Immunotherapy for Thymomas and Thymic Carcinomas: Current Status and Future Directions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Biological Considerations for Use of Immunotherapy
3. Immune Checkpoint Inhibitors for Advanced, Unresectable, or Recurrent TETs
3.1. Immune Checkpoint Inhibitor Monotherapy
3.2. ICI-Based Combination Therapies
3.2.1. ICIs with Antiangiogenic Drugs
3.2.2. Dual Immune Checkpoint Blockade
3.2.3. ICIs with Chemotherapy
4. Immune Checkpoint Inhibitors for Locally Advanced, Resectable TETs
5. Immune Checkpoint Inhibitors for Locally Advanced, Unresectable TETs
6. Looking beyond Immune Checkpoint Inhibitors
6.1. Cancer Vaccines
6.2. Cytokine-Based Therapies
6.2.1. Bintrafsup Alfa
6.2.2. Nanrilkefusp Alfa (SOT101, Previously SO-C101)
6.3. Targeting Ribosomal Biogenesis
6.4. Cell-Based Therapies
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gerber, T.S.; Strobl, S.; Marx, A.; Roth, W.; Porubsky, S. Epidemiology of thymomas and thymic carcinomas in the United States and Germany, 1999–2019. Front. Oncol. 2023, 13, 1308989. [Google Scholar] [CrossRef] [PubMed]
- Marx, A.; Chan, J.K.C.; Chalabreysse, L.; Dacic, S.; Detterbeck, F.; French, C.A.; Hornick, J.L.; Inagaki, H.; Jain, D.; Lazar, A.J.; et al. The 2021 WHO Classification of Tumors of the Thymus and Mediastinum: What Is New in Thymic Epithelial, Germ Cell, and Mesenchymal Tumors? J. Thorac. Oncol. 2022, 17, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Radovich, M.; Pickering, C.R.; Felau, I.; Ha, G.; Zhang, H.; Jo, H.; Hoadley, K.A.; Anur, P.; Zhang, J.; McLellan, M.; et al. The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 2018, 33, 244–258.e10. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, K.; Shukuya, T.; Greenstein, R.A.; Kaplan, B.G.; Wakelee, H.; Ross, J.S.; Miura, K.; Furuta, K.; Kato, S.; Suh, J.; et al. Genomic characterization of thymic epithelial tumors in a real-world dataset. ESMO Open 2023, 8, 101627. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Anderson, M.S. Thymic tolerance as a key brake on autoimmunity. Nat. Immunol. 2018, 19, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Marx, A.; Willcox, N.; Leite, M.I.; Chuang, W.Y.; Schalke, B.; Nix, W.; Strobel, P. Thymoma and paraneoplastic myasthenia gravis. Autoimmunity 2010, 43, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, A.; Zhao, Y.; Shi, C.; Ma, Y.; Fu, X.; Liang, X.; Tian, T.; Ruan, Z.; Yao, Y. A novel risk classifier for predicting the overall survival of patients with thymic epithelial tumors based on the eighth edition of the TNM staging system: A population-based study. Front. Endocrinol. 2022, 13, 1050364. [Google Scholar] [CrossRef] [PubMed]
- Girard, N.; Ruffini, E.; Marx, A.; Faivre-Finn, C.; Peters, S.; Committee, E.G. Thymic epithelial tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26 (Suppl. S5), v40–v55. [Google Scholar] [CrossRef]
- Roden, A.C.; Ahmad, U.; Cardillo, G.; Girard, N.; Jain, D.; Marom, E.M.; Marx, A.; Moreira, A.L.; Nicholson, A.G.; Rajan, A.; et al. Thymic Carcinomas-A Concise Multidisciplinary Update on Recent Developments From the Thymic Carcinoma Working Group of the International Thymic Malignancy Interest Group. J. Thorac. Oncol. 2022, 17, 637–650. [Google Scholar] [CrossRef]
- Ma, W.L.; Lin, C.C.; Hsu, F.M.; Lee, J.M.; Chen, J.S.; Huang, Y.L.; Chang, Y.L.; Chang, C.H.; Yang, J.C. Clinical outcomes for patients with thymoma and thymic carcinoma after undergoing different front-line chemotherapy regimens. Cancer Med. 2022, 11, 3445–3456. [Google Scholar] [CrossRef]
- Berghmans, T.; Durieux, V.; Holbrechts, S.; Jungels, C.; Lafitte, J.J.; Meert, A.P.; Moretti, L.; Ocak, S.; Roelandts, M.; Girard, N. Systemic treatments for thymoma and thymic carcinoma: A systematic review. Lung Cancer 2018, 126, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.D.; Coukos, G.; Holt, R.A.; Nelson, B.H. Targeting the undruggable: Immunotherapy meets personalized oncology in the genomic era. Ann. Oncol. 2015, 26, 2367–2374. [Google Scholar] [CrossRef] [PubMed]
- Rohaan, M.W.; Wilgenhof, S.; Haanen, J. Adoptive cellular therapies: The current landscape. Virchows Arch. 2019, 474, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Siddiqui, B.A.; Anandhan, S.; Yadav, S.S.; Subudhi, S.K.; Gao, J.; Goswami, S.; Allison, J.P. The Next Decade of Immune Checkpoint Therapy. Cancer Discov. 2021, 11, 838–857. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Goswami, S.; Raychaudhuri, D.; Siddiqui, B.A.; Singh, P.; Nagarajan, A.; Liu, J.; Subudhi, S.K.; Poon, C.; Gant, K.L.; et al. Immune checkpoint therapy-current perspectives and future directions. Cell 2023, 186, 1652–1669. [Google Scholar] [CrossRef] [PubMed]
- Mittendorf, E.A.; Burgers, F.; Haanen, J.; Cascone, T. Neoadjuvant Immunotherapy: Leveraging the Immune System to Treat Early-Stage Disease. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 1–15. [Google Scholar] [CrossRef]
- Pilard, C.; Ancion, M.; Delvenne, P.; Jerusalem, G.; Hubert, P.; Herfs, M. Cancer immunotherapy: It’s time to better predict patients’ response. Br. J. Cancer 2021, 125, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.R.; Wu, X.L.; Sun, Y.L. Therapeutic targets and biomarkers of tumor immunotherapy: Response versus non-response. Signal Transduct. Target. Ther. 2022, 7, 331. [Google Scholar] [CrossRef] [PubMed]
- Les, I.; Martinez, M.; Perez-Francisco, I.; Cabero, M.; Teijeira, L.; Arrazubi, V.; Torrego, N.; Campillo-Calatayud, A.; Elejalde, I.; Kochan, G.; et al. Predictive Biomarkers for Checkpoint Inhibitor Immune-Related Adverse Events. Cancers 2023, 15, 1629. [Google Scholar] [CrossRef]
- Suijkerbuijk, K.P.M.; van Eijs, M.J.M.; van Wijk, F.; Eggermont, A.M.M. Clinical and translational attributes of immune-related adverse events. Nat. Cancer, 2024; ahead of print. [Google Scholar] [CrossRef]
- Sekine, I.; Aida, Y.; Suzuki, H. Expression patterns and prognostic value of programmed death ligand-1 and programmed death 1 in thymoma and thymic carcinoma. Mediastinum 2018, 2, 54. [Google Scholar] [CrossRef]
- Girard, N. Immune checkpoints in thymic epithelial tumors: Challenges and opportunities. Immunooncol. Technol. 2019, 3, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Marx, A.; Hohenberger, P.; Hoffmann, H.; Pfannschmidt, J.; Schnabel, P.; Hofmann, H.S.; Wiebe, K.; Schalke, B.; Nix, W.; Gold, R.; et al. The autoimmune regulator AIRE in thymoma biology: Autoimmunity and beyond. J. Thorac. Oncol. 2010, 5 (Suppl. S4), S266–S272. [Google Scholar] [CrossRef] [PubMed]
- Benitez, A.A.; Khalil-Aguero, S.; Nandakumar, A.; Gupta, N.T.; Zhang, W.; Atwal, G.S.; Murphy, A.J.; Sleeman, M.A.; Haxhinasto, S. Absence of central tolerance in Aire-deficient mice synergizes with immune-checkpoint inhibition to enhance antitumor responses. Commun. Biol. 2020, 3, 355. [Google Scholar] [CrossRef] [PubMed]
- Lindstedt, I.; Lindgren, M.A.; Andersson, E.; Engstrom, W. The WT1 gene—Its role in tumourigenesis and prospects for immunotherapeutic advances. In Vivo 2014, 28, 675–681. [Google Scholar] [PubMed]
- Oji, Y.; Inoue, M.; Takeda, Y.; Hosen, N.; Shintani, Y.; Kawakami, M.; Harada, T.; Murakami, Y.; Iwai, M.; Fukuda, M.; et al. WT1 peptide-based immunotherapy for advanced thymic epithelial malignancies. Int. J. Cancer 2018, 142, 2375–2382. [Google Scholar] [CrossRef] [PubMed]
- Ogasawara, M. Wilms’ tumor 1-targeting cancer vaccine: Recent advancements and future perspectives. Hum. Vaccin. Immunother. 2024, 20, 2296735. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Chen, Y.; Berman, A.; Schrump, D.S.; Giaccone, G.; Pastan, I.; Venzon, D.J.; Liewehr, D.J.; Steinberg, S.M.; Miettinen, M.; et al. Expression of mesothelin in thymic carcinoma and its potential therapeutic significance. Lung Cancer 2016, 101, 104–110. [Google Scholar] [CrossRef]
- Hassan, R.; Thomas, A.; Alewine, C.; Le, D.T.; Jaffee, E.M.; Pastan, I. Mesothelin Immunotherapy for Cancer: Ready for Prime Time? J. Clin. Oncol. 2016, 34, 4171–4179. [Google Scholar] [CrossRef]
- Fan, C.; Qu, H.; Wang, X.; Sobhani, N.; Wang, L.; Liu, S.; Xiong, W.; Zeng, Z.; Li, Y. Cancer/testis antigens: From serology to mRNA cancer vaccine. Semin. Cancer Biol. 2021, 76, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Sakane, T.; Murase, T.; Okuda, K.; Masaki, A.; Nakanishi, R.; Inagaki, H. Expression of cancer testis antigens in thymic epithelial tumors. Pathol. Int. 2021, 71, 471–479. [Google Scholar] [CrossRef]
- Kadouri, N.; Nevo, S.; Goldfarb, Y.; Abramson, J. Thymic epithelial cell heterogeneity: TEC by TEC. Nat. Rev. Immunol. 2020, 20, 239–253. [Google Scholar] [CrossRef]
- Marx, A.; Yamada, Y.; Simon-Keller, K.; Schalke, B.; Willcox, N.; Strobel, P.; Weis, C.A. Thymus and autoimmunity. Semin. Immunopathol. 2021, 43, 45–64. [Google Scholar] [CrossRef]
- Cheng, A.; Holland, S.M. Anti-cytokine autoantibodies: Mechanistic insights and disease associations. Nat. Rev. Immunol. 2024, 24, 161–177. [Google Scholar] [CrossRef]
- Ferre, E.M.N.; Break, T.J.; Burbelo, P.D.; Allgauer, M.; Kleiner, D.E.; Jin, D.; Xu, Z.; Folio, L.R.; Mollura, D.J.; Swamydas, M.; et al. Lymphocyte-driven regional immunopathology in pneumonitis caused by impaired central immune tolerance. Sci. Transl. Med. 2019, 11, eaav5597. [Google Scholar] [CrossRef]
- Bando, H.; Iguchi, G.; Okimura, Y.; Odake, Y.; Yoshida, K.; Matsumoto, R.; Suda, K.; Nishizawa, H.; Fukuoka, H.; Mokubo, A.; et al. A novel thymoma-associated autoimmune disease: Anti-PIT-1 antibody syndrome. Sci. Rep. 2017, 7, 43060. [Google Scholar] [CrossRef] [PubMed]
- Ferre, E.M.N.; Schmitt, M.M.; Lionakis, M.S. Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy. Front. Pediatr. 2021, 9, 723532. [Google Scholar] [CrossRef]
- Meng, L.; Wu, H.; Wu, J.; Ding, P.; He, J.; Sang, M.; Liu, L. Mechanisms of immune checkpoint inhibitors: Insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis. 2024, 15, 3. [Google Scholar] [CrossRef] [PubMed]
- Giaccone, G.; Kim, C. Durable Response in Patients With Thymic Carcinoma Treated With Pembrolizumab After Prolonged Follow-Up. J. Thorac. Oncol. 2021, 16, 483–485. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Kim, H.S.; Ku, B.M.; Choi, Y.L.; Cristescu, R.; Han, J.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; et al. Pembrolizumab for Patients With Refractory or Relapsed Thymic Epithelial Tumor: An Open-Label Phase II Trial. J. Clin. Oncol. 2019, 37, 2162–2170. [Google Scholar] [CrossRef]
- Katsuya, Y.; Horinouchi, H.; Seto, T.; Umemura, S.; Hosomi, Y.; Satouchi, M.; Nishio, M.; Kozuki, T.; Hida, T.; Sukigara, T.; et al. Single-arm, multicentre, phase II trial of nivolumab for unresectable or recurrent thymic carcinoma: PRIMER study. Eur. J. Cancer 2019, 113, 78–86. [Google Scholar] [CrossRef]
- Girard, N.; Ponce Aix, S.; Cedres, S.; Berghmans, T.; Burgers, S.; Toffart, A.C.; Popat, S.; Janssens, A.; Gervais, R.; Hochstenbag, M.; et al. Efficacy and safety of nivolumab for patients with pre-treated type B3 thymoma and thymic carcinoma: Results from the EORTC-ETOP NIVOTHYM phase II trial. ESMO Open 2023, 8, 101576. [Google Scholar] [CrossRef] [PubMed]
- Rajan, A.; Chen, H.; Zhao, C.; Swift, S.; Mammen, A.; Brofferio, A.; Padiernos, E.; Szabo, E.; Guha, U.; Hassan, R.; et al. Safety and clinical activity of avelumab (MSB0010718C), an anti-programed death-ligand 1 (PD-L1) antibody, in recurrent thymic epithelial tumors (TETs). J. Immunother. Cancer 2019, 7, 283. [Google Scholar] [CrossRef]
- Giaccone, G.; Kim, C.; Thompson, J.; McGuire, C.; Kallakury, B.; Chahine, J.J.; Manning, M.; Mogg, R.; Blumenschein, W.M.; Tan, M.T.; et al. Pembrolizumab in patients with thymic carcinoma: A single-arm, single-centre, phase 2 study. Lancet Oncol. 2018, 19, 347–355. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Ramesh, A.; Gusev, Y.; Bhuvaneshwar, K.; Giaccone, G. Molecular predictors of response to pembrolizumab in thymic carcinoma. Cell Rep. Med. 2021, 2, 100392. [Google Scholar] [CrossRef] [PubMed]
- Rajan, A.; Heery, C.R.; Thomas, A.; Mammen, A.L.; Perry, S.; O’Sullivan Coyne, G.; Guha, U.; Berman, A.; Szabo, E.; Madan, R.A.; et al. Efficacy and tolerability of anti-programmed death-ligand 1 (PD-L1) antibody (Avelumab) treatment in advanced thymoma. J. Immunother. Cancer 2019, 7, 269. [Google Scholar] [CrossRef] [PubMed]
- Fenioux, C.; Abbar, B.; Boussouar, S.; Bretagne, M.; Power, J.R.; Moslehi, J.J.; Gougis, P.; Amelin, D.; Dechartres, A.; Lehmann, L.H.; et al. Thymus alterations and susceptibility to immune checkpoint inhibitor myocarditis. Nat. Med. 2023, 29, 3100–3110. [Google Scholar] [CrossRef] [PubMed]
- Michot, J.M.; Bigenwald, C.; Champiat, S.; Collins, M.; Carbonnel, F.; Postel-Vinay, S.; Berdelou, A.; Varga, A.; Bahleda, R.; Hollebecque, A.; et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur. J. Cancer 2016, 54, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Mammen, A.L.; Rajan, A.; Pak, K.; Lehky, T.; Casciola-Rosen, L.; Donahue, R.N.; Lepone, L.M.; Zekeridou, A.; Pittock, S.J.; Hassan, R.; et al. Pre-existing antiacetylcholine receptor autoantibodies and B cell lymphopaenia are associated with the development of myositis in patients with thymoma treated with avelumab, an immune checkpoint inhibitor targeting programmed death-ligand 1. Ann. Rheum. Dis. 2019, 78, 150–152. [Google Scholar] [CrossRef] [PubMed]
- Pinal-Fernandez, I.; Quintana, A.; Milisenda, J.C.; Casal-Dominguez, M.; Munoz-Braceras, S.; Derfoul, A.; Torres-Ruiz, J.; Pak, K.; Dell’Orso, S.; Naz, F.; et al. Transcriptomic profiling reveals distinct subsets of immune checkpoint inhibitor induced myositis. Ann. Rheum. Dis. 2023, 82, 829–836. [Google Scholar] [CrossRef]
- Yap, T.A.; Parkes, E.E.; Peng, W.; Moyers, J.T.; Curran, M.A.; Tawbi, H.A. Development of Immunotherapy Combination Strategies in Cancer. Cancer Discov. 2021, 11, 1368–1397. [Google Scholar] [CrossRef]
- Yi, M.; Zheng, X.; Niu, M.; Zhu, S.; Ge, H.; Wu, K. Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol. Cancer 2022, 21, 28. [Google Scholar] [CrossRef]
- Huinen, Z.R.; Huijbers, E.J.M.; van Beijnum, J.R.; Nowak-Sliwinska, P.; Griffioen, A.W. Anti-angiogenic agents—Overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat. Rev. Clin. Oncol. 2021, 18, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Brest, P.; Mograbi, B.; Pages, G.; Hofman, P.; Milano, G. Checkpoint inhibitors and anti-angiogenic agents: A winning combination. Br. J. Cancer 2023, 129, 1367–1372. [Google Scholar] [CrossRef]
- Conforti, F.; Zucali, P.A.; Pala, L.; Catania, C.; Bagnardi, V.; Sala, I.; Della Vigna, P.; Perrino, M.; Zagami, P.; Corti, C.; et al. Avelumab plus axitinib in unresectable or metastatic type B3 thymomas and thymic carcinomas (CAVEATT): A single-arm, multicentre, phase 2 trial. Lancet Oncol. 2022, 23, 1287–1296. [Google Scholar] [CrossRef]
- Beckermann, K.E.; Bestvina, C.M.; El Osta, B.; Sanborn, R.E.; Borghaei, H.; Lammers, P.E.; Selvaggi, G.; Whisenant, J.G.; Heimann-Nichols, E.; Berry, L.; et al. A Phase 1/2 Study to Evaluate the Safety and Activity of Nivolumab in Combination With Vorolanib, a Vascular Endothelial Growth Factor Tyrosine Kinase Inhibitor, in Patients With Refractory Thoracic Tumors. JTO Clin. Res. Rep. 2024, 5, 100619. [Google Scholar] [CrossRef]
- Curran, M.A.; Montalvo, W.; Yagita, H.; Allison, J.P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl. Acad. Sci. USA 2010, 107, 4275–4280. [Google Scholar] [CrossRef]
- Fang, W.; Wang, C.; Li, J.; Chen, M.; Ji, Y.; Fan, H.; Wu, K.; Zhuang, W.; Liu, B.; Luo, F.; et al. KN046 in patients with thymic carcinoma: A prospective, single-arm, multi-centre, phase II study. Ann. Oncol. 2023, 34, S1132. [Google Scholar] [CrossRef]
- Principe, D.R.; Kamath, S.D.; Korc, M.; Munshi, H.G. The immune modifying effects of chemotherapy and advances in chemo-immunotherapy. Pharmacol. Ther. 2022, 236, 108111. [Google Scholar] [CrossRef]
- Thomas, Q.D.; Basse, C.; Luporsi, M.; Girard, N. Pembrolizumab Plus Chemotherapy in Metastatic Thymic Carcinoma: A Case Report. Front. Oncol. 2021, 11, 814544. [Google Scholar] [CrossRef]
- Chen, C.; Sun, P.; Long, J. Robust and durable response to first-line treatment of pembrolizumab combined with chemotherapy in two patients with metastatic thymic squamous cell carcinoma: Case report. Front. Immunol. 2022, 13, 941092. [Google Scholar] [CrossRef]
- Li, D.; Minervini, F.; Planas, G.; Okuda, K.; Ozeki, N.; Zou, Y. Stage III-IV thymic squamous cell carcinoma in complete pathological remission achieved with thymic cancer resection after immunotherapy combined with chemotherapeutic conversion therapy: A report of two cases from real-world data. Gland. Surg. 2024, 13, 117–127. [Google Scholar] [CrossRef]
- Nishii, Y.; Furuhashi, K.; Ito, K.; Sakaguchi, T.; Suzuki, Y.; Fujiwara, K.; Yasuma, T.; Kobayashi, T.; D’Alessandro-Gabazza, C.N.; Gabazza, E.C.; et al. Good Response of Advanced Thymic Carcinoma with Low PD-L1 Expression to Chemotherapy plus Pembrolizumab as First-Line Therapy and to Pembrolizumab as Maintenance Therapy: A Case Report. Pharmaceuticals 2022, 15, 889. [Google Scholar] [CrossRef]
- Shi, H.; Zhu, H.; Feng, Y.; Liu, Y.; Xing, P.; Hu, X. First-line combination of toripalimab and chemotherapy in advanced thymic carcinoma: A prospective, single-arm, phase II trial. Ann. Oncol. 2023, 34, S1132–S1133. [Google Scholar] [CrossRef]
- Marinelli, D.; Gallina, F.T.; Pannunzio, S.; Di Civita, M.A.; Torchia, A.; Giusti, R.; Gelibter, A.J.; Roberto, M.; Verrico, M.; Melis, E.; et al. Surgical and survival outcomes with perioperative or neoadjuvant immune-checkpoint inhibitors combined with platinum-based chemotherapy in resectable NSCLC: A systematic review and meta-analysis of randomised clinical trials. Crit. Rev. Oncol. Hematol. 2023, 192, 104190. [Google Scholar] [CrossRef]
- Singh, A.; Osbourne, A.S.; Koshkin, V.S. Perioperative Immunotherapy in Muscle-Invasive Bladder Cancer. Curr. Treat. Options Oncol. 2023, 24, 1213–1230. [Google Scholar] [CrossRef]
- Garbe, C.; Dummer, R.; Amaral, T.; Amaria, R.N.; Ascierto, P.A.; Burton, E.M.; Dreno, B.; Eggermont, A.M.M.; Hauschild, A.; Hoeller, C.; et al. Neoadjuvant immunotherapy for melanoma is now ready for clinical practice. Nat. Med. 2023, 29, 1310–1312. [Google Scholar] [CrossRef]
- Patel, S.P.; Othus, M.; Chen, Y.; Wright, G.P., Jr.; Yost, K.J.; Hyngstrom, J.R.; Hu-Lieskovan, S.; Lao, C.D.; Fecher, L.A.; Truong, T.G.; et al. Neoadjuvant-Adjuvant or Adjuvant-Only Pembrolizumab in Advanced Melanoma. N. Engl. J. Med. 2023, 388, 813–823. [Google Scholar] [CrossRef]
- Matzner, P.; Sandbank, E.; Neeman, E.; Zmora, O.; Gottumukkala, V.; Ben-Eliyahu, S. Harnessing cancer immunotherapy during the unexploited immediate perioperative period. Nat. Rev. Clin. Oncol. 2020, 17, 313–326. [Google Scholar] [CrossRef]
- Isaacs, J.; Stinchcombe, T.E. Neoadjuvant and Adjuvant Systemic Therapy for Early-Stage Non-small-Cell Lung Cancer. Drugs 2022, 82, 855–863. [Google Scholar] [CrossRef]
- Liu, J.; Blake, S.J.; Yong, M.C.; Harjunpaa, H.; Ngiow, S.F.; Takeda, K.; Young, A.; O’Donnell, J.S.; Allen, S.; Smyth, M.J.; et al. Improved Efficacy of Neoadjuvant Compared to Adjuvant Immunotherapy to Eradicate Metastatic Disease. Cancer Discov. 2016, 6, 1382–1399. [Google Scholar] [CrossRef]
- DaSilva, L.; McAdams, M.J.; Rajan, A. Optimizing the role of immunotherapy in the management of resectable non-small cell lung cancer. AME Clin. Trials Rev. 2024. [Google Scholar] [CrossRef]
- Derer, A.; Spiljar, M.; Baumler, M.; Hecht, M.; Fietkau, R.; Frey, B.; Gaipl, U.S. Chemoradiation Increases PD-L1 Expression in Certain Melanoma and Glioblastoma Cells. Front. Immunol. 2016, 7, 610. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Wang, H.; Qi, X.H.; Guo, Q.; Zhang, H.Y.; Liu, H.; Zhu, B.J. Abscopal effect of local irradiation treatment for thymoma: A case report. Am. J. Transl. Res. 2020, 12, 2234–2240. [Google Scholar] [PubMed]
- Zhang, Y.S.; Zhang, Y.H.; Li, X.J.; Hu, T.C.; Chen, W.Z.; Pan, X.; Chai, H.Y.; Ye, Y.C. Bystander effect and abscopal effect in recurrent thymic carcinoma treated with carbon-ion radiation therapy: A case report. World J. Clin. Cases 2021, 9, 6538–6543. [Google Scholar] [CrossRef] [PubMed]
- Golden, E.B.; Chhabra, A.; Chachoua, A.; Adams, S.; Donach, M.; Fenton-Kerimian, M.; Friedman, K.; Ponzo, F.; Babb, J.S.; Goldberg, J.; et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: A proof-of-principle trial. Lancet Oncol. 2015, 16, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; et al. Five-Year Survival Outcomes From the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Cortiula, F.; Reymen, B.; Peters, S.; Van Mol, P.; Wauters, E.; Vansteenkiste, J.; De Ruysscher, D.; Hendriks, L.E.L. Immunotherapy in unresectable stage III non-small-cell lung cancer: State of the art and novel therapeutic approaches. Ann. Oncol. 2022, 33, 893–908. [Google Scholar] [CrossRef] [PubMed]
- Saxena, M.; van der Burg, S.H.; Melief, C.J.M.; Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 2021, 21, 360–378. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.J.; Svensson-Arvelund, J.; Lubitz, G.S.; Marabelle, A.; Melero, I.; Brown, B.D.; Brody, J.D. Cancer vaccines: The next immunotherapy frontier. Nat. Cancer 2022, 3, 911–926. [Google Scholar] [CrossRef]
- Qi, X.W.; Zhang, F.; Wu, H.; Liu, J.L.; Zong, B.G.; Xu, C.; Jiang, J. Wilms’ tumor 1 (WT1) expression and prognosis in solid cancer patients: A systematic review and meta-analysis. Sci. Rep. 2015, 5, 8924. [Google Scholar] [CrossRef]
- Oka, Y.; Tsuboi, A.; Taguchi, T.; Osaki, T.; Kyo, T.; Nakajima, H.; Elisseeva, O.A.; Oji, Y.; Kawakami, M.; Ikegame, K.; et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc. Natl. Acad. Sci. USA 2004, 101, 13885–13890. [Google Scholar] [CrossRef] [PubMed]
- Propper, D.J.; Balkwill, F.R. Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 2022, 19, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Berraondo, P.; Sanmamed, M.F.; Ochoa, M.C.; Etxeberria, I.; Aznar, M.A.; Perez-Gracia, J.L.; Rodriguez-Ruiz, M.E.; Ponz-Sarvise, M.; Castanon, E.; Melero, I. Cytokines in clinical cancer immunotherapy. Br. J. Cancer 2019, 120, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Lind, H.; Gameiro, S.R.; Jochems, C.; Donahue, R.N.; Strauss, J.; Gulley, J.M.; Palena, C.; Schlom, J. Dual targeting of TGF-beta and PD-L1 via a bifunctional anti-PD-L1/TGF-betaRII agent: Status of preclinical and clinical advances. J. Immunother. Cancer 2020, 8, e000433. [Google Scholar] [CrossRef] [PubMed]
- Barcellos-Hoff, M.H.; Gulley, J.L. Molecular Pathways and Mechanisms of TGFbeta in Cancer Therapy. Clin. Cancer Res. 2023, 29, 2025–2033. [Google Scholar] [CrossRef] [PubMed]
- Hauri-Hohl, M.M.; Zuklys, S.; Keller, M.P.; Jeker, L.T.; Barthlott, T.; Moon, A.M.; Roes, J.; Hollander, G.A. TGF-beta signaling in thymic epithelial cells regulates thymic involution and postirradiation reconstitution. Blood 2008, 112, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Liu, X.; Chen, H.; Sun, Y.; Liu, Y.; Bai, H.; Wang, J. Impact of PD-L1, transforming growth factor-beta expression and tumor-infiltrating CD8(+) T cells on clinical outcome of patients with advanced thymic epithelial tumors. Thorac. Cancer 2018, 9, 1341–1353. [Google Scholar] [CrossRef] [PubMed]
- McAdams, M.J.; Swift, S.; Donahue, R.N.; Celades, C.; Tsai, Y.T.; Bingham, M.; Szabo, E.; Choradia, N.; Zhao, C.; Sansone, S.; et al. A phase II, open-label trial of bintrafusp alfa (M7824) in subjects with thymoma and thymic carcinoma (trial in progress). J. Immunother. Cancer 2023, 11, A878. [Google Scholar] [CrossRef]
- Mortier, E.; Quemener, A.; Vusio, P.; Lorenzen, I.; Boublik, Y.; Grotzinger, J.; Plet, A.; Jacques, Y. Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J. Biol. Chem. 2006, 281, 1612–1619. [Google Scholar] [CrossRef]
- Desbois, M.; Le Vu, P.; Coutzac, C.; Marcheteau, E.; Beal, C.; Terme, M.; Gey, A.; Morisseau, S.; Teppaz, G.; Boselli, L.; et al. IL-15 Trans-Signaling with the Superagonist RLI Promotes Effector/Memory CD8+ T Cell Responses and Enhances Antitumor Activity of PD-1 Antagonists. J. Immunol. 2016, 197, 168–178. [Google Scholar] [CrossRef]
- Bessard, A.; Sole, V.; Bouchaud, G.; Quemener, A.; Jacques, Y. High antitumor activity of RLI, an interleukin-15 (IL-15)-IL-15 receptor alpha fusion protein, in metastatic melanoma and colorectal cancer. Mol. Cancer Ther. 2009, 8, 2736–2745. [Google Scholar] [CrossRef]
- Garralda, E.; Naing, A.; Galvao, V.; LoRusso, P.; Grell, P.; Cassier, P.A.; Gomez-Roca, C.A.; Korakis, I.; Bechard, D.; Jelinkova, L.P.; et al. Interim safety and efficacy results from AURELIO-03: A phase 1 dose escalation study of the IL-2/IL-15 receptor βγ superagonist SOT101 as a single agent and in combination with pembrolizumab in patients with advanced solid tumors. J. Clin. Oncol. 2022, 40, 2502. [Google Scholar] [CrossRef]
- Elhamamsy, A.R.; Metge, B.J.; Alsheikh, H.A.; Shevde, L.A.; Samant, R.S. Ribosome Biogenesis: A Central Player in Cancer Metastasis and Therapeutic Resistance. Cancer Res. 2022, 82, 2344–2353. [Google Scholar] [CrossRef] [PubMed]
- Yim, C.Y.; Congenie, M.T.; Johnson, H.L.; Mancini, M.G.; Stossi, F.; Mancini, M.A.; Azofeifa, J.; Price, M.R.; Baeck, J.; Ames, T.D. PT-112, a novel immunogenic cell death inducer, causes ribosomal biogenesis inhibition and organelle stress in cancer cells. Mol. Cancer Ther. 2023, 22, C128. [Google Scholar] [CrossRef]
- Karp, D.D.; Camidge, D.R.; Infante, J.R.; Ames, T.D.; Price, M.R.; Jimeno, J.; Bryce, A.H. Phase I study of PT-112, a novel pyrophosphate-platinum immunogenic cell death inducer, in advanced solid tumours. EClinicalMedicine 2022, 49, 101430. [Google Scholar] [CrossRef] [PubMed]
- McAdams, M.J.; Swift, S.; Donahue, R.N.; Celades, C.; Tsai, Y.T.; Bingham, M.; Szabo, E.; Zhao, C.; Sansone, S.; Choradia, N.; et al. Preliminary efficacy, safety, and immunomodulatory effects of PT-112 from a phase 2 proof of concept study in patients (pts) with thymic epithelial tumors (TETs). J. Clin. Oncol. 2023, 41, e20647. [Google Scholar] [CrossRef]
- Rosenberg, S.A.; Restifo, N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015, 348, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, L.; Zhang, H.; Chen, S.; Xiao, Y. CAR-T Cell Therapy in Hematological Malignancies: Current Opportunities and Challenges. Front. Immunol. 2022, 13, 927153. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Zheng, H.; Yang, S.; Hua, Y.; Huang, N.; Kleeff, J.; Liao, Q.; Wu, W. Adoptive cellular immunotherapy for solid neoplasms beyond CAR-T. Mol. Cancer 2023, 22, 28. [Google Scholar] [CrossRef]
- Fang, W.; Wu, C.H.; Sun, Q.L.; Gu, Z.T.; Zhu, L.; Mao, T.; Zhang, X.F.; Xu, N.; Lu, T.P.; Tsai, M.H.; et al. Novel Tumor-Specific Antigens for Immunotherapy Identified From Multi-omics Profiling in Thymic Carcinomas. Front. Immunol. 2021, 12, 748820. [Google Scholar] [CrossRef]
- Chen, F.; Zou, Z.; Du, J.; Su, S.; Shao, J.; Meng, F.; Yang, J.; Xu, Q.; Ding, N.; Yang, Y.; et al. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors. J. Clin. Investig. 2019, 129, 2056–2070. [Google Scholar] [CrossRef]
- Hassan, R.; Butler, M.; O’Cearbhaill, R.E.; Oh, D.Y.; Johnson, M.; Zikaras, K.; Smalley, M.; Ross, M.; Tanyi, J.L.; Ghafoor, A.; et al. Mesothelin-targeting T cell receptor fusion construct cell therapy in refractory solid tumors: Phase 1/2 trial interim results. Nat. Med. 2023, 29, 2099–2109. [Google Scholar] [CrossRef] [PubMed]
- de Rooij, M.A.J.; Remst, D.F.G.; van der Steen, D.M.; Wouters, A.K.; Hagedoorn, R.S.; Kester, M.G.D.; Meeuwsen, M.H.; Wachsmann, T.L.A.; de Ru, A.H.; van Veelen, P.A.; et al. A library of cancer testis specific T cell receptors for T cell receptor gene therapy. Mol. Ther. Oncolytics 2023, 28, 1–14. [Google Scholar] [CrossRef]
- Yarza, R.; Bover, M.; Herrera-Juarez, M.; Rey-Cardenas, M.; Paz-Ares, L.; Lopez-Martin, J.A.; Haanen, J. Efficacy of T-Cell Receptor-Based Adoptive Cell Therapy in Cutaneous Melanoma: A Meta-Analysis. Oncologist 2023, 28, e406–e415. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, M.K.; Gjerstorff, M.F. CAR T-Cell Cancer Therapy Targeting Surface Cancer/Testis Antigens. Front. Immunol. 2020, 11, 1568. [Google Scholar] [CrossRef]
Intervention (Reference) | TET Histology | Endpoints | Number of Evaluable Patients | ORR (%) | Median PFS (mo) | Median OS (mo) | Grade 3 or 4 irAEs (%) | All Grade Muscle or NM irAEs * (%) |
---|---|---|---|---|---|---|---|---|
PD-1 inhibitor | ||||||||
Pembrolizumab [39] | TC | ORR | 40 | 22.5 | 4.2 | 25.5 | 15.0 | 7.5 |
Pembrolizumab [40] | T TC | ORR | 7 26 | 28.6 19.2 | 6.1 6.1 | Not reached 14.5 | 71.4 15.4 | 42.9 7.7 |
Nivolumab [41] | TC | ORR | 15 | 0 | 3.8 | 14.1 | 20.0 | 20.0 |
Nivolumab ^ [42] | B3T TC | PFS-6 | 49 | 12.0 | 6.0 | 21.3 | 57.0 | 3.7 |
PD-L1 inhibitor | ||||||||
Avelumab † [43] | T TC | ORR and safety | 12 10 | 17 20 | 6.4 14.7 | NR NR | 58.0 ‡ 45.0 ‡ | 25.0 9.0 |
Intervention (Reference) | TET Histology | Endpoints | Number of Evaluable Patients | ORR (%) | Median PFS (mo) | Median OS (mo) | All Grade Muscle or NM irAEs * (%) |
---|---|---|---|---|---|---|---|
Avelumab + Axitinib [55]. | B3T TC | ORR | 32 | 34 | 7.5 | 26.6 | 9.3 |
Nivolumab + Vorolanib * [56]. | TC | ORR | 9 | 11 | 9.1 | 21.0 | 0 |
Intervention | Phase | TET Histology | Primary Endpoint | Number of Patients | Clinical Trial Identifier (ClinicalTrials.gov ID) |
---|---|---|---|---|---|
Pembrolizumab + Lenvatinib | II | B3T or TC | PFS-5 | 43 | NCT04710628 |
Pembrolizumab + Sunitinib | II | TC | ORR | 30 | NCT03463460 |
Intervention | Targets | Phase | TET Histology | Primary Endpoint | Number of Patients | Clinical Trial Identifier (ClinicalTrials.gov ID) |
---|---|---|---|---|---|---|
Nivolumab + Ipilimumab | PD-1, CTLA-4 | II | B3T or TC | PFS-6 | 55 | NCT03134118 |
KN046 | PD-L1, CTLA-4 | II | TC | ORR | 66 | NCT04469725 |
KN046 * | PD-L1, CTLA-4 | II | TC | ORR | 4 | NCT04925947 |
Pembrolizumab + Epacadostat | PD-1, IDO-1 | II | TC | ORR | 26 | NCT02364076 |
Intervention | Phase | TET Histology | Primary Endpoint | Number of Patients | Clinical Trial Identifier (ClinicalTrials.gov ID) |
---|---|---|---|---|---|
Carboplatin + Paclitaxel/Nab-Paclitaxel + Pembrolizumab | IV | T or TC | ORR | 40 | NCT04554524 |
Carboplatin + Paclitaxel + Pembrolizumab + Lenvatinib | II | TC | ORR | 35 | NCT05832827 |
Intervention | Phase | TET Histology | Primary Endpoint | Number of Patients | Clinical Trial Identifier (ClinicalTrials.gov ID) |
---|---|---|---|---|---|
Cisplatin + Docetaxel + Pembrolizumab → Surgery → Pembrolizumab consolidation | II | T or TC | mPR | 40 | NCT03858582 |
Toripalimab + Chemotherapy * | II | T or TC | mPR, Frequency of SAEs | 15 | NCT04667793 |
Immunotherapy: Goals and interventions
|
Clinical indications |
Immunotherapeutic interventions under investigation |
Clinical activity and safety of ICIs
|
Biomarkers under investigation
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajan, A.; Sivapiromrat, A.K.; McAdams, M.J. Immunotherapy for Thymomas and Thymic Carcinomas: Current Status and Future Directions. Cancers 2024, 16, 1369. https://doi.org/10.3390/cancers16071369
Rajan A, Sivapiromrat AK, McAdams MJ. Immunotherapy for Thymomas and Thymic Carcinomas: Current Status and Future Directions. Cancers. 2024; 16(7):1369. https://doi.org/10.3390/cancers16071369
Chicago/Turabian StyleRajan, Arun, Alisa K. Sivapiromrat, and Meredith J. McAdams. 2024. "Immunotherapy for Thymomas and Thymic Carcinomas: Current Status and Future Directions" Cancers 16, no. 7: 1369. https://doi.org/10.3390/cancers16071369
APA StyleRajan, A., Sivapiromrat, A. K., & McAdams, M. J. (2024). Immunotherapy for Thymomas and Thymic Carcinomas: Current Status and Future Directions. Cancers, 16(7), 1369. https://doi.org/10.3390/cancers16071369