SMARCA4 Mutations in Gastroesophageal Adenocarcinoma: An Observational Study via a Next-Generation Sequencing Panel
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Study Design and Patient Selections
2.2. Data Collection
2.3. NGS Panel Testing
2.4. Statistical Analysis
3. Results
3.1. Patient Demographics and Disease Status
3.2. Tumor Characteristics
3.3. Survival Analysis
3.4. Genotypic Landscape of SMARCA4 Mutations Based on the NGS Panel
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.S.; Tomasek, J.; Yong, C.J.; Dumitru, F.; Passalacqua, R.; Goswami, C.; Safran, H.; Dos Santos, L.V.; Aprile, G.; Ferry, D.R.; et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2014, 383, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.Y.; et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.; et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef]
- Sun, J.M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.P.; Li, Z.; Kim, S.B.; et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): A randomised, placebo-controlled, phase 3 study. Lancet 2021, 398, 759–771. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Kawazoe, A.; Yanez, P.; Li, N.; Lonardi, S.; Kolesnik, O.; Barajas, O.; Bai, Y.; Shen, L.; Tang, Y.; et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature 2021, 600, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Messager, M.; Lefevre, J.H.; Pichot-Delahaye, V.; Souadka, A.; Piessen, G.; Mariette, C.; Arnaud, J.P.; Balon, J.M.; Bonnetain, F.; Borie, F.; et al. The impact of perioperative chemotherapy on survival in patients with gastric signet ring cell adenocarcinoma: A multicenter comparative study. Ann. Surg. 2011, 254, 684–693, discussion 693. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.R.; Hofstetter, W.L.; Correa, A.M.; Agarwal, A.; Rashid, A.; Bhutani, M.S.; Lin, S.H.; Ajani, J.A.; Swisher, S.G.; Maru, D.M. Signet ring cells in esophageal adenocarcinoma predict poor response to preoperative chemoradiation. Ann. Thorac. Surg. 2014, 98, 1064–1071. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature 2017, 541, 169–175. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef]
- Metzker, M.L. Sequencing technologies—The next generation. Nat. Rev. Genet. 2010, 11, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Palmeri, M.; Mehnert, J.; Silk, A.W.; Jabbour, S.K.; Ganesan, S.; Popli, P.; Riedlinger, G.; Stephenson, R.; de Meritens, A.B.; Leiser, A.; et al. Real-world application of tumor mutational burden-high (TMB-high) and microsatellite instability (MSI) confirms their utility as immunotherapy biomarkers. ESMO Open 2022, 7, 100336. [Google Scholar] [CrossRef] [PubMed]
- Mosele, F.; Remon, J.; Mateo, J.; Westphalen, C.B.; Barlesi, F.; Lolkema, M.P.; Normanno, N.; Scarpa, A.; Robson, M.; Meric-Bernstam, F.; et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: A report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2020, 31, 1491–1505. [Google Scholar] [CrossRef] [PubMed]
- Nagahashi, M.; Shimada, Y.; Ichikawa, H.; Kameyama, H.; Takabe, K.; Okuda, S.; Wakai, T. Next generation sequencing-based gene panel tests for the management of solid tumors. Cancer Sci. 2019, 110, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Mittal, P.; Roberts, C.W.M. The SWI/SNF complex in cancer—Biology, biomarkers and therapy. Nat. Rev. Clin. Oncol. 2020, 17, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Kadoch, C.; Hargreaves, D.C.; Hodges, C.; Elias, L.; Ho, L.; Ranish, J.; Crabtree, G.R. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 2013, 45, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, L.; Carrot-Zhang, J.; Albrecht, S.; Fahiminiya, S.; Hamel, N.; Tomiak, E.; Grynspan, D.; Saloustros, E.; Nadaf, J.; Rivera, B.; et al. Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat. Genet. 2014, 46, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Le Loarer, F.; Watson, S.; Pierron, G.; de Montpreville, V.T.; Ballet, S.; Firmin, N.; Auguste, A.; Pissaloux, D.; Boyault, S.; Paindavoine, S.; et al. SMARCA4 inactivation defines a group of undifferentiated thoracic malignancies transcriptionally related to BAF-deficient sarcomas. Nat. Genet. 2015, 47, 1200–1205. [Google Scholar] [CrossRef]
- Fernando, T.M.; Piskol, R.; Bainer, R.; Sokol, E.S.; Trabucco, S.E.; Zhang, Q.; Trinh, H.; Maund, S.; Kschonsak, M.; Chaudhuri, S.; et al. Functional characterization of SMARCA4 variants identified by targeted exome-sequencing of 131,668 cancer patients. Nat. Commun. 2020, 11, 5551. [Google Scholar] [CrossRef]
- Tessier-Cloutier, B.; Schaeffer, D.F.; Bacani, J.; Marginean, C.E.; Kalloger, S.; Kobel, M.; Lee, C.H. Loss of switch/sucrose non-fermenting complex protein expression in undifferentiated gastrointestinal and pancreatic carcinomas. Histopathology 2020, 77, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Horton, R.K.; Ahadi, M.; Gill, A.J.; Said, S.; Chen, Z.E.; Bakhshwin, A.; Nichols, M.; Goldblum, J.R.; Graham, R.P. SMARCA4/SMARCA2-deficient Carcinoma of the Esophagus and Gastroesophageal Junction. Am. J. Surg. Pathol. 2021, 45, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.; Sheng, W.; Wang, L.; Zhu, X.; Tan, C.; Ni, S.; Weng, W.; Huang, D.; Wang, J. SWI/SNF Complex-deficient Undifferentiated Carcinoma of the Gastrointestinal Tract: Clinicopathologic Study of 30 Cases with an Emphasis on Variable Morphology, Immune Features, and the Prognostic Significance of Different SMARCA4 and SMARCA2 Subunit Deficiencies. Am. J. Surg. Pathol. 2022, 46, 889–906. [Google Scholar] [PubMed]
- Gupta, S.; Noona, S.W.; Pambuccian, S.E.; Robinson, B.; Martin, L.W.; Williams, E.; Stelow, E.B.; Raghavan, S.S. Malignant undifferentiated and rhabdoid tumors of the gastroesophageal junction and esophagus with SMARCA4 loss: A case series. Hum. Pathol. 2023, 134, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Kohashi, K.; Kawatoko, S.; Ihara, E.; Oki, E.; Nakamura, M.; Ogawa, Y.; Oda, Y. Tumor progression by epithelial-mesenchymal transition in ARID1A- and SMARCA4-aberrant solid-type poorly differentiated gastric adenocarcinoma. Virchows Arch. 2022, 480, 1063–1075. [Google Scholar] [CrossRef] [PubMed]
- Pries, K.; Kruger, S.; Heckl, S.; Behrens, H.M.; Rocken, C. SMARCA4 and SMARCE1 in gastric cancer: Correlation with ARID1A, and microsatellite stability, and SMARCE1/ERBB2 co-amplification. Cancer Med. 2023, 12, 10423–10437. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.C.; Ng, K.F.; Yeh, T.S.; Cheng, C.T.; Chen, M.C.; Chao, Y.C.; Chuang, H.C.; Liu, Y.J.; Chen, T.C. The clinicopathological and molecular analysis of gastric cancer with altered SMARCA4 expression. Histopathology 2020, 77, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Martinez, J.A.; Reyes, J.C. High expression of SMARCA4 or SMARCA2 is frequently associated with an opposite prognosis in cancer. Sci. Rep. 2018, 8, 2043. [Google Scholar] [CrossRef] [PubMed]
- Schallenberg, S.; Bork, J.; Essakly, A.; Alakus, H.; Buettner, R.; Hillmer, A.M.; Bruns, C.; Schroeder, W.; Zander, T.; Loeser, H.; et al. Loss of the SWI/SNF-ATPase subunit members SMARCF1 (ARID1A), SMARCA2 (BRM), SMARCA4 (BRG1) and SMARCB1 (INI1) in oesophageal adenocarcinoma. BMC Cancer 2020, 20, 12. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Q.; Sun, S.; Li, Z.; Cui, Z.; Liu, Q.; Zhang, Y.; Xiong, S.; Zhang, S. Expression of SMARCA2 and SMARCA4 in gastric adenocarcinoma and construction of a nomogram prognostic model. Int. J. Clin. Oncol. 2023, 28, 1487–1500. [Google Scholar] [CrossRef]
- Pan, M.; Jiang, C.; Zhang, Z.; Achacoso, N.; Solorzano-Pinto, A.V.; Tse, P.; Chung, E.; Suga, J.M.; Thomas, S.; Habel, L.A. Sex- and Co-Mutation-Dependent Prognosis in Patients with SMARCA4-Mutated Malignancies. Cancers 2023, 15, 2665. [Google Scholar] [CrossRef] [PubMed]
- Navickas, S.M.; Giles, K.A.; Brettingham-Moore, K.H.; Taberlay, P.C. The role of chromatin remodeler SMARCA4/BRG1 in brain cancers: A potential therapeutic target. Oncogene 2023, 42, 2363–2373. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Xu, L.; Li, X.; Li, H.; Zhao, M. SMARCA4: Current status and future perspectives in non-small-cell lung cancer. Cancer Lett. 2023, 554, 216022. [Google Scholar] [CrossRef] [PubMed]
- Abou Alaiwi, S.; Nassar, A.H.; Xie, W.; Bakouny, Z.; Berchuck, J.E.; Braun, D.A.; Baca, S.C.; Nuzzo, P.V.; Flippot, R.; Mouhieddine, T.H.; et al. Mammalian SWI/SNF Complex Genomic Alterations and Immune Checkpoint Blockade in Solid Tumors. Cancer Immunol. Res. 2020, 8, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Velut, Y.; Decroix, E.; Blons, H.; Alifano, M.; Leroy, K.; Petitprez, F.; Boni, A.; Garinet, S.; Biton, J.; Cremer, I.; et al. SMARCA4-deficient lung carcinoma is an aggressive tumor highly infiltrated by FOXP3+ cells and neutrophils. Lung Cancer 2022, 169, 13–21. [Google Scholar] [CrossRef]
- Holley, D.W.; Groh, B.S.; Wozniak, G.; Donohoe, D.R.; Sun, W.; Godfrey, V.; Bultman, S.J. The BRG1 chromatin remodeler regulates widespread changes in gene expression and cell proliferation during B cell activation. J. Cell Physiol. 2014, 229, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.; Huang, H.; Zhu, Z.; Chen, M.J.; Shi, H.; Yuan, S.; Sharma, P.; Connelly, J.P.; Liedmann, S.; Dhungana, Y.; et al. cBAF complex components and MYC cooperate early in CD8+ T cell fate. Nature 2022, 607, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Li, J.; Wu, J.; Xu, B.; Wang, Z.; Giamas, G.; Stebbing, J.; Yu, Z. A Pan-Cancer Analysis of SMARCA4 Alterations in Human Cancers. Front. Immunol. 2021, 12, 762598. [Google Scholar] [CrossRef]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H., Jr.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Raimondi, A.; Palermo, F.; Prisciandaro, M.; Aglietta, M.; Antonuzzo, L.; Aprile, G.; Berardi, R.; Cardellino, G.G.; De Manzoni, G.; De Vita, F.; et al. TremelImumab and Durvalumab Combination for the Non-OperatIve Management (NOM) of Microsatellite InstabiliTY (MSI)-High Resectable Gastric or Gastroesophageal Junction Cancer: The Multicentre, Single-Arm, Multi-Cohort, Phase II INFINITY Study. Cancers 2021, 13, 2839. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Ju, Z.; Zhao, W.; Wang, L.; Peng, Y.; Ge, Z.; Nagel, Z.D.; Zou, J.; Wang, C.; Kapoor, P.; et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat. Med. 2018, 24, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Tu, W.; Yang, L.; Peng, G.; Yang, L. ARID1A deficiency and immune checkpoint blockade therapy: From mechanisms to clinical application. Cancer Lett. 2020, 473, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Centore, R.C.; Sandoval, G.J.; Soares, L.M.M.; Kadoch, C.; Chan, H.M. Mammalian SWI/SNF Chromatin Remodeling Complexes: Emerging Mechanisms and Therapeutic Strategies. Trends Genet. 2020, 36, 936–950. [Google Scholar] [CrossRef] [PubMed]
Variables | Overall (n = 256) | SMARCA4-Mutated (n = 19) | SMARCA4-Normal (n = 237) | p-Value |
---|---|---|---|---|
Age | 0.184 | |||
Mean (SD) | 56.4 (13.0) | 60.2 (14.2) | 56.1 (12.8) | |
Sex, n (%) | 1 | |||
Male | 185 (72.3) | 14 (73.7) | 171 (72.2) | |
Female | 71 (27.7) | 5 (26.3) | 66 (27.8) | |
Race, n (%) | 0.597 | |||
Asian | 20 (7.8) | 1 (5.3) | 19 (8.0) | |
Black or African American | 17 (6.6) | 1 (5.3) | 16 (6.8) | |
White | 202 (78.9) | 17 (89.5) | 185 (78.1) | |
Other Race | 17 (6.6) | 0 (0.0) | 17 (7.2) | |
Ethnicity n (%) | 0.907 | |||
Hispanic or Latino | 44 (17.2) | 3 (15.8) | 41 (17.3) | |
Not Hispanic or Latino | 210 (82.0) | 16 (84.2) | 194 (81.9) | |
N/A | 2 (0.8) | 0 (0.0) | 2 (0.8) | |
ECOG-PS, n (%) | 0.607 | |||
0 | 95 (37.1) | 6 (31.6) | 89 (37.6) | |
1 | 146 (57.0) | 13 (68.4) | 133 (56.1) | |
2 | 13 (5.1) | 0 (0.0) | 13 (5.5) | |
3 | 2 (0.8) | 0 (0.0) | 2 (0.8) | |
Disease status, n (%) | 0.827 | |||
Initially metastatic disease | 159 (62.1) | 13 (68.4) | 146 (61.6) | |
Metastasis after preoperative therapy | 36 (14.1) | 2 (10.5) | 34 (14.3) | |
Recurrent metastatic disease | 61 (23.8) | 4 (21.1) | 57 (24.1) |
Variables | Overall (n = 256) | SMARCA4-Mutated (n = 19) | SMARCA4-Normal (n = 237) | p-Value |
---|---|---|---|---|
Tumor location, n (%) | 0.093 | |||
Esophagus | 72 (28.1) | 8 (42.1) | 64 (27.0) | |
GEJ | 129 (50.4) | 5 (26.3) | 124 (52.3) | |
Stomach | 55 (21.5) | 6 (31.6) | 49 (20.7) | |
Histological type, n (%) | 0.244 | |||
Well-differentiated | 1 (0.4) | 0 (0.0) | 1 (0.4) | |
Moderately differentiated | 76 (29.7) | 9 (47.4) | 67 (28.3) | |
Moderately to poorly differentiated | 17 (6.6) | 2 (10.5) | 15 (6.3) | |
Poorly differentiated | 162 (63.3) | 8 (42.1) | 154 (65.0) | |
Signet ring cell component, n (%) | 0.044 | |||
Yes | 103 (40.2) | 3 (15.8) | 100 (42.2) | |
No | 153 (59.8) | 16 (84.2) | 137 (57.8) | |
HER2, n (%) | 0.744 | |||
Positive | 46 (18.0) | 4 (21.1) | 42 (17.7) | |
Negative | 204 (79.7) | 15 (78.9) | 189 (79.7) | |
N/A | 6 (2.3) | 0 (0.0) | 6 (2.5) | |
PD-L1, n (%) | 0.046 | |||
Positive | 159 (62.1) | 16 (84.2) | 143 (60.3) | |
Negative | 78 (30.5) | 1 (5.3) | 77 (32.5) | |
N/A | 19 (7.4) | 2 (10.5) | 17 (7.2) | |
MSI status, n (%) | 0.201 | |||
MSI-H | 9 (3.5) | 2 (10.5) | 7 (3.0) | |
MSS | 226 (88.3) | 15 (78.9) | 211 (89.0) | |
N/A | 21 (8.2) | 2 (10.5) | 19 (8.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamashita, K.; Sewastjanow-Silva, M.; Yoshimura, K.; Rogers, J.E.; Rosa Vicentini, E.; Pool Pizzi, M.; Fan, Y.; Zou, G.; Li, J.J.; Blum Murphy, M.; et al. SMARCA4 Mutations in Gastroesophageal Adenocarcinoma: An Observational Study via a Next-Generation Sequencing Panel. Cancers 2024, 16, 1300. https://doi.org/10.3390/cancers16071300
Yamashita K, Sewastjanow-Silva M, Yoshimura K, Rogers JE, Rosa Vicentini E, Pool Pizzi M, Fan Y, Zou G, Li JJ, Blum Murphy M, et al. SMARCA4 Mutations in Gastroesophageal Adenocarcinoma: An Observational Study via a Next-Generation Sequencing Panel. Cancers. 2024; 16(7):1300. https://doi.org/10.3390/cancers16071300
Chicago/Turabian StyleYamashita, Kohei, Matheus Sewastjanow-Silva, Katsuhiro Yoshimura, Jane E. Rogers, Ernesto Rosa Vicentini, Melissa Pool Pizzi, Yibo Fan, Gengyi Zou, Jenny J. Li, Mariela Blum Murphy, and et al. 2024. "SMARCA4 Mutations in Gastroesophageal Adenocarcinoma: An Observational Study via a Next-Generation Sequencing Panel" Cancers 16, no. 7: 1300. https://doi.org/10.3390/cancers16071300
APA StyleYamashita, K., Sewastjanow-Silva, M., Yoshimura, K., Rogers, J. E., Rosa Vicentini, E., Pool Pizzi, M., Fan, Y., Zou, G., Li, J. J., Blum Murphy, M., Gan, Q., Waters, R. E., Wang, L., & Ajani, J. A. (2024). SMARCA4 Mutations in Gastroesophageal Adenocarcinoma: An Observational Study via a Next-Generation Sequencing Panel. Cancers, 16(7), 1300. https://doi.org/10.3390/cancers16071300