prognosis in patients with myelodysplastic syndromes using self-reported quality of life data. Opportunities for a new research agenda in developing prognostic models. Expert Rev. Hematol. 2016, 9, 415–417. [Google Scholar] [CrossRef]
- Efficace, F.; Cottone, F.; Oswald, L.B.; Cella, D.; Patriarca, A.; Niscola, P.; Breccia, M.; Platzbecker, U.; Palumbo, G.A.; Caocci, G.; et al. The IPSS-R more accurately captures fatigue severity of newly diagnosed patients with myelodysplastic syndromes compared with the IPSS index. Leukemia 2020, 34, 2451–2459. [Google Scholar] [CrossRef] [PubMed]
- Mosquera Orgueira, A.; Perez Encinas, M.M.; Diaz Varela, N.A.; Mora, E.; Díaz-Beyá, M.; Montoro, M.J.; Pomares, H.; Ramos, F.; Tormo, M.; Jerez, A.; et al. Machine Learning Improves Risk Stratification in Myelodysplastic Neoplasms: An Analysis of the Spanish Group of Myelodysplastic Syndromes. Hemasphere 2023, 7, e961. [Google Scholar] [CrossRef] [PubMed]
- Fenaux, P.; Haase, D.; Santini, V.; Sanz, G.F.; Platzbecker, U.; Mey, U. Myelodysplastic syndromes: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 142–156. [Google Scholar] [CrossRef] [PubMed]
- Hellstrom-Lindberg, E.S.; Kröger, N. Clinical decision-making and treatment of myelodysplastic syndromes. Blood 2023, 142, 2268–2281. [Google Scholar] [CrossRef] [PubMed]
- Oliva, E.N.; Platzbecker, U.; Fenaux, P.; Garcia-Manero, G.; LeBlanc, T.W.; Patel, B.J.; Kubasch, A.S.; Sekeres, M.A. Targeting health-related quality of life in patients with myelodysplastic syndromes—Current knowledge and lessons to be learned. Blood Rev. 2021, 50, 100851. [Google Scholar] [CrossRef] [PubMed]
- Larfors, G.; Berggren, D.M.; Garelius, H.; Nilsson, L.; Rasmussen, B.; Hellström-Lindberg, E.; Ejerblad, E. MDS-Comorbidity Index using register data has prognostic impact in Swedish MDS patients. Leuk. Res. 2023, 134, 107386. [Google Scholar] [CrossRef] [PubMed]
- Niederwieser, C.; Kröger, N. Hematopoietic cell transplantation (HCT) in MDS patients of older age. Leuk. Lymphoma 2024, 5, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H.; Chen, J.; Han, M.Z.; Huang, H.; Jiang, E.L.; Jiang, M.; Lai, Y.R.; Liu, D.H.; Liu, Q.F.; Liu, T.; et al. The consensus from The Chinese Society of Hematology on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation: 2021 update. J. Hematol. Oncol. 2021, 14, 145. [Google Scholar] [CrossRef] [PubMed]
- DeFilipp, Z.; Ciurea, S.O.; Cutler, C.; Robin, M.; Warlick, E.D.; Nakamura, R.; Brunner, A.M.; Dholaria, B.; Walker, A.R.; Kröger, N.; et al. Hematopoietic Cell Transplantation in the Management of Myelodysplastic Syndrome: An Evidence-Based Review from the American Society for Transplantation and Cellular Therapy Committee on Practice Guidelines. Transplant. Cell. Ther. 2023, 29, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Campagna, A.; Della Porta, M.G. Mutational screening to improve the transplantation decision-making process in MDS. Hematol. Am. Soc. Hematol. Educ. Program 2023, 2023, 73–76. [Google Scholar] [CrossRef]
- Gurnari, C.; Koster, L.; Baaij, L.G.A.; Heiblig, M.; Yakoub-Agha, I.; Collin, M.; Passweg, J.R.; Bulabois, C.E.; Khan, A.B.; Loschi, M.; et al. Allogeneic Hematopoietic Cell Transplantation for VEXAS Syndrome: Results of a Multicenter Study of the EBMT. Blood Adv. 2024, 8, 1444–1448. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, M.M.; Santini, V. Targeting ineffective hematopoiesis in myelodysplastic syndromes. Am. J. Hematol. 2022, 97, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Caballero, J.C.; Dávila, J.; López-Pavía, M.; Such, E.; Bernal, T.; Ramos, F.; Calabuig, M.; Hernández Sánchez, J.M.; Pomares, H.; Sánchez Barba, M.; et al. Outcomes and effect of somatic mutations after erythropoiesis stimulating agents in patients with lower-risk myelodysplastic syndromes. Ther. Adv. Hematol. 2024, 15, 20406207231218157. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, E.A. Transfusion avoidance in myelodysplastic neoplasms. Curr. Opin. Hematol. 2024, 31, 40–46. [Google Scholar] [CrossRef]
- Oliva, E.N.; Schey, C.; Hutchings, A.S. A review of anemia as a cardiovascular risk factor in patients with myelodysplastic syndromes. Am. J. Blood Res. 2011, 1, 160–166. [Google Scholar] [PubMed]
- Xiao, C.; Zhang, Y.; Zhao, J.G.; Song, L.X.; Zhao, Y.S.; Jia, Y.; Guo, J.; Han, S.; Li, Z.W.; Guo, C.; et al. Analysis of the influencing factors related to liver and cardiac iron overload in MDS patients detected by MRI in the real world. Hematology 2021, 26, 123–133. [Google Scholar] [CrossRef]
- Cilloni, D.; Ravera, S.; Calabrese, C.; Gaidano, V.; Niscola, P.; Balleari, E.; Gallo, D.; Petiti, J.; Signorino, E.; Rosso, V.; et al. Iron overload alters the energy metabolism in patients with myelodysplastic syndromes: Results from the multicenter FISM BIOFER study. Sci. Rep. 2020, 10, 9156. [Google Scholar] [CrossRef] [PubMed]
- Oliva, E.N.; Huey, K.; Deshpande, S.; Turner, M.; Chitnis, M.; Schiller, E.; Tang, D.; Yucel, A.; Hughes, C.; Shah, F.; et al. A Systematic Literature Review of the Relationship between Serum Ferritin and Outcomes in Myelodysplastic Syndromes. J. Clin. Med. 2022, 11, 895. [Google Scholar] [CrossRef]
- Vijenthira, A.; Starkman, R.; Lin, Y.; Stanworth, S.J.; Bowen, D.; Harrison, L.; Wintrich, S.; Callum, J.; Buckstein, R. Multi-national survey of transfusion experiences and preferences of patients with myelodysplastic syndrome. Transfusion 2022, 62, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
- Brunner, A.M.; Leitch, H.A.; van de Loosdrecht, A.A.; Bonadies, N. Management of patients with lower-risk myelodysplastic syndromes. Blood Cancer J. 2022, 12, 166. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Carraway, H.E. Overview of the Management of Higher-Risk Myelodysplastic Syndromes. Cancer J. 2023, 29, 160–167. [Google Scholar] [CrossRef]
- Wang, C.; Sallman, D.A. Therapeutic approaches for the management of higher-risk myelodysplastic syndromes. Leuk. Lymphoma 2023, 64, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, A.; Andresen, J.; Nachtkamp, K.; Kündgen, A.; Schulz, F.; Strupp, C.; Kobbe, G.; MacKenzie, C.; Timm, J.; Dietrich, S.; et al. Infectious Complications in Patients with Myelodysplastic Syndromes: A Report from the Düsseldorf MDS Registry. Cancers 2024, 16, 808. [Google Scholar] [CrossRef] [PubMed]
- Vijenthira, A.; Premkumar, D.; Callum, J.; Lin, Y.; Wells, R.A.; Chodirker, L.; Lenis, M.; Mamedov, A.; Buckstein, R. The management and outcomes of patients with myelodysplastic syndrome with persistent severe thrombocytopenia: An observational single centre registry study. Leuk. Res. 2019, 76, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Mo, A.; Wood, E.; Shortt, J.; Hu, E.; McQuilten, Z. Platelet transfusions and predictors of bleeding in patients with myelodysplastic syndromes. Eur. J. Haematol. 2023, 111, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Oliva, E.N.; Riva, M.; Niscola, P.; Santini, V.; Breccia, M.; Giai, V.; Poloni, A.; Patriarca, A.; Crisà, E.; Capodanno, I.; et al. Eltrombopag for Low-Risk Myelodysplastic Syndromes with Thrombocytopenia: Interim Results of a Phase II, Randomized, Placebo-Controlled Clinical Trial (EQOL-MDS). J. Clin. Oncol. 2023, 41, 4486–4496. [Google Scholar] [CrossRef] [PubMed]
- Niscola, P.; Tendas, A.; Giovannini, M.; Cupelli, L.; Trawinska, M.M.; Palombi, M.; Scaramucci, L.; Brunetti, G.A.; Perrotti, A.; Neri, B.; et al. Transfusions at home in patients with myelodysplastic syndromes. Leuk. Res. 2012, 36, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Greenberg, P.; Yucel, A.; Farmer, C.; O’Neill, F.; De Oliveira Brandao, C.; Fenaux, P. Clinical effectiveness and safety of erythropoietin-stimulating agents for the treatment of low- and intermediate-1-risk myelodysplastic syndrome: A systematic literature review. Br. J. Haematol. 2019, 184, 134–160. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Hamel, J.F.; Toma, A.; Kelaidi, C.; Thépot, S.; Campelo, M.D.; Santini, V.; Sekeres, M.A.; Balleari, E.; Kaivers, J.; et al. Outcome of Lower-Risk Patients with Myelodysplastic Syndromes Without 5q Deletion After Failure of Erythropoiesis-Stimulating Agents. J. Clin. Oncol. 2017, 35, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
- Gurnari, C.; Piciocchi, A.; Soddu, S.; Bonanni, F.; Scalzulli, E.; Niscola, P.; Di Veroli, A.; Piccioni, A.L.; Piedimonte, M.; Maiorana, G.; et al. Myelodysplastic syndromes with del(5q): A real-life study of determinants of long-term outcomes and response to lenalidomide. Blood Cancer J. 2022, 12, 132. [Google Scholar] [CrossRef] [PubMed]
- Fenaux, P.; Platzbecker, U.; Mufti, G.J.; Garcia-Manero, G.; Buckstein, R.; Santini, V.; Díez-Campelo, M.; Finelli, C.; Cazzola, M.; Ilhan, O.; et al. Luspatercept in Patients with Lower-Risk Myelodysplastic Syndromes. N. Engl. J. Med. 2020, 382, 140–151. [Google Scholar] [CrossRef]
- Santini, V.; Almeida, A.; Giagounidis, A.; Gröpper, S.; Jonasova, A.; Vey, N.; Mufti, G.J.; Buckstein, R.; Mittelman, M.; Platzbecker, U.; et al. Randomized phase III study of lenalidomide versus placebo in RBC transfusion-dependent patients with lower-risk non-del(5q) myelodysplastic syndromes and ineligible for or refractory to erythropoiesis-stimulating agents. J. Clin. Oncol. 2016, 34, 2988–2996. [Google Scholar] [CrossRef]
- Santini, V.; Giagounidis, A.; Pelligra, C.G.; Franco-Villalobos, C.; Tang, D.; Morison, J.; Beach, C.L.; Hu, A.; Platzbecker, U.; Fenaux, P. Impact of Lenalidomide Treatment on Overall Survival in Patients with Lower-Risk, Transfusion-Dependent Myelodysplastic Syndromes. Clin. Lymphoma Myeloma Leuk. 2022, 22, e874–e883. [Google Scholar] [CrossRef] [PubMed]
- Santini, V.; Fenaux, P.; Giagounidis, A.; Platzbecker, U.; List, A.F.; Haferlach, T.; Zhong, J.; Wu, C.; Mavrommatis, K.; Beach, C.L.; et al. Impact of somatic mutations on response to lenalidomide in lower-risk non-del(5q) myelodysplastic syndromes patients. Leukemia 2021, 35, 897–900. [Google Scholar] [CrossRef] [PubMed]
- List, A.F.; Sun, Z.; Verma, A.; Bennett, J.M.; Komrokji, R.S.; McGraw, K.; Maciejewski, J.; Altman, J.K.; Cheema, P.S.; Claxton, D.F.; et al. Lenalidomide-Epoetin Alfa Versus Lenalidomide Monotherapy in Myelodysplastic Syndromes Refractory to Recombinant Erythropoietin. J. Clin. Oncol. 2021, 39, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- van de Loosdrecht, A.A.; Cremers, E.M.P.; Alhan, C.; Duetz, C.; Int’Hout, F.E.M.; Visser-Wisselaar, H.A.; Chitu, D.A.; Verbrugge, A.; Cunha, S.M.; Ossenkoppele, G.J.; et al. Determinants of lenalidomide response with or without erythropoiesis-stimulating agents in myelodysplastic syndromes: The HOVON89 trial. Leukemia 2024, 38, 840–850. [Google Scholar] [CrossRef] [PubMed]
- Oliva, E.N.; Platzbecker, U.; Garcia-Manero, G.; Mufti, G.J.; Santini, V.; Sekeres, M.A.; Komrokji, R.S.; Shetty, J.K.; Tang, D.; Guo, S.; et al. Health-Related Quality of Life Outcomes in Patients with Myelodysplastic Syndromes with Ring Sideroblasts Treated with Luspatercept in the MEDALIST Phase 3 Trial. J. Clin. Med. 2021, 11, 27. [Google Scholar] [CrossRef] [PubMed]
- Platzbecker, U.; Della Porta, M.G.; Santini, V.; Zeidan, A.M.; Komrokji, R.S.; Shortt, J.; Valcarcel, D.; Jonasova, A.; Dimicoli-Salazar, S.; Tiong, I.S.; et al. Efficacy and safety of luspatercept versus epoetin alfa in erythropoiesis-stimulating agent-naive, transfusion-dependent, lower-risk myelodysplastic syndromes (COMMANDS): Interim analysis of a phase 3, open-label, randomised controlled trial. Lancet 2023, 402, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Platzbecker, U.; Santini, V.; Fenaux, P.; Sekeres, M.A.; Savona, M.R.; Madanat, Y.F.; Díez-Campelo, M.; Valcárcel, D.; Illmer, T.; Jonášová, A.; et al. Imetelstat in patients with lower-risk myelodysplastic syndromes who have relapsed or are refractory to erythropoiesis-stimulating agents (IMerge): A multinational, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2024, 403, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Jabbour, E.; Montalban-Bravo, G.; Darbaniyan, F.; Do, K.-A.; Class, C.; Short, N.J.; Kanagal-Shamana, R.; Kadia, T.; Borthakur, G.; et al. Low-Dose Decitabine versus Low-Dose Azacitidine in Lower-Risk MDS. NEJM Evid. 2022, 1, EVIDoa2200034. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, E.; Li, J.; Greenberg, P.; Wu, D.; Hou, M.; Montano Figueroa, E.H.; Rodriguez, M.G.; Dong, X.; Ghosh, J.; Izquierdo, M.; et al. Iron Chelation in Transfusion-Dependent Patients with Low- to Intermediate-1-Risk Myelodysplastic Syndromes: A Randomized Trial. Ann. Intern. Med. 2020, 172, 513–522. [Google Scholar] [CrossRef]
- Schulz, F.; Hauch, U.; Ketzler-Henkel, S.; von der Heyde, E.; Koenigsmann, M.; Lauseker, M.; Schulte, N.; Germing, U. Iron Chelation in Patients with Myelodysplastic Syndromes and Myeloproliferative Neoplasms-Real-World Data from the German Noninterventional Study EXCALIBUR. J. Clin. Med. 2023, 12, 6569. [Google Scholar] [CrossRef] [PubMed]
- Riva, M.; Bosi, A.; Rizzo, L.; Mazzon, F.; Ferrari, S.; Lussana, F.; Borin, L.; Castelli, A.; Cairoli, R.; Barcellini, W.; et al. Danazol Treatment for Thrombocytopenia in Myelodysplastic Syndromes: Can an “Old-fashioned” Drug be Effective? Hemasphere 2023, 7, e867. [Google Scholar] [CrossRef] [PubMed]
- Sallman, D.A.; Xie, Z. Frontline treatment options for higher-risk MDS: Can we move past azacitidine? Hematol. Am. Soc. Hematol. Educ. Program 2023, 2023, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Merz, A.M.A.; Sébert, M.; Sonntag, J.; Kubasch, A.S.; Platzbecker, U.; Adès, L. Phase to phase: Navigating drug combinations with hypomethylating agents in higher-risk MDS trials for optimal outcomes. Cancer Treat Rev. 2023, 123, 102673. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, A.M.; Mearns, E.S.; Ng, C.D.; Shah, A.; Lamarre, N.; Yellow-Duke, A.; Alrawashdh, N.; Yang, B.; Cheng, W.-H.; Bui, C.N.; et al. Clinical Outcomes in Patients with Refractory Anemia with Excess Blasts (RAEB) Who Receive Hypomethylating Agents (HMAs). Clin. Lymphoma Myeloma Leuk. 2023, 30, 177–186. [Google Scholar] [CrossRef] [PubMed]
- El-Cheikh, J.; Bidaoui, G.; Saleh, M.; Moukalled, N.; Dalle, I.A.; Bazarbachi, A. Venetoclax: A New Partner in the Novel Treatment Era for Acute Myeloid Leukemia and Myelodysplastic Syndrome. Clin. Hematol. Int. 2023, 5, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Li, C.; Yan, J. The efficacy and safety of venetoclax and azacytidine combination treatment in patients with acute myeloid leukemia and myelodysplastic syndrome: Systematic review and meta-analysis. Hematology 2023, 28, 2198098. [Google Scholar] [CrossRef] [PubMed]
- Bewersdorf, J.P.; Zeidan, A.M. Management of patients with higher-risk myelodysplastic syndromes after failure of hypomethylating agents: What is on the horizon? Best Pract. Res. Clin. Haematol. 2021, 34, 101245. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, A.M.; Borate, U.; Pollyea, D.A.; Brunner, A.M.; Roncolato, F.; Garcia, J.S.; Filshie, R.; Odenike, O.; Watson, A.M.; Krishnadasan, R.; et al. A phase 1b study of venetoclax and azacitidine combination in patients with relapsed or refractory myelodysplastic syndromes. Am. J. Hematol. 2023, 98, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Mei, C.; Ye, L.; Ren, Y.; Zhou, X.; Ma, L.; Xu, G.; Xu, W.; Lu, C.; Yang, H.; Luo, Y.; et al. 15-day duration of venetoclax combined with azacitidine in the treatment of relapsed/refractory high-risk myelodysplastic syndromes: A retrospective single-center study. Hematol. Oncol. 2023, 41, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Li, C.; Zhao, Z.; Liu, Y.; Zhang, C.; Yan, J. Efficacy and safety of venetoclax combined with hypomethylating agents for relapse of acute myeloid leukemia and myelodysplastic syndrome post allogeneic hematopoietic stem cell transplantation: A systematic review and meta-analysis. BMC Cancer 2023, 23, 764. [Google Scholar] [CrossRef] [PubMed]
- Bazinet, A.; Desikan, S.P.; Li, Z.; Rodriguez-Sevilla, J.J.; Venugopal, S.; Urrutia, S.; Montalban-Bravo, G.; Sasaki, K.; Chien, K.S.; Hammond, D.; et al. Cytogenetic and molecular associations with outcomes in HR-MDS treated with hypomethylating agents plus venetoclax. Clin. Cancer Res. 2024, 30, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Montalban-Bravo, G.; Jabbour, E.; Borthakur, G.; Kadia, T.; Ravandi, F.; Chien, K.; Pemmaraju, N.; Hammond, D.; Dong, X.Q.; Huang, X.; et al. Phase 1/2 study of CPX-351 for patients with Int-2 or high risk International Prognostic Scoring System myelodysplastic syndromes and chronic myelomonocytic leukaemia after failure to hypomethylating agents. Br. J. Haematol. 2023, 204, 898–909. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Tamari, R.; DeZern, A.E.; Byrne, M.T.; Gooptu, M.; Chen, Y.B.; Deeg, H.J.; Sallman, D.; Gallacher, P.; Wennborg, A.; et al. Eprenetapopt Plus Azacitidine After Allogeneic Hematopoietic Stem-Cell Transplantation for TP53-Mutant Acute Myeloid Leukemia and Myelodysplastic Syndromes. J. Clin. Oncol. 2022, 40, 3985–3993. [Google Scholar] [CrossRef] [PubMed]
- Sallman, D.A.; DeZern, A.E.; Garcia-Manero, G.; Steensma, D.P.; Roboz, G.J.; Sekeres, M.A.; Cluzeau, T.; Sweet, K.L.; McLemore, A.; McGraw, K.L.; et al. Eprenetapopt (APR-246) and Azacitidine in TP53-Mutant Myelodysplastic Syndromes. J. Clin. Oncol. 2021, 39, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Manero, G.; Goldberg, A.D.; Winer, E.S.; Altman, J.K.; Fathi, A.T.; Odenike, O.; Roboz, G.J.; Sweet, K.; Miller, C.; Wennborg, A.; et al. Eprenetapopt combined with venetoclax and azacitidine in TP53-mutated acute myeloid leukaemia: A phase 1, dose-finding and expansion study. Lancet Haematol. 2023, 10, e272–e283. [Google Scholar] [CrossRef] [PubMed]
- Frumm, S.M.; Shimony, S.; Stone, R.M.; DeAngelo, D.J.; Bewersdorf, J.P.; Zeidan, A.M.; Stahl, M. Why do we not have more drugs approved for MDS? A critical viewpoint on novel drug development in MDS. Blood Rev. 2023, 60, 101056. [Google Scholar] [CrossRef] [PubMed]
- Vinchi, F.; Platzbecker, U. Luspatercept: A peaceful revolution in the standard of care for myelodysplastic neoplasms. Hemasphere 2024, 8, e41. [Google Scholar] [CrossRef] [PubMed]
- Niscola, P.; Mazzone, C.; Molica, M.; de Fabritiis, P. New landscapes in the management of myelodysplastic syndromes and chronic myelomonocytic leukemia: Oral decitabine. Future Oncol. 2021, 17, 1973–1975. [Google Scholar] [CrossRef] [PubMed]
- Bataller, A.; Montalban-Bravo, G.; Bazinet, A.; Alvarado, Y.; Chien, K.; Venugopal, S.; Ishizawa, J.; Hammond, D.; Swaminathan, M.; Sasaki, K.; et al. Oral decitabine plus cedazuridine and venetoclax in patients with higher-risk myelodysplastic syndromes or chronic myelomonocytic leukaemia: A single-center, phase 1/2 study. Lancet Haematol. 2024, 2, e186–e195. [Google Scholar] [CrossRef] [PubMed]
- Putnam, C.; Kondeti, L.; Kesler, M.; Varney, M. Modulating the immune system as a therapeutic target for myelodysplastic syndromes and acute myeloid leukemia. Biochem. Cell. Biol. 2023, 101, 481–495. [Google Scholar] [CrossRef] [PubMed]
- Karel, D.; Valburg, C.; Woddor, N.; Nava, V.E.; Aggarwal, A. Myelodysplastic Neoplasms (MDS): The Current and Future Treatment Landscape. Curr. Oncol. 2024, 31, 1971–1993. [Google Scholar] [CrossRef]
BM blasts | 5th edition WHO ^ | ICC 2022 ° | Notations and comments ^ Myelodysplastic syndromes” are termed “myelodysplastic neoplasms” |
<5% | MDS low blasts | MDS-SLD MDS-MLD | ICC 2022 includes single (>10% for one lineage) vs. multilineage dysplasia (>10% for more than one lineage). |
MDS-RS | MDS-RS | ° also in the absence of SF3B1mutation | |
MDS isolated del (5q) | MDS isolated del (5q) | ||
Biallelic TP53 inactivation | |||
5–9% | MDS IB1 | MDS excess of blasts | ^ “increased” instead of “excess” of blasts |
MDS-f | ^ BMF grade 2 or 3 and BM blasts >5% | ||
10–19% | MDS IB2 | ° MDS/AML | |
20% | AML | AML | both classifications adopt this blast cut-off to distinguish MDS from AML. |
Prognostic Characteristics | Points | ||||||
---|---|---|---|---|---|---|---|
0 | 0.5 | 1 | 1.5 | 2 | 3 | 4 | |
Cytogenetic risk category * | Very good | Good | Intermediate | Poor | Very poor | ||
Blasts in bone marrow, % | <2 | >2–5% | 5–10% | 10% | |||
Haemoglobin, g/dL | ≥10 | 8–<10 | <8 | ||||
Platelet count, ×109 | ≥100 | 50–<100 | <50 | ||||
Absolute neutrophil count, ×109 | ≥0.8 | <0.8 | |||||
IPSS-R risk group | Score | Median OS (years) | Median time to 25% AML evolution (years) | ||||
Very low | ≤1.5 | 8.8 | NR | ||||
Low | >1.5–3 | 5.3 | 9.4 | ||||
Intermediate | >3–4.5 | 3.0 | 2.5 | ||||
High | >4.5–6 | 1.6 | 1.7 | ||||
Very high | >6 | 0.8 | 0.7 |
Transplantation Indications |
---|
All MDS patients should be considered for allogeneic SCT. Patients with HR-MDS should be referred at diagnosis or early in the disease course; for those with LR, the referral is less urgent, although they should be closely observed and quickly referred as appropriate. |
Patient-specific considerations |
Eligibility for SCT should not be limited by age nor comorbidities, but the performance status and the severity of the comorbid conditions significantly influence transplant success. |
Disease considerations |
|
Disease-directed therapy and transfusion overload management |
|
Conditioning regimen |
|
Alternative donors |
If an HLA-matched donor is not available, haploidentical relatives, mismatched unrelated donors, and umbilical cord blood can be considered as alternative options. |
Post-transplantation |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niscola, P.; Gianfelici, V.; Giovannini, M.; Piccioni, D.; Mazzone, C.; de Fabritiis, P. Latest Insights and Therapeutic Advances in Myelodysplastic Neoplasms. Cancers 2024, 16, 1563. https://doi.org/10.3390/cancers16081563
Niscola P, Gianfelici V, Giovannini M, Piccioni D, Mazzone C, de Fabritiis P. Latest Insights and Therapeutic Advances in Myelodysplastic Neoplasms. Cancers. 2024; 16(8):1563. https://doi.org/10.3390/cancers16081563
Chicago/Turabian StyleNiscola, Pasquale, Valentina Gianfelici, Marco Giovannini, Daniela Piccioni, Carla Mazzone, and Paolo de Fabritiis. 2024. "Latest Insights and Therapeutic Advances in Myelodysplastic Neoplasms" Cancers 16, no. 8: 1563. https://doi.org/10.3390/cancers16081563
APA StyleNiscola, P., Gianfelici, V., Giovannini, M., Piccioni, D., Mazzone, C., & de Fabritiis, P. (2024). Latest Insights and Therapeutic Advances in Myelodysplastic Neoplasms. Cancers, 16(8), 1563. https://doi.org/10.3390/cancers16081563