Latest Insights and Therapeutic Advances in Myelodysplastic Neoplasms
Abstract
Simple Summary
Abstract
1. Introduction
2. Search Strategy and Selection Criteria
3. Disease Overview and Pathogenesis
4. Diagnosis and Classifications
5. Prognostic Systems and Risk-Stratification
6. Clinical Management
7. Lower-Risk MDS
8. Higher-Risk MDS
9. Allogenic SCT
10. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef] [PubMed]
- Rotter, L.K.; Shimony, S.; Ling, K.; Chen, E.; Shallis, R.M.; Zeidan, A.M.; Stahl, M. Epidemiology and Pathogenesis of Myelodysplastic Syndrome. Cancer J. 2023, 29, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Zhang, Y.; Kallen, M.A.; Emadi, A.; Baer, M.R. Cytogenetics and molecular genetics of myelodysplastic neoplasms. Best Pract. Res. Clin. Haematol. 2023, 36, 101512. [Google Scholar] [CrossRef] [PubMed]
- Bersanelli, M.; Travaglino, E.; Meggendorfer, M.; Matteuzzi, T.; Sala, C.; Mosca, E.; Chiereghin, C.; Di Nanni, N.; Gnocchi, M.; Zampini, M.; et al. Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes. J. Clin. Oncol. 2021, 39, 1223–1233. [Google Scholar] [CrossRef] [PubMed]
- Casalin, I.; De Stefano, A.; Ceneri, E. Deciphering signaling pathways in hematopoietic stem cells: The molecular complexity of Myelodysplastic Syndromes (MDS) and leukemic progression. Adv. Biol. Regul. 2024, 12, 101014. [Google Scholar] [CrossRef]
- Filipek-Gorzała, J.; Kwiecińska, P.; Szade, A.; Szade, K. The dark side of stemness—The role of hematopoietic stem cells in development of blood malignancies. Front. Oncol. 2024, 14, 1308709. [Google Scholar] [CrossRef] [PubMed]
- Fontenay, M.; Farhat, B.; Boussaid, I. Pathophysiology of Myelodysplastic Syndromes. Hemato 2021, 2, 477–495. [Google Scholar] [CrossRef]
- Kanagal-Shamanna, R.; Beck, D.B.; Calvo, K.R. Clonal Hematopoiesis, Inflammation, and Hematologic Malignancy. Annu. Rev. Pathol. 2024, 19, 479–506. [Google Scholar] [CrossRef] [PubMed]
- Guarnera, L.; Jha, B.K. TET2 mutation as prototypic clonal hematopoiesis lesion. Semin. Hematol. 2024, 61, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Kishtagari, A.; Corty, R.W.; Visconte, V. Clonal hematopoiesis and autoimmunity. Semin. Hematol. 2024, 61, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Manero, G. Myelodysplastic syndromes: 2023 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2023, 98, 1307–1325. [Google Scholar] [CrossRef] [PubMed]
- Efficace, F.; Gaidano, G.; Breccia, M.; Criscuolo, M.; Cottone, F.; Caocci, G.; Bowen, D.; Lübbert, M.; Angelucci, E.; Stauder, R.; et al. Prevalence, severity and correlates of fatigue in newly diagnosed patients with myelodysplastic syndromes. Br. J. Haematol. 2015, 168, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Adrianzen-Herrera, D.; Sparks, A.D.; Singh, R.; Alejos-Castillo, D.; Batra, A.; Glushakow-Smith, S.; Pradhan, K.; Shastri, A.; Neil, A. ZakaiImpact of preexisting autoimmune disease on myelodysplastic syndromes outcomes: A population analysis. Blood Adv. 2023, 28, 6913–6922. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Sevilla, J.J.; Colla, S. T cell dysfunctions in myelodysplastic syndromes. Blood 2024, 143, 1329–1343. [Google Scholar] [CrossRef] [PubMed]
- Calabretto, G.; Attardi, E.; Teramo, A.; Trimarco, V.; Carraro, S.; Mossuto, S.; Barilà, G.; Vicenzetto, C.; Gasparini, V.R.; Crugnola, M.; et al. Hypocellular myelodysplastic syndromes (h-MDS): From clinical description to immunological characterization in the Italian multi-center experience. Leukemia 2022, 36, 1947–1950. [Google Scholar] [CrossRef] [PubMed]
- Beck, D.B.; Ferrada, M.A.; Sikora, K.A.; Ombrello, A.K.; Collins, J.C.; Pei, W.; Balanda, N.; Ross, D.L.; Ospina Cardona, D.; Wu, Z.; et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 2020, 383, 2628–2638. [Google Scholar] [CrossRef] [PubMed]
- Loeza-Uribe, M.P.; Hinojosa-Azaola, A.; Sánchez-Hernández, B.E.; Crispín, J.C.; Apodaca-Chávez, E.; Ferrada, M.A.; Martín-Nares, E. VEXAS syndrome: Clinical manifestations, diagnosis, and treatment. Reumatol. Clin. (Engl. Ed.) 2024, 20, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Gurnari, C.; Pascale, M.R.; Vitale, A.; Diral, E.; Tomelleri, A.; Galossi, E.; Falconi, G.; Bruno, A.; Crisafulli, F.; Frassi, M.; et al. Diagnostic capabilities, clinical features, and longitudinal UBA1 clonal dynamics of a nationwide VEXAS cohort. Am. J. Hematol. 2024, 99, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Kanagal-Shamanna, R.; Schafernak, K.T.; Calvo, K.R. Diagnostic work-up of hematological malignancies with underlying germline predisposition disorders (GPD). Semin. Diagn. Pathol. 2023, 40, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Arai, H.; Matsui, H.; Chi, S.; Utsu, Y.; Masuda, S.; Aotsuka, N.; Minami, Y. Germline Variants and Characteristic Features of Hereditary Hematological Malignancy Syndrome. Int. J. Mol. Sci. 2024, 4, 652. [Google Scholar] [CrossRef] [PubMed]
- Gurnari, C.; Robin, M.; Godley, L.A.; Drozd-Sokołowska, J.; Włodarski, M.W.; Raj, K.; Onida, F.; Worel, N.; Ciceri, F.; Carbacioglu, S.; et al. Germline predisposition traits in allogeneic hematopoietic stem-cell transplantation for myelodysplastic syndromes: A survey-based study and position paper on behalf of the Chronic Malignancies Working Party of the EBMT. Lancet Haematol. 2023, 10, e994–e1005. [Google Scholar] [CrossRef] [PubMed]
- Leone, G.; Fabiani, E.; Voso, M.T. De Novo and Therapy-Related Myelodysplastic Syndromes: Analogies and Differences. Mediterr. J. Hematol. Infect. Dis. 2022, 1, e2022030. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Le Beau, M.M.; Huo, D.; Karrison, T.; Sobecks, R.M.; Anastasi, J.; Vardiman, J.W.; Rowley, J.D.; Larson, R.A. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: The University of Chicago series. Blood 2003, 102, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Larson, R.A. Therapy-related myeloid neoplasms. Haematologica 2009, 94, 454–459. [Google Scholar] [CrossRef]
- Dhaliwal, A.; Ravi, S. Myelodysplastic Syndrome After Anti-CD19 Chimeric Antigen Receptor T-cell Therapy: A Case Series. Cureus 2023, 4, e44677. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, A.M.; Al Ali, N.; Barnard, J.; Padron, E.; Lancet, J.E.; Sekeres, M.A.; Steensma, D.P.; DeZern, A.; Roboz, G.; Jabbour, E.; et al. Comparison of clinical outcomes and prognostic utility of risk stratification tools in patients with therapy-related vs de novo myelodysplastic syndromes: A report on behalf of the MDS Clinical Research Consortium. Leukemia 2017, 31, 1391–1397. [Google Scholar] [CrossRef]
- Berggren, D.M.; Garelius, H.; Hjelm, P.W.; Nilsson, L.; Rasmussen, B.; Weibull, C.E.; Lambe, M.; Lehmann, S.; Hellström-Lindberg, E.; Jädersten, M.; et al. Therapy-related MDS dissected based on primary disease and treatment—A nationwide perspective. Leukemia 2023, 37, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Hasserjian, R.P.; Germing, U.; Malcovati, L. Diagnosis and classification of myelodysplastic syndromes. Blood 2023, 142, 2247–2257. [Google Scholar] [CrossRef] [PubMed]
- Yuen, L.D.; Hasserjian, R.P. Morphologic Characteristics of Myelodysplastic Syndromes. Clin. Lab. Med. 2023, 43, 577–596. [Google Scholar] [CrossRef] [PubMed]
- Zavras, P.D.; Sinanidis, I.; Tsakiroglou, P.; Karantanos, T. Understanding the Continuum between High-Risk Myelodysplastic Syndrome and Acute Myeloid Leukemia. Int. J. Mol. Sci. 2023, 6, 5018. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Guo, J.; Zhao, S.; Wang, R.; Wu, D.; Chang, C. Incorporating mutations and bone marrow fibrosis into the revised international prognostic scoring system in myelodysplastic syndromes. Leuk. Lymphoma 2024, 65, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Kayano, H. Histopathology in the diagnosis of high-risk myelodysplastic syndromes. J. Clin. Exp. Hematop. 2018, 58, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Auger, N.; Douet-Guilbert, N.; Quessada, J.; Theisen, O.; Lafage-Pochitaloff, M.; Troadec, M.B. Cytogenetics in the management of myelodysplastic neoplasms (myelodysplastic syndromes, MDS): Guidelines from the groupe francophone de cytogénétique hématologique (GFCH). Curr. Res. Transl. Med. 2023, 71, 103409. [Google Scholar] [CrossRef] [PubMed]
- DeZern, A.E.; Greenberg, P.L. The trajectory of prognostication and risk stratification for patients with myelodysplastic syndromes. Blood 2023, 142, 2258–2267. [Google Scholar] [CrossRef] [PubMed]
- Stahl, M.; Bewersdorf, J.P.; Xie, Z.; Della Porta, M.G.; Komrokji, R.; Xu, M.L.; Abdel-Wahab, O.; Taylor, J.; Steensma, D.P.; Starczynowski, D.T.; et al. Classification, risk stratification and response assessment in myelodysplastic syndromes/neoplasms (MDS): A state-of-the-art report on behalf of the International Consortium for MDS (icMDS). Blood Rev. 2023, 19, 101128. [Google Scholar] [CrossRef] [PubMed]
- Campagna, A.; De Benedittis, D.; Fianchi, L.; Scalzulli, E.; Rizzo, L.; Niscola, P.; Piccioni, A.L.; Di Veroli, A.; Mancini, S.; Villivà, N.; et al. Myelodysplastic Syndromes with Isolated 20q Deletion: A New Clinical–Biological Entity? J. Clin. Med. 2022, 11, 2596. [Google Scholar] [CrossRef] [PubMed]
- Acha, P.; Mallo, M.; Solé, F. Myelodysplastic Syndromes with Isolated del(5q): Value of Molecular Alterations for Diagnostic and Prognostic Assessment. Cancers 2022, 14, 5531. [Google Scholar] [CrossRef] [PubMed]
- Malcovati, L.; Stevenson, K.; Papaemmanuil, E.; Neuberg, D.; Bejar, R.; Boultwood, J.; Bowen, D.T.; Campbell, P.J.; Ebert, B.L.; Fenaux, P.; et al. SF3B1-mutant MDS as a distinct disease subtype: A proposal from the International Working Group for the Prognosis of MDS. Blood 2020, 9, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Chen, M.; Liu, Q.; Jin, Z.; Yang, X.; Zhang, W. SF3B1 mutations in myelodysplastic syndromes: A potential therapeutic target for modulating the entire disease process. Front. Oncol. 2023, 13, 1116438. [Google Scholar] [CrossRef] [PubMed]
- Porwit, A.; Béné, M.C.; Duetz, C.; Matarraz, S.; Oelschlaegel, U.; Westers, T.M.; Wagner-Ballon, O.; Kordasti, S.; Valent, P.; Preijers, F.; et al. Multiparameter flow cytometry in the evaluation of myelodysplasia: Analytical issues: Recommendations from the European LeukemiaNet/International Myelodysplastic Syndrome Flow Cytometry Working Group. Cytometry B Clin. Cytom. 2023, 104, 27–50. [Google Scholar] [CrossRef] [PubMed]
- Bernard, E.; Tuechler, H.; Greenberg, P.L.; Hasserjian, R.P.; Arango Ossa, J.E.; Nannya, Y.; Devlin, S.M.; Creignou, M.; Pinel, P.; Monnier, L.; et al. Molecular international prognostic scoring system for myelodysplastic syndromes. NEJM Evid. 2022, 1, EVIDoa2200008. [Google Scholar] [CrossRef] [PubMed]
- Fattizzo, B.; Levati, G.V.; Giannotta, J.A.; Cassanello, G.; Cro, L.M.; Zaninoni, A.; Barbieri, M.; Croci, G.A.; Revelli, N.; Barcellini, W. Low-Risk Myelodysplastic Syndrome Revisited: Morphological, Autoimmune, and Molecular Features as Predictors of Outcome in a Single Center Experience. Front. Oncol. 2022, 12, 795955. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.B.; Siddon, A.J. Molecular findings in myeloid neoplasms. Int. J. Lab. Hematol. 2023, 45, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Siddon, A.J.; Weinberg, O.K. Diagnosis and Classification of Myelodysplastic Syndromes with Mutated TP53. Clin. Lab. Med. 2023, 43, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Versluis, J.; Lindsley, R.C. Transplant for TP53-mutated MDS and AML: Because we can or because we should? Hematology Am. Soc. Hematol. Educ. Program 2022, 9, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Loschi, M.; Fenaux, P.; Cluzeau, T. How I Treat TP53-Mutated Acute Myeloid Leukemia and Myelodysplastic Syndromes. Cancers 2022, 14, 4519. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.P.; Herrity, E.; Kim, D.D.H. TP53-mutated acute myeloid leukemia and myelodysplastic syndrome: Biology, treatment challenges, and upcoming approaches. Ann. Hematol. 2023, 28, 1049–1067. [Google Scholar] [CrossRef] [PubMed]
- Mortuza, S.; Chin-Yee, B.; James, T.E.; Chin-Yee, I.H.; Hedley, B.D.; Ho, J.M.; Saini, L.; Lazo-Langner, A.; Schenkel, L.; Bhai, P.; et al. Myelodysplastic Neoplasms (MDS) with Ring Sideroblasts or SF3B1 Mutations: The Improved Clinical Utility of World Health Organization and International Consensus Classification 2022 Definitions, a Single-Centre Retrospective Chart Review. Curr. Oncol. 2024, 31, 1762–1773. [Google Scholar] [CrossRef]
- Falini, B.; Martelli, M.P. Comparison of the International Consensus and 5th WHO edition classifications of adult myelodysplastic syndromes and acute myeloid leukemia. Am. J. Hematol. 2023, 98, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Bruehl, F.K.; Osman, M.M.; Chen, D.; Dalland, J.C. The new WHO and ICC classification systems for myelodysplastic syndromes and their impact on the clinical laboratory. J. Hematop. 2023, 16, 65–71. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, Y.; Zhao, K.; Zhou, L.; Zhou, Y.; Xuan, L.; Cao, R.; Xu, J.; Dai, M.; Liu, Q.; et al. Somatic mutations predict prognosis in myelodysplastic syndrome patients with normal karyotypes. Signal Transduct. Target Ther. 2021, 26, 274. [Google Scholar] [CrossRef] [PubMed]
- Toribio-Castelló, S.; Castaño, S.; Villaverde-Ramiro, Á.; Such, E.; Arnán, M.; Solé, F.; Díaz-Beyá, M.; Díez-Campelo, M.; del Rey, M.; González, T.; et al. Mutational Profile Enables the Identification of a High-Risk Subgroup in Myelodysplastic Syndromes with Isolated Trisomy 8. Cancers 2023, 27, 3822. [Google Scholar] [CrossRef] [PubMed]
- Khanna, V.; Lu, R.; Kumar, J.; Molina, A.; Stehr, H.; Spiteri, E.; Spinner, M.; Silva, O.; Fernandez-Pol, S.; Tan, B.; et al. The clinical, molecular, and prognostic features of the 2022 WHO and ICC classification systems for myelodysplastic neoplasms. Leuk. Res. 2024, 136, 107433. [Google Scholar] [CrossRef] [PubMed]
- Nachtkamp, K.; Strupp, C.; Vukelja, M.; Kasprzak, A.; Haase, D.; Ganster, C.; Hildebrandt, B.; Betz, B.; Giagounidis, A.; Aul, C.; et al. The new WHO 2022 and ICC proposals for the classification of myelodysplastic neoplasms. Validation based on the Düsseldorf MDS Registry and proposals for a merged classification. Leukemia 2024, 38, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, P.L.; Tuechler, H.; Schanz, J.; Sanz, G.; Garcia-Manero, G.; Solé, F.; Bennett, J.M.; Bowen, D.; Fenaux, P.; Dreyfus, F.; et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood 2012, 120, 2454–2465. [Google Scholar] [CrossRef] [PubMed]
- Sauta, E.; Robin, M.; Bersanelli, M.; Travaglino, E.; Meggendorfer, M.; Zhao, L.P.; Caballero Berrocal, J.C.; Sala, C.; Maggioni, G.; Bernardi, M.; et al. Real-world validation of Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. J. Clin. Oncol. 2023, 41, 2827–2842. [Google Scholar] [CrossRef] [PubMed]
- Efficace, F.; Cottone, F.; Abel, G.; Niscola, P.; Gaidano, G.; Bonnetain, F.; Anota, A.; Caocci, G.; Cronin, A.; Fianchi, L.; et al. Patient-reported outcomes enhance the survival prediction of traditional disease risk classifications: An international study in patients with myelodysplastic syndromes. Cancer 2018, 124, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Niscola, P.; Mandelli, F.; Efficace, F. Improving accuracy of prognosis in patients with myelodysplastic syndromes using self-reported quality of life data. Opportunities for a new research agenda in developing prognostic models. Expert Rev. Hematol. 2016, 9, 415–417. [Google Scholar] [CrossRef]
- Efficace, F.; Cottone, F.; Oswald, L.B.; Cella, D.; Patriarca, A.; Niscola, P.; Breccia, M.; Platzbecker, U.; Palumbo, G.A.; Caocci, G.; et al. The IPSS-R more accurately captures fatigue severity of newly diagnosed patients with myelodysplastic syndromes compared with the IPSS index. Leukemia 2020, 34, 2451–2459. [Google Scholar] [CrossRef] [PubMed]
- Mosquera Orgueira, A.; Perez Encinas, M.M.; Diaz Varela, N.A.; Mora, E.; Díaz-Beyá, M.; Montoro, M.J.; Pomares, H.; Ramos, F.; Tormo, M.; Jerez, A.; et al. Machine Learning Improves Risk Stratification in Myelodysplastic Neoplasms: An Analysis of the Spanish Group of Myelodysplastic Syndromes. Hemasphere 2023, 7, e961. [Google Scholar] [CrossRef] [PubMed]
- Fenaux, P.; Haase, D.; Santini, V.; Sanz, G.F.; Platzbecker, U.; Mey, U. Myelodysplastic syndromes: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 142–156. [Google Scholar] [CrossRef] [PubMed]
- Hellstrom-Lindberg, E.S.; Kröger, N. Clinical decision-making and treatment of myelodysplastic syndromes. Blood 2023, 142, 2268–2281. [Google Scholar] [CrossRef] [PubMed]
- Oliva, E.N.; Platzbecker, U.; Fenaux, P.; Garcia-Manero, G.; LeBlanc, T.W.; Patel, B.J.; Kubasch, A.S.; Sekeres, M.A. Targeting health-related quality of life in patients with myelodysplastic syndromes—Current knowledge and lessons to be learned. Blood Rev. 2021, 50, 100851. [Google Scholar] [CrossRef] [PubMed]
- Larfors, G.; Berggren, D.M.; Garelius, H.; Nilsson, L.; Rasmussen, B.; Hellström-Lindberg, E.; Ejerblad, E. MDS-Comorbidity Index using register data has prognostic impact in Swedish MDS patients. Leuk. Res. 2023, 134, 107386. [Google Scholar] [CrossRef] [PubMed]
- Niederwieser, C.; Kröger, N. Hematopoietic cell transplantation (HCT) in MDS patients of older age. Leuk. Lymphoma 2024, 5, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H.; Chen, J.; Han, M.Z.; Huang, H.; Jiang, E.L.; Jiang, M.; Lai, Y.R.; Liu, D.H.; Liu, Q.F.; Liu, T.; et al. The consensus from The Chinese Society of Hematology on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation: 2021 update. J. Hematol. Oncol. 2021, 14, 145. [Google Scholar] [CrossRef] [PubMed]
- DeFilipp, Z.; Ciurea, S.O.; Cutler, C.; Robin, M.; Warlick, E.D.; Nakamura, R.; Brunner, A.M.; Dholaria, B.; Walker, A.R.; Kröger, N.; et al. Hematopoietic Cell Transplantation in the Management of Myelodysplastic Syndrome: An Evidence-Based Review from the American Society for Transplantation and Cellular Therapy Committee on Practice Guidelines. Transplant. Cell. Ther. 2023, 29, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Campagna, A.; Della Porta, M.G. Mutational screening to improve the transplantation decision-making process in MDS. Hematol. Am. Soc. Hematol. Educ. Program 2023, 2023, 73–76. [Google Scholar] [CrossRef]
- Gurnari, C.; Koster, L.; Baaij, L.G.A.; Heiblig, M.; Yakoub-Agha, I.; Collin, M.; Passweg, J.R.; Bulabois, C.E.; Khan, A.B.; Loschi, M.; et al. Allogeneic Hematopoietic Cell Transplantation for VEXAS Syndrome: Results of a Multicenter Study of the EBMT. Blood Adv. 2024, 8, 1444–1448. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, M.M.; Santini, V. Targeting ineffective hematopoiesis in myelodysplastic syndromes. Am. J. Hematol. 2022, 97, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Caballero, J.C.; Dávila, J.; López-Pavía, M.; Such, E.; Bernal, T.; Ramos, F.; Calabuig, M.; Hernández Sánchez, J.M.; Pomares, H.; Sánchez Barba, M.; et al. Outcomes and effect of somatic mutations after erythropoiesis stimulating agents in patients with lower-risk myelodysplastic syndromes. Ther. Adv. Hematol. 2024, 15, 20406207231218157. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, E.A. Transfusion avoidance in myelodysplastic neoplasms. Curr. Opin. Hematol. 2024, 31, 40–46. [Google Scholar] [CrossRef]
- Oliva, E.N.; Schey, C.; Hutchings, A.S. A review of anemia as a cardiovascular risk factor in patients with myelodysplastic syndromes. Am. J. Blood Res. 2011, 1, 160–166. [Google Scholar] [PubMed]
- Xiao, C.; Zhang, Y.; Zhao, J.G.; Song, L.X.; Zhao, Y.S.; Jia, Y.; Guo, J.; Han, S.; Li, Z.W.; Guo, C.; et al. Analysis of the influencing factors related to liver and cardiac iron overload in MDS patients detected by MRI in the real world. Hematology 2021, 26, 123–133. [Google Scholar] [CrossRef]
- Cilloni, D.; Ravera, S.; Calabrese, C.; Gaidano, V.; Niscola, P.; Balleari, E.; Gallo, D.; Petiti, J.; Signorino, E.; Rosso, V.; et al. Iron overload alters the energy metabolism in patients with myelodysplastic syndromes: Results from the multicenter FISM BIOFER study. Sci. Rep. 2020, 10, 9156. [Google Scholar] [CrossRef] [PubMed]
- Oliva, E.N.; Huey, K.; Deshpande, S.; Turner, M.; Chitnis, M.; Schiller, E.; Tang, D.; Yucel, A.; Hughes, C.; Shah, F.; et al. A Systematic Literature Review of the Relationship between Serum Ferritin and Outcomes in Myelodysplastic Syndromes. J. Clin. Med. 2022, 11, 895. [Google Scholar] [CrossRef]
- Vijenthira, A.; Starkman, R.; Lin, Y.; Stanworth, S.J.; Bowen, D.; Harrison, L.; Wintrich, S.; Callum, J.; Buckstein, R. Multi-national survey of transfusion experiences and preferences of patients with myelodysplastic syndrome. Transfusion 2022, 62, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
- Brunner, A.M.; Leitch, H.A.; van de Loosdrecht, A.A.; Bonadies, N. Management of patients with lower-risk myelodysplastic syndromes. Blood Cancer J. 2022, 12, 166. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Carraway, H.E. Overview of the Management of Higher-Risk Myelodysplastic Syndromes. Cancer J. 2023, 29, 160–167. [Google Scholar] [CrossRef]
- Wang, C.; Sallman, D.A. Therapeutic approaches for the management of higher-risk myelodysplastic syndromes. Leuk. Lymphoma 2023, 64, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, A.; Andresen, J.; Nachtkamp, K.; Kündgen, A.; Schulz, F.; Strupp, C.; Kobbe, G.; MacKenzie, C.; Timm, J.; Dietrich, S.; et al. Infectious Complications in Patients with Myelodysplastic Syndromes: A Report from the Düsseldorf MDS Registry. Cancers 2024, 16, 808. [Google Scholar] [CrossRef] [PubMed]
- Vijenthira, A.; Premkumar, D.; Callum, J.; Lin, Y.; Wells, R.A.; Chodirker, L.; Lenis, M.; Mamedov, A.; Buckstein, R. The management and outcomes of patients with myelodysplastic syndrome with persistent severe thrombocytopenia: An observational single centre registry study. Leuk. Res. 2019, 76, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Mo, A.; Wood, E.; Shortt, J.; Hu, E.; McQuilten, Z. Platelet transfusions and predictors of bleeding in patients with myelodysplastic syndromes. Eur. J. Haematol. 2023, 111, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Oliva, E.N.; Riva, M.; Niscola, P.; Santini, V.; Breccia, M.; Giai, V.; Poloni, A.; Patriarca, A.; Crisà, E.; Capodanno, I.; et al. Eltrombopag for Low-Risk Myelodysplastic Syndromes with Thrombocytopenia: Interim Results of a Phase II, Randomized, Placebo-Controlled Clinical Trial (EQOL-MDS). J. Clin. Oncol. 2023, 41, 4486–4496. [Google Scholar] [CrossRef] [PubMed]
- Niscola, P.; Tendas, A.; Giovannini, M.; Cupelli, L.; Trawinska, M.M.; Palombi, M.; Scaramucci, L.; Brunetti, G.A.; Perrotti, A.; Neri, B.; et al. Transfusions at home in patients with myelodysplastic syndromes. Leuk. Res. 2012, 36, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Greenberg, P.; Yucel, A.; Farmer, C.; O’Neill, F.; De Oliveira Brandao, C.; Fenaux, P. Clinical effectiveness and safety of erythropoietin-stimulating agents for the treatment of low- and intermediate-1-risk myelodysplastic syndrome: A systematic literature review. Br. J. Haematol. 2019, 184, 134–160. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Hamel, J.F.; Toma, A.; Kelaidi, C.; Thépot, S.; Campelo, M.D.; Santini, V.; Sekeres, M.A.; Balleari, E.; Kaivers, J.; et al. Outcome of Lower-Risk Patients with Myelodysplastic Syndromes Without 5q Deletion After Failure of Erythropoiesis-Stimulating Agents. J. Clin. Oncol. 2017, 35, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
- Gurnari, C.; Piciocchi, A.; Soddu, S.; Bonanni, F.; Scalzulli, E.; Niscola, P.; Di Veroli, A.; Piccioni, A.L.; Piedimonte, M.; Maiorana, G.; et al. Myelodysplastic syndromes with del(5q): A real-life study of determinants of long-term outcomes and response to lenalidomide. Blood Cancer J. 2022, 12, 132. [Google Scholar] [CrossRef] [PubMed]
- Fenaux, P.; Platzbecker, U.; Mufti, G.J.; Garcia-Manero, G.; Buckstein, R.; Santini, V.; Díez-Campelo, M.; Finelli, C.; Cazzola, M.; Ilhan, O.; et al. Luspatercept in Patients with Lower-Risk Myelodysplastic Syndromes. N. Engl. J. Med. 2020, 382, 140–151. [Google Scholar] [CrossRef]
- Santini, V.; Almeida, A.; Giagounidis, A.; Gröpper, S.; Jonasova, A.; Vey, N.; Mufti, G.J.; Buckstein, R.; Mittelman, M.; Platzbecker, U.; et al. Randomized phase III study of lenalidomide versus placebo in RBC transfusion-dependent patients with lower-risk non-del(5q) myelodysplastic syndromes and ineligible for or refractory to erythropoiesis-stimulating agents. J. Clin. Oncol. 2016, 34, 2988–2996. [Google Scholar] [CrossRef]
- Santini, V.; Giagounidis, A.; Pelligra, C.G.; Franco-Villalobos, C.; Tang, D.; Morison, J.; Beach, C.L.; Hu, A.; Platzbecker, U.; Fenaux, P. Impact of Lenalidomide Treatment on Overall Survival in Patients with Lower-Risk, Transfusion-Dependent Myelodysplastic Syndromes. Clin. Lymphoma Myeloma Leuk. 2022, 22, e874–e883. [Google Scholar] [CrossRef] [PubMed]
- Santini, V.; Fenaux, P.; Giagounidis, A.; Platzbecker, U.; List, A.F.; Haferlach, T.; Zhong, J.; Wu, C.; Mavrommatis, K.; Beach, C.L.; et al. Impact of somatic mutations on response to lenalidomide in lower-risk non-del(5q) myelodysplastic syndromes patients. Leukemia 2021, 35, 897–900. [Google Scholar] [CrossRef] [PubMed]
- List, A.F.; Sun, Z.; Verma, A.; Bennett, J.M.; Komrokji, R.S.; McGraw, K.; Maciejewski, J.; Altman, J.K.; Cheema, P.S.; Claxton, D.F.; et al. Lenalidomide-Epoetin Alfa Versus Lenalidomide Monotherapy in Myelodysplastic Syndromes Refractory to Recombinant Erythropoietin. J. Clin. Oncol. 2021, 39, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- van de Loosdrecht, A.A.; Cremers, E.M.P.; Alhan, C.; Duetz, C.; Int’Hout, F.E.M.; Visser-Wisselaar, H.A.; Chitu, D.A.; Verbrugge, A.; Cunha, S.M.; Ossenkoppele, G.J.; et al. Determinants of lenalidomide response with or without erythropoiesis-stimulating agents in myelodysplastic syndromes: The HOVON89 trial. Leukemia 2024, 38, 840–850. [Google Scholar] [CrossRef] [PubMed]
- Oliva, E.N.; Platzbecker, U.; Garcia-Manero, G.; Mufti, G.J.; Santini, V.; Sekeres, M.A.; Komrokji, R.S.; Shetty, J.K.; Tang, D.; Guo, S.; et al. Health-Related Quality of Life Outcomes in Patients with Myelodysplastic Syndromes with Ring Sideroblasts Treated with Luspatercept in the MEDALIST Phase 3 Trial. J. Clin. Med. 2021, 11, 27. [Google Scholar] [CrossRef] [PubMed]
- Platzbecker, U.; Della Porta, M.G.; Santini, V.; Zeidan, A.M.; Komrokji, R.S.; Shortt, J.; Valcarcel, D.; Jonasova, A.; Dimicoli-Salazar, S.; Tiong, I.S.; et al. Efficacy and safety of luspatercept versus epoetin alfa in erythropoiesis-stimulating agent-naive, transfusion-dependent, lower-risk myelodysplastic syndromes (COMMANDS): Interim analysis of a phase 3, open-label, randomised controlled trial. Lancet 2023, 402, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Platzbecker, U.; Santini, V.; Fenaux, P.; Sekeres, M.A.; Savona, M.R.; Madanat, Y.F.; Díez-Campelo, M.; Valcárcel, D.; Illmer, T.; Jonášová, A.; et al. Imetelstat in patients with lower-risk myelodysplastic syndromes who have relapsed or are refractory to erythropoiesis-stimulating agents (IMerge): A multinational, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2024, 403, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Jabbour, E.; Montalban-Bravo, G.; Darbaniyan, F.; Do, K.-A.; Class, C.; Short, N.J.; Kanagal-Shamana, R.; Kadia, T.; Borthakur, G.; et al. Low-Dose Decitabine versus Low-Dose Azacitidine in Lower-Risk MDS. NEJM Evid. 2022, 1, EVIDoa2200034. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, E.; Li, J.; Greenberg, P.; Wu, D.; Hou, M.; Montano Figueroa, E.H.; Rodriguez, M.G.; Dong, X.; Ghosh, J.; Izquierdo, M.; et al. Iron Chelation in Transfusion-Dependent Patients with Low- to Intermediate-1-Risk Myelodysplastic Syndromes: A Randomized Trial. Ann. Intern. Med. 2020, 172, 513–522. [Google Scholar] [CrossRef]
- Schulz, F.; Hauch, U.; Ketzler-Henkel, S.; von der Heyde, E.; Koenigsmann, M.; Lauseker, M.; Schulte, N.; Germing, U. Iron Chelation in Patients with Myelodysplastic Syndromes and Myeloproliferative Neoplasms-Real-World Data from the German Noninterventional Study EXCALIBUR. J. Clin. Med. 2023, 12, 6569. [Google Scholar] [CrossRef] [PubMed]
- Riva, M.; Bosi, A.; Rizzo, L.; Mazzon, F.; Ferrari, S.; Lussana, F.; Borin, L.; Castelli, A.; Cairoli, R.; Barcellini, W.; et al. Danazol Treatment for Thrombocytopenia in Myelodysplastic Syndromes: Can an “Old-fashioned” Drug be Effective? Hemasphere 2023, 7, e867. [Google Scholar] [CrossRef] [PubMed]
- Sallman, D.A.; Xie, Z. Frontline treatment options for higher-risk MDS: Can we move past azacitidine? Hematol. Am. Soc. Hematol. Educ. Program 2023, 2023, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Merz, A.M.A.; Sébert, M.; Sonntag, J.; Kubasch, A.S.; Platzbecker, U.; Adès, L. Phase to phase: Navigating drug combinations with hypomethylating agents in higher-risk MDS trials for optimal outcomes. Cancer Treat Rev. 2023, 123, 102673. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, A.M.; Mearns, E.S.; Ng, C.D.; Shah, A.; Lamarre, N.; Yellow-Duke, A.; Alrawashdh, N.; Yang, B.; Cheng, W.-H.; Bui, C.N.; et al. Clinical Outcomes in Patients with Refractory Anemia with Excess Blasts (RAEB) Who Receive Hypomethylating Agents (HMAs). Clin. Lymphoma Myeloma Leuk. 2023, 30, 177–186. [Google Scholar] [CrossRef] [PubMed]
- El-Cheikh, J.; Bidaoui, G.; Saleh, M.; Moukalled, N.; Dalle, I.A.; Bazarbachi, A. Venetoclax: A New Partner in the Novel Treatment Era for Acute Myeloid Leukemia and Myelodysplastic Syndrome. Clin. Hematol. Int. 2023, 5, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Li, C.; Yan, J. The efficacy and safety of venetoclax and azacytidine combination treatment in patients with acute myeloid leukemia and myelodysplastic syndrome: Systematic review and meta-analysis. Hematology 2023, 28, 2198098. [Google Scholar] [CrossRef] [PubMed]
- Bewersdorf, J.P.; Zeidan, A.M. Management of patients with higher-risk myelodysplastic syndromes after failure of hypomethylating agents: What is on the horizon? Best Pract. Res. Clin. Haematol. 2021, 34, 101245. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, A.M.; Borate, U.; Pollyea, D.A.; Brunner, A.M.; Roncolato, F.; Garcia, J.S.; Filshie, R.; Odenike, O.; Watson, A.M.; Krishnadasan, R.; et al. A phase 1b study of venetoclax and azacitidine combination in patients with relapsed or refractory myelodysplastic syndromes. Am. J. Hematol. 2023, 98, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Mei, C.; Ye, L.; Ren, Y.; Zhou, X.; Ma, L.; Xu, G.; Xu, W.; Lu, C.; Yang, H.; Luo, Y.; et al. 15-day duration of venetoclax combined with azacitidine in the treatment of relapsed/refractory high-risk myelodysplastic syndromes: A retrospective single-center study. Hematol. Oncol. 2023, 41, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Li, C.; Zhao, Z.; Liu, Y.; Zhang, C.; Yan, J. Efficacy and safety of venetoclax combined with hypomethylating agents for relapse of acute myeloid leukemia and myelodysplastic syndrome post allogeneic hematopoietic stem cell transplantation: A systematic review and meta-analysis. BMC Cancer 2023, 23, 764. [Google Scholar] [CrossRef] [PubMed]
- Bazinet, A.; Desikan, S.P.; Li, Z.; Rodriguez-Sevilla, J.J.; Venugopal, S.; Urrutia, S.; Montalban-Bravo, G.; Sasaki, K.; Chien, K.S.; Hammond, D.; et al. Cytogenetic and molecular associations with outcomes in HR-MDS treated with hypomethylating agents plus venetoclax. Clin. Cancer Res. 2024, 30, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Montalban-Bravo, G.; Jabbour, E.; Borthakur, G.; Kadia, T.; Ravandi, F.; Chien, K.; Pemmaraju, N.; Hammond, D.; Dong, X.Q.; Huang, X.; et al. Phase 1/2 study of CPX-351 for patients with Int-2 or high risk International Prognostic Scoring System myelodysplastic syndromes and chronic myelomonocytic leukaemia after failure to hypomethylating agents. Br. J. Haematol. 2023, 204, 898–909. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Tamari, R.; DeZern, A.E.; Byrne, M.T.; Gooptu, M.; Chen, Y.B.; Deeg, H.J.; Sallman, D.; Gallacher, P.; Wennborg, A.; et al. Eprenetapopt Plus Azacitidine After Allogeneic Hematopoietic Stem-Cell Transplantation for TP53-Mutant Acute Myeloid Leukemia and Myelodysplastic Syndromes. J. Clin. Oncol. 2022, 40, 3985–3993. [Google Scholar] [CrossRef] [PubMed]
- Sallman, D.A.; DeZern, A.E.; Garcia-Manero, G.; Steensma, D.P.; Roboz, G.J.; Sekeres, M.A.; Cluzeau, T.; Sweet, K.L.; McLemore, A.; McGraw, K.L.; et al. Eprenetapopt (APR-246) and Azacitidine in TP53-Mutant Myelodysplastic Syndromes. J. Clin. Oncol. 2021, 39, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Manero, G.; Goldberg, A.D.; Winer, E.S.; Altman, J.K.; Fathi, A.T.; Odenike, O.; Roboz, G.J.; Sweet, K.; Miller, C.; Wennborg, A.; et al. Eprenetapopt combined with venetoclax and azacitidine in TP53-mutated acute myeloid leukaemia: A phase 1, dose-finding and expansion study. Lancet Haematol. 2023, 10, e272–e283. [Google Scholar] [CrossRef] [PubMed]
- Frumm, S.M.; Shimony, S.; Stone, R.M.; DeAngelo, D.J.; Bewersdorf, J.P.; Zeidan, A.M.; Stahl, M. Why do we not have more drugs approved for MDS? A critical viewpoint on novel drug development in MDS. Blood Rev. 2023, 60, 101056. [Google Scholar] [CrossRef] [PubMed]
- Vinchi, F.; Platzbecker, U. Luspatercept: A peaceful revolution in the standard of care for myelodysplastic neoplasms. Hemasphere 2024, 8, e41. [Google Scholar] [CrossRef] [PubMed]
- Niscola, P.; Mazzone, C.; Molica, M.; de Fabritiis, P. New landscapes in the management of myelodysplastic syndromes and chronic myelomonocytic leukemia: Oral decitabine. Future Oncol. 2021, 17, 1973–1975. [Google Scholar] [CrossRef] [PubMed]
- Bataller, A.; Montalban-Bravo, G.; Bazinet, A.; Alvarado, Y.; Chien, K.; Venugopal, S.; Ishizawa, J.; Hammond, D.; Swaminathan, M.; Sasaki, K.; et al. Oral decitabine plus cedazuridine and venetoclax in patients with higher-risk myelodysplastic syndromes or chronic myelomonocytic leukaemia: A single-center, phase 1/2 study. Lancet Haematol. 2024, 2, e186–e195. [Google Scholar] [CrossRef] [PubMed]
- Putnam, C.; Kondeti, L.; Kesler, M.; Varney, M. Modulating the immune system as a therapeutic target for myelodysplastic syndromes and acute myeloid leukemia. Biochem. Cell. Biol. 2023, 101, 481–495. [Google Scholar] [CrossRef] [PubMed]
- Karel, D.; Valburg, C.; Woddor, N.; Nava, V.E.; Aggarwal, A. Myelodysplastic Neoplasms (MDS): The Current and Future Treatment Landscape. Curr. Oncol. 2024, 31, 1971–1993. [Google Scholar] [CrossRef]
BM blasts | 5th edition WHO ^ | ICC 2022 ° | Notations and comments ^ Myelodysplastic syndromes” are termed “myelodysplastic neoplasms” |
<5% | MDS low blasts | MDS-SLD MDS-MLD | ICC 2022 includes single (>10% for one lineage) vs. multilineage dysplasia (>10% for more than one lineage). |
MDS-RS | MDS-RS | ° also in the absence of SF3B1mutation | |
MDS isolated del (5q) | MDS isolated del (5q) | ||
Biallelic TP53 inactivation | |||
5–9% | MDS IB1 | MDS excess of blasts | ^ “increased” instead of “excess” of blasts |
MDS-f | ^ BMF grade 2 or 3 and BM blasts >5% | ||
10–19% | MDS IB2 | ° MDS/AML | |
20% | AML | AML | both classifications adopt this blast cut-off to distinguish MDS from AML. |
Prognostic Characteristics | Points | ||||||
---|---|---|---|---|---|---|---|
0 | 0.5 | 1 | 1.5 | 2 | 3 | 4 | |
Cytogenetic risk category * | Very good | Good | Intermediate | Poor | Very poor | ||
Blasts in bone marrow, % | <2 | >2–5% | 5–10% | 10% | |||
Haemoglobin, g/dL | ≥10 | 8–<10 | <8 | ||||
Platelet count, ×109 | ≥100 | 50–<100 | <50 | ||||
Absolute neutrophil count, ×109 | ≥0.8 | <0.8 | |||||
IPSS-R risk group | Score | Median OS (years) | Median time to 25% AML evolution (years) | ||||
Very low | ≤1.5 | 8.8 | NR | ||||
Low | >1.5–3 | 5.3 | 9.4 | ||||
Intermediate | >3–4.5 | 3.0 | 2.5 | ||||
High | >4.5–6 | 1.6 | 1.7 | ||||
Very high | >6 | 0.8 | 0.7 |
Transplantation Indications |
---|
All MDS patients should be considered for allogeneic SCT. Patients with HR-MDS should be referred at diagnosis or early in the disease course; for those with LR, the referral is less urgent, although they should be closely observed and quickly referred as appropriate. |
Patient-specific considerations |
Eligibility for SCT should not be limited by age nor comorbidities, but the performance status and the severity of the comorbid conditions significantly influence transplant success. |
Disease considerations |
|
Disease-directed therapy and transfusion overload management |
|
Conditioning regimen |
|
Alternative donors |
If an HLA-matched donor is not available, haploidentical relatives, mismatched unrelated donors, and umbilical cord blood can be considered as alternative options. |
Post-transplantation |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niscola, P.; Gianfelici, V.; Giovannini, M.; Piccioni, D.; Mazzone, C.; de Fabritiis, P. Latest Insights and Therapeutic Advances in Myelodysplastic Neoplasms. Cancers 2024, 16, 1563. https://doi.org/10.3390/cancers16081563
Niscola P, Gianfelici V, Giovannini M, Piccioni D, Mazzone C, de Fabritiis P. Latest Insights and Therapeutic Advances in Myelodysplastic Neoplasms. Cancers. 2024; 16(8):1563. https://doi.org/10.3390/cancers16081563
Chicago/Turabian StyleNiscola, Pasquale, Valentina Gianfelici, Marco Giovannini, Daniela Piccioni, Carla Mazzone, and Paolo de Fabritiis. 2024. "Latest Insights and Therapeutic Advances in Myelodysplastic Neoplasms" Cancers 16, no. 8: 1563. https://doi.org/10.3390/cancers16081563
APA StyleNiscola, P., Gianfelici, V., Giovannini, M., Piccioni, D., Mazzone, C., & de Fabritiis, P. (2024). Latest Insights and Therapeutic Advances in Myelodysplastic Neoplasms. Cancers, 16(8), 1563. https://doi.org/10.3390/cancers16081563