The Current and Prospective Adjuvant Therapies for Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Risk Factors
2.1. Nature of Liver Cancer Etiology
2.2. Risk Factors for HCC Recurrence
3. Adjuvant Local Treatments
3.1. Transcatheter Arterial Chemoembolization
3.2. Hepatic Arterial Infusion Chemotherapy and Portal Vein Infusion Chemotherapy (PVC)
3.2.1. HAIC in Postoperative Adjuvant Treatment
3.2.2. Portal Vein Infusion Chemotherapy in Postoperative Adjuvant Treatment for HCC with Portal Vein Tumor Thrombosis
3.2.3. Meta-Analysis and Randomized Controlled Trial
3.3. Radiotherapy
4. Adjuvant Systemic Therapy
4.1. Target Therapy
4.1.1. Sorafenib
4.1.2. Apatinib
4.1.3. Lenvatinib
4.2. Immunotherapy
4.3. Chemotherapy
4.3.1. Uracil–Tegafur Adjuvant Chemotherapy
4.3.2. Oral Capecitabine Adjuvant Therapy
4.3.3. Adjuvant Chemotherapy after Liver Transplantation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HCC | Hepatocellular carcinoma |
HBV | Hepatitis B virus |
HCV | Hepatitis C virus |
NAFLD | Non-alcoholic fatty liver disease |
MVI | Microvascular invasion |
References
- Chidambaranathan-Reghupaty, S.; Fisher, P.B.; Sarkar, D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv. Cancer Res. 2021, 149, 1–61. [Google Scholar] [CrossRef]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73 (Suppl. S1), 4–13. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.Q.; Chen, Z.L.; Feng, Z.H.; Diao, Y.K.; Li, C.; Sun, H.Y.; Zhong, J.H.; Chen, T.H.; Gu, W.M.; Zhou, Y.H.; et al. Clinical Features of Recurrence after Hepatic Resection for Early-Stage Hepatocellular Carcinoma and Long-Term Survival Outcomes of Patients with Recurrence: A Multi-institutional Analysis. Ann. Surg. Oncol. 2022, 29, 4291–4303, Erratum in Ann. Surg. Oncol. 2022, 29, 5206. [Google Scholar] [CrossRef]
- Lucatelli, P.; Guiu, B. 2022 Update of BCLC Treatment Algorithm of HCC: What’s New for Interventional Radiologists? Cardiovasc. Interv. Radiol. 2022, 45, 275–276. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef]
- Zeng, G.; Zou, B.; Li, Y.; Lin, E.; Liu, X.; Li, P.; Chen, J.; Zhang, B.; Jia, Y.; Cai, C.; et al. Efficacy of Adjuvant Transarterial Chemoembolization after Radical Hepatectomy in Solitary Hepatocellular Carcinoma Patients: A Retrospective Study. J. Investig. Surg. 2022, 35, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Akateh, C.; Black, S.M.; Conteh, L.; Miller, E.D.; Noonan, A.; Elliott, E.; Pawlik, T.M.; Tsung, A.; Cloyd, J.M. Neoadjuvant and adjuvant treatment strategies for hepatocellular carcinoma. World J. Gastroenterol. 2019, 25, 3704–3721. [Google Scholar] [CrossRef]
- Liu, C.; Sun, L.; Xu, J.; Zhao, Y. Clinical efficacy of postoperative adjuvant transcatheter arterial chemoembolization on hepatocellular carcinoma. World J. Surg. Oncol. 2016, 14, 100. [Google Scholar] [CrossRef]
- Liu, Z.H.; Chai, Z.T.; Feng, J.K.; Hou, Y.C.; Zhang, X.P.; Chen, Z.H.; Xiang, Y.J.; Guo, W.X.; Shi, J.; Cheng, S.Q. A reasonable identification of the early recurrence time based on microvascular invasion for hepatocellular carcinoma after R0 resection: A multicenter retrospective study. Cancer Med. 2023, 12, 10294–10302. [Google Scholar] [CrossRef]
- Ye, J.Z.; Chen, J.Z.; Li, Z.H.; Bai, T.; Chen, J.; Zhu, S.L.; Li, L.Q.; Wu, F.X. Efficacy of postoperative adjuvant transcatheter arterial chemoembolization in hepatocellular carcinoma patients with microvascular invasion. World J. Gastroenterol. 2017, 23, 7415–7424. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.M.; Mo, N.; Zeng, J.; Ma, F.C.; Jiang, Y.F.; Huang, H.S.; Liao, X.W.; Zhu, G.Z.; Ma, J.; Peng, T. Advances in postoperative adjuvant therapy for primary liver cancer. World J. Gastrointest. Oncol. 2022, 14, 1604–1621. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Ma, T.; Zhang, J.; Zhang, X.; Chen, W.; Shen, Y.; Bai, X.; Liang, T. A systematic review and meta-analysis of adjuvant transarterial chemoembolization after curative resection for patients with hepatocellular carcinoma. Hepato Pancreato Biliary 2020, 22, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.F.; Liu, X.L.; Shen, F.; Fan, J.; Ling, C.Q. Traditional herbal medicine prevents postoperative recurrence of small hepatocellular carcinoma: A randomized controlled study. Cancer 2018, 124, 2161–2168. [Google Scholar] [CrossRef]
- Feng, L.H.; Zhu, Y.Y.; Zhou, J.M.; Wang, M.; Xu, W.Q.; Zhang, T.; Mao, A.R.; Cong, W.M.; Dong, H.; Wang, L. Adjuvant TACE may not improve recurrence-free or overall survival in HCC patients with low risk of recurrence after hepatectomy. Front. Oncol. 2023, 13, 1104492. [Google Scholar] [CrossRef]
- Chen, Z.H.; Zhang, X.P.; Zhou, T.F.; Wang, K.; Wang, H.; Chai, Z.T.; Shi, J.; Guo, W.X.; Cheng, S.Q. Adjuvant transarterial chemoembolization improves survival outcomes in hepatocellular carcinoma with microvascular invasion: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2019, 45, 2188–2196. [Google Scholar] [CrossRef] [PubMed]
- Hirokawa, F.; Komeda, K.; Taniguchi, K.; Asakuma, M.; Shimizu, T.; Inoue, Y.; Kagota, S.; Tomioka, A.; Yamamoto, K.; Uchiyama, K. Is Postoperative Adjuvant Transcatheter Arterial Infusion Therapy Effective for Patients with Hepatocellular Carcinoma who Underwent Hepatectomy? A Prospective Randomized Controlled Trial. Ann. Surg. Oncol. 2020, 27, 4143–4152. [Google Scholar] [CrossRef] [PubMed]
- Kolarich, A.; Frangakis, C.; Yarchoan, M.; Hong, K.; Georgiades, C. Transarterial Chemoembolization in Patients with Hepatocellular Carcinoma with Intra-atrial Tumor Extension: Imaging Response and Oncologic Outcomes. J. Vasc. Interv. Radiol. 2021; 32, 1203–1208.e1201. [Google Scholar] [CrossRef]
- Li, L.; Li, B.; Zhang, M. Postoperative adjuvant transarterial chemoembolization improves the prognosis of hepatocellular carcinoma patients with microvascular invasion: A systematic review and meta-analysis. Acta Radiol. 2020, 61, 723–731. [Google Scholar] [CrossRef]
- Li, S.; Mei, J.; Wang, Q.; Guo, Z.; Lu, L.; Ling, Y.; Xu, L.; Chen, M.; Zheng, L.; Lin, W.; et al. Postoperative Adjuvant Transarterial Infusion Chemotherapy with FOLFOX Could Improve Outcomes of Hepatocellular Carcinoma Patients with Microvascular Invasion: A Preliminary Report of a Phase III, Randomized Controlled Clinical Trial. Ann. Surg. Oncol. 2020, 27, 5183–5190. [Google Scholar] [CrossRef]
- Li, S.H.; Mei, J.; Cheng, Y.; Li, Q.; Wang, Q.X.; Fang, C.K.; Lei, Q.C.; Huang, H.K.; Cao, M.R.; Luo, R.; et al. Postoperative Adjuvant Hepatic Arterial Infusion Chemotherapy with FOLFOX in Hepatocellular Carcinoma with Microvascular Invasion: A Multicenter, Phase III, Randomized Study. J. Clin. Oncol. 2023, 41, 1898–1908. [Google Scholar] [CrossRef]
- Khan, A.R.; Wei, X.; Xu, X. Portal Vein Tumor Thrombosis and Hepatocellular Carcinoma—The Changing Tides. J. Hepatocell. Carcinoma 2021, 8, 1089–1115. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, P.X.; Cheng, J.W.; Sun, Y.F.; Hu, B.; Guo, W.; Zhou, K.Q.; Yin, Y.; Li, Y.C.; Wang, J.; et al. Chemotherapeutic perfusion of portal vein after tumor thrombectomy and hepatectomy benefits patients with advanced hepatocellular carcinoma: A propensity score-matched survival analysis. Cancer Med. 2019, 8, 6933–6944. [Google Scholar] [CrossRef]
- Yu, W.; Wang, W.; Rong, W.; Wang, L.; Xu, Q.; Wu, F.; Liu, L.; Wu, J. Adjuvant radiotherapy in centrally located hepatocellular carcinomas after hepatectomy with narrow margin (<1 cm): A prospective randomized study. J. Am. Coll. Surg. 2014; 218, 381–392. [Google Scholar] [CrossRef]
- Rong, W.; Yu, W.; Wang, L.; Wu, F.; Zhang, K.; Chen, B.; Miao, C.; Liu, L.; An, S.; Tao, C.; et al. Adjuvant radiotherapy in central hepatocellular carcinoma after narrow-margin hepatectomy: A 10-year real-world evidence. Chin. J. Cancer Res. 2020, 32, 645–653. [Google Scholar] [CrossRef]
- Chen, B.; Wu, J.X.; Cheng, S.H.; Wang, L.M.; Rong, W.Q.; Wu, F.; Wang, S.L.; Jin, J.; Liu, Y.P.; Song, Y.W.; et al. Phase 2 Study of Adjuvant Radiotherapy Following Narrow-Margin Hepatectomy in Patients with HCC. Hepatology 2021, 74, 2595–2604. [Google Scholar] [CrossRef]
- Facciorusso, A.; Tartaglia, N.; Villani, R.; Serviddio, G.; Ramai, D.; Mohan, B.P.; Chandan, S.; Abd El Aziz, M.A.; Evangelista, J.; Cotsoglou, C.; et al. Lenvatinib versus sorafenib as first-line therapy of advanced hepatocellular carcinoma: A systematic review and meta-analysis. Am. J. Transl. Res. 2021, 13, 2379–2387. [Google Scholar] [PubMed]
- Bruix, J.; Takayama, T.; Mazzaferro, V.; Chau, G.Y.; Yang, J.; Kudo, M.; Cai, J.; Poon, R.T.; Han, K.H.; Tak, W.Y.; et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): A phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2015, 16, 1344–1354. [Google Scholar] [CrossRef] [PubMed]
- Pinyol, R.; Montal, R.; Bassaganyas, L.; Sia, D.; Takayama, T.; Chau, G.Y.; Mazzaferro, V.; Roayaie, S.; Lee, H.C.; Kokudo, N.; et al. Molecular predictors of prevention of recurrence in HCC with sorafenib as adjuvant treatment and prognostic factors in the phase 3 STORM trial. Gut 2019, 68, 1065–1075. [Google Scholar] [CrossRef]
- Zhang, X.P.; Chai, Z.T.; Gao, Y.Z.; Chen, Z.H.; Wang, K.; Shi, J.; Guo, W.X.; Zhou, T.F.; Ding, J.; Cong, W.M.; et al. Postoperative adjuvant sorafenib improves survival outcomes in hepatocellular carcinoma patients with microvascular invasion after R0 liver resection: A propensity score matching analysis. Hepato Pancreato Biliary 2019, 21, 1687–1696. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.N.; Chuang, S.C.; Lee, K.T. Efficacy of sorafenib as adjuvant therapy to prevent early recurrence of hepatocellular carcinoma after curative surgery: A pilot study. Hepatol. Res. 2014, 44, 523–531. [Google Scholar] [CrossRef]
- Li, J.; Hou, Y.; Cai, X.B.; Liu, B. Sorafenib after resection improves the outcome of BCLC stage C hepatocellular carcinoma. World J. Gastroenterol. 2016, 22, 4034–4040. [Google Scholar] [CrossRef]
- Wang, D.; Jia, W.; Wang, Z.; Wen, T.; Ding, W.; Xia, F.; Zhang, L.; Wu, F.; Peng, T.; Liu, B.; et al. Retrospective analysis of sorafenib efficacy and safety in Chinese patients with high recurrence rate of post-hepatic carcinectomy. OncoTargets Ther. 2019, 12, 5779–5791. [Google Scholar] [CrossRef]
- Sun, H.C.; Zhu, X.D.; Zhou, J.; Gao, Q.; Shi, Y.H.; Ding, Z.B.; Huang, C.; Qiu, S.J.; Ren, N.; Shi, G.M.; et al. Adjuvant apatinib treatment after resection of hepatocellular carcinoma with portal vein tumor thrombosis: A phase II trial. Ann. Transl. Med. 2020, 8, 1301. [Google Scholar] [CrossRef]
- Dai, M.G.; Liu, S.Y.; Lu, W.F.; Liang, L.; Ye, B. Survival Benefits from Adjuvant Lenvatinib for Patients with Hepatocellular Carcinoma and Microvascular Invasion after Curative Hepatectomy. Clin. Med. Insights Oncol. 2023, 17, 11795549231180351. [Google Scholar] [CrossRef]
- Xia, F.; Wu, L.L.; Lau, W.Y.; Huan, H.B.; Wen, X.D.; Ma, K.S.; Li, X.W.; Bie, P. Adjuvant sorafenib after heptectomy for Barcelona Clinic Liver Cancer-stage C hepatocellular carcinoma patients. World J. Gastroenterol. 2016, 22, 5384–5392. [Google Scholar] [CrossRef]
- Bai, S.; Hu, L.; Liu, J.; Sun, M.; Sun, Y.; Xue, F. Prognostic Nomograms Combined Adjuvant Lenvatinib for Hepatitis B Virus-related Hepatocellular Carcinoma with Microvascular Invasion after Radical Resection. Front. Oncol. 2022, 12, 919824. [Google Scholar] [CrossRef]
- Cai, L.; Li, H.; Guo, J.; Zhao, W.; Li, Y.; Duan, Y.; Hou, X.; Cheng, L.; Du, H.; Shao, X.; et al. 176P Effect of adjuvant lenvatinib (LEN) on tumour recurrence in patients with hepatocellular carcinoma (HCC) and high residual alpha-fetoprotein (AFP) following resection or ablation: A single-center, retrospective study. Ann. Oncol. 2020, 31, S1308. [Google Scholar] [CrossRef]
- Tsilimigras, D.I.; Moris, D. Atezolizumab plus bevacizumab for advanced, unresectable hepatocellular carcinoma. J. BUON 2021, 26, 637. [Google Scholar]
- Jin, H.; Qin, S.; He, J.; Xiao, J.; Li, Q.; Mao, Y.; Zhao, L. New insights into checkpoint inhibitor immunotherapy and its combined therapies in hepatocellular carcinoma: From mechanisms to clinical trials. Int. J. Biol. Sci. 2022, 18, 2775–2794. [Google Scholar] [CrossRef]
- Kaseb, A.O.; Hasanov, E.; Cao, H.S.T.; Xiao, L.; Vauthey, J.N.; Lee, S.S.; Yavuz, B.G.; Mohamed, Y.I.; Qayyum, A.; Jindal, S.; et al. Perioperative nivolumab monotherapy versus nivolumab plus ipilimumab in resectable hepatocellular carcinoma: A randomised, open-label, phase 2 trial. Lancet Gastroenterol. Hepatol. 2022, 7, 208–218. [Google Scholar] [CrossRef]
- Qin, S.; Chen, M.; Cheng, A.L.; Kaseb, A.O.; Kudo, M.; Lee, H.C.; Yopp, A.C.; Zhou, J.; Wang, L.; Wen, X.; et al. Atezolizumab plus bevacizumab versus active surveillance in patients with resected or ablated high-risk hepatocellular carcinoma (IMbrave050): A randomised, open-label, multicentre, phase 3 trial. Lancet 2023, 402, 1835–1847. [Google Scholar] [CrossRef]
- Hasegawa, K.; Takayama, T.; Ijichi, M.; Matsuyama, Y.; Imamura, H.; Sano, K.; Sugawara, Y.; Kokudo, N.; Makuuchi, M. Uracil-tegafur as an adjuvant for hepatocellular carcinoma: A randomized trial. Hepatology 2006, 44, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Qiu, Y.; Li, J.; Shi, L.; Wang, K.; Xi, T.; Shen, F.; Yan, Z.; Wu, M. Adjuvant therapy with capecitabine postpones recurrence of hepatocellular carcinoma after curative resection: A randomized controlled trial. Ann. Surg. Oncol. 2010, 17, 3137–3144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chen, H.; Li, Q.; Zang, Y.; Chen, X.; Zou, W.; Wang, L.; Shen, Z.Y. Combination adjuvant chemotherapy with oxaliplatin, 5-fluorouracil and leucovorin after liver transplantation for hepatocellular carcinoma: A preliminary open-label study. Investig. New Drugs 2011, 29, 1360–1369. [Google Scholar] [CrossRef] [PubMed]
Reference | Study Type | Arms and Intervention | Number of Patients | Main Outcome | Conclusion |
---|---|---|---|---|---|
Liu, C., et al. (2016) [8] | Retrospective study | LR vs. LR + TACE | 55 control vs. 62 treatment | Overall: improved 1-year OS with TACE, but no difference in 2- and 3-year DFS rates | For tumor size > 5 cm: improved 1-, 2-, and 3-year DFS. For tumor size ≤ 5 cm: no difference in 1-, 2-, and 3-year DFS |
Ye, J.Z., et al. (2017) [10] | Retrospective study | LR vs. LR + TACE | 260 microvascular invasion (86 in LR +TACE) resection; 259 w/o microvascular invasion (72 in LR + TACE) arm | LR + TACE improved OS and DFS in patients with microvascular invasion but not in patients without microvascular invasion | All patients had BCLC stage A or B |
Liu, Z.H., et al. (2023) [9] | Retrospective study | LR vs. LR + TACE | 421 resected rHCC with MVI-positive patients underwent LR or LR + TACE | Adjuvant TACE provided longer survival for rHCC with MVI when the recurrence time was within 13 months, while not beyond 13 months | For HCC patients with MVI who underwent R0 resection, 13 months may be a reasonable early recurrence time point, and within this interval, postoperative adjuvant TACE may result in longer survival compared with surgery alone |
Chen, W., et al. (2020) [12] | Meta-analysis | LR vs. LR + TACE | 40 studies (10 RCTs and 30 non-RCTs) involving 11,165 patients | PA-TACE was associated with an increased OS and DFS | PA-TACE was beneficial in patients with HCC who were at high risk of postoperative recurrence |
Chen, Z.H., et al. (2019) [15] | Meta-analysis | LR vs. LR + TACE | 12 trials involving 2190 patients | 1-, 3-, and 5-year overall survival (OS) rates favored adjuvant TACE over HR alone. Adjuvant TACE showed better 1-, 3-, and 5-year DFS | Adjuvant TACE may improve OS and DFS for HCC patients with MVI |
Reference | Eligible Patients | Arms and Intervention | Number of Patients | Main Outcome | Conclusion |
---|---|---|---|---|---|
Xia, F., et al. (2016) [35] | BCLC-C stage (LR) | Sorafenib vs. no | 34 treatment vs. 68 control | The tumor recurrence rate was markedly lower in the sorafenib group (15/34, 44.1%) than in the control group (51/68, 75%, p = 0.002). The median disease-free survival was 12 mo in the study group and 10 mo in the control group. | The use of adjuvant sorafenib has been shown to be effective and safe in decreasing hepatocellular carcinoma (HCC) recurrence and extending disease-free and overall survival rates for patients with BCLC-stage C HCC after curative resection. |
Li, J., et al. (2016) [31] | BCLC-C stage with PVI | Sorafenib vs. no | 12 treatment vs. 24 control | The sorafenib group had a significantly longer time to progression (TTP) (29 mo vs. 22 mo, p = 0.041) and a significantly longer median OS (37 mo vs. 30 mo, p = 0.01). | Patients received sorafenib following surgical resection, was well-tolerated, and demonstrated superior outcomes when compared to those who underwent surgery alone. |
Zhang, X.P., et al. (2019) [29] | BCLC 0-A or BCLC B with microvascular invasion (MVI) | Sorafenib vs. no | 147 treatment vs. 581 control | The overall survival (OS) and recurrence-free survival (RFS) were significantly better for patients in the sorafenib group. | Adjuvant sorafenib was associated with significantly better survival outcomes than LR alone for HCC patients with MVI. |
Bai, S., et al. (2022) [36] | HBV-related HCC and MVI-positive (LR) | Lenvatinib vs. no | 57 treatment vs. 236 control | The 1-year, 2-year recurrence rates, and survival rates of the lenvatinib group were improved compared to the non-lenvatinib group (15.9%, 43.2% vs. 40.1%, 57.2%, p = 0.002; 85.8%, 71.2% vs. 69.6%, 53.3%, p = 0.009, respectively). | Postoperative adjuvant therapy with lenvatinib was associated with improved long-term prognosis after R0 resection in HBV-related HCC patients with MVI. |
Cai, L., et al. (2020) [37] | High residual alpha-fetoprotein (LR or ablation) | Lenvatinib vs. TACE vs. no | 23 lenvatinib vs. 25 TACE vs. 36 control | 61% (14 out of 23) achieved an alpha-fetoprotein (AFP) response in the lenvatinib (LEN) group. The 1-year recurrence-free survival (RFS) rate was notably higher for patients in the LEN group who attained an AFP response at 71.4% (10 out of 14) compared to 36.0% (9 out of 25) in the transcatheter arterial chemoembolization (TACE) group and 50.0% (18 out of 36) in the control group. The median RFS has not been reached in the LEN, TACE, and control groups. | Lenvatinib (LEN) resulted in an AFP response in 61% of HCCs with persistently elevated AFP levels following surgery or ablation. This response was linked to a significantly increased 1-year recurrence-free survival (RFS). |
Trial | Test Arm | Comparator | Patient Population | Expected Patients Entry | Primary Endpoint | Trial |
---|---|---|---|---|---|---|
CheckMate 9DX | Nivolumab | Placebo | High-risk recurrent HCC after radical resection/ablation | 530 | RFS | NCT03383458 |
KEY?NOTE-937 | Pembrolizuamb | Placebo | Imaging CR after surgical resection/local ablation | 950 | RFS/OS | NCT03867048 |
EMERALD-2 | Durvaluamab + bevacitumab | Placebo | High-risk recurrent HCC after radical resection/ablation | 888 | RFS | NCT03847428 |
Trial | Test Arm | Comparator | Patient Population | Expected Patients Entry | Primary Endpoint |
---|---|---|---|---|---|
LEAP-012 | TACE + lenvatinib + pembrolizuamb | TACE + placebo | Child-Pugh A First treatment (naïve), no extra-hepatic unresectable HCC | 950 | RFS/OS |
CheckMate-74W | TACE + ipilimumab + nivolumab | TACE + placebo | Intermediate stage ECOG 0-1 Beyond Milan and up-to-seven criteria | 765 | Time to TACE progression/OS |
TACE-3 | TACE + nivolumab | TACE alone | Child-Pugh A ECOG 0-1 No extra-hepatic unresectable HCC | 522 | OS/Time to TACE progression |
TALENT-ACE | TACE + atezolizumab + bevacizumab | TACE alone | Child-Pugh A ECOG 0-1, untreated TKIs, ICIs | 342 | TACE PFS/OS |
EMERALD-3 | TACE + durvalumab + tremelimumab +/− lenvatinib | TACE alone | Child-Pugh A ECOG 0-1 | 525 | PFS |
RENO-TACE | Regorafenib + nivolumab | TACE alone | Beyond up-to-seven criteria | 496 | PFS |
ABC-HCC | Atezolizumab + bevacizumab | TACE alone | Child-Pugh A or B7 ECOG 0-1 | 434 | Time to failure of treatment strategy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.-S.; Hsu, S.-H.; Wang, S.-N. The Current and Prospective Adjuvant Therapies for Hepatocellular Carcinoma. Cancers 2024, 16, 1422. https://doi.org/10.3390/cancers16071422
Du J-S, Hsu S-H, Wang S-N. The Current and Prospective Adjuvant Therapies for Hepatocellular Carcinoma. Cancers. 2024; 16(7):1422. https://doi.org/10.3390/cancers16071422
Chicago/Turabian StyleDu, Jeng-Shiun, Shih-Hsien Hsu, and Shen-Nien Wang. 2024. "The Current and Prospective Adjuvant Therapies for Hepatocellular Carcinoma" Cancers 16, no. 7: 1422. https://doi.org/10.3390/cancers16071422
APA StyleDu, J. -S., Hsu, S. -H., & Wang, S. -N. (2024). The Current and Prospective Adjuvant Therapies for Hepatocellular Carcinoma. Cancers, 16(7), 1422. https://doi.org/10.3390/cancers16071422