Synthetic Circular RNA for microRNA-1269a Suppresses Tumor Progression in Oral Squamous Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Differential Expression of miR-1269a in the Cancer Genome Atlas (TCGA)
2.3. qRT-PCR Analysis of miR-1269a Expression
2.4. Luciferase Reporter Assays
2.5. Design and Synthesis of miR-1269a-Specific circRNA (circRNA-1269a)
2.6. Confirmation of circRNA-1269a Synthesis
2.7. Transfection of circRNA-1269a
2.8. Cell Proliferation Assay
2.9. Migration Assay
2.10. Proteomic Analysis of the Effects of circRNA-1269a Treatment
2.11. Gene Set Enrichment Analysis (GSEA)
2.12. Identification of miR-1269a Targets
2.13. Analysis of PLCG2 in OSCC Patients
2.14. Statistical Analyses
3. Results
3.1. Expression Levels of miR-1269a in OSCC Patients in the TCGA Dataset and OSCC Cell Lines
3.2. Validation of a Specific Sequence for miR-1269a Sponge Function
3.3. Construction and Verification of circRNA-1269a
3.4. Functional Effects of Synthetic miR-1269a-Specific circRNA
3.5. circRNA-1269a Inhibits Proliferation and Migration of OSCC Cells
3.6. Proteomic Analysis of circRNA-1269a-Treated OSCC Cells
3.7. Function of the circRNA-1269a Target Protein, PLCG2, in OSCC Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions; Elsevier: Amsterdam, The Netherlands, 2009; Volume 136, pp. 215–233. [Google Scholar]
- Farazi, T.A.; Spitzer, J.I.; Morozov, P.; Tuschl, T. MiRNAs in Human Cancer. J. Pathol. 2011, 223, 102–115. [Google Scholar] [CrossRef] [PubMed]
- Ventura, A.; Jacks, T. MicroRNAs and Cancer: Short RNAs Go a Long Way. Cell 2009, 136, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Selaru, F.M.; Olaru, A.V.; Kan, T.; David, S.; Cheng, Y.; Mori, Y.; Yang, J.; Paun, B.; Jin, Z.; Agarwal, R.; et al. MicroRNA-21 Is Overexpressed in Human Cholangiocarcinoma and Regulates Programmed Cell Death 4 and Tissue Inhibitor of Metalloproteinase 3. Hepatology 2009, 49, 1595–1601. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Meltzer, S.J. Gastric Cancer in the Era of Precision Medicine. Cell. Mol. Gastroenterol. Hepatol. 2017, 3, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; et al. Circular RNAs Are a Large Class of Animal RNAs with Regulatory Potency. Nature 2013, 495, 333–338. [Google Scholar] [CrossRef]
- Chen, L.-L. The Biogenesis and Emerging Roles of Circular RNAs. Nat. Rev. Mol. Cell Biol. 2016, 17, 205–211. [Google Scholar] [CrossRef]
- Jeck, W.R.; Sharpless, N.E. Detecting and Characterizing Circular RNAs. Nat. Biotechnol. 2014, 32, 453–461. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, K.; Pitts, S.; Cheng, Y.; Liu, X.; Ke, X.; Kovaka, S.; Ashktorab, H.; Smoot, D.T.; Schatz, M.; et al. Novel Circular RNA CircNF1 Acts as a Molecular Sponge, Promoting Gastric Cancer by Absorbing MiR-16. Endocr. Relat. Cancer 2019, 26, 265–277. [Google Scholar] [CrossRef]
- Liu, H.; Bi, J.; Dong, W.; Yang, M.; Shi, J.; Jiang, N.; Lin, T.; Huang, J. Correction to: Invasion-Related Circular RNA CircFNDC3B Inhibits Bladder Cancer Progression through the MiR-1178-3p/G3BP2/SRC/FAK Axis. Mol. Cancer 2020, 19, 124. [Google Scholar] [CrossRef]
- Huang, B.; Zhou, D.; Huang, X.; Xu, X.; Xu, Z. Silencing CircSLC19A1 Inhibits Prostate Cancer Cell Proliferation, Migration and Invasion through Regulating MiR-326/MAPK1 Axis. Cancer Manag. Res. 2020, 12, 11883–11895. [Google Scholar] [CrossRef]
- Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA Circles Function as Efficient MicroRNA Sponges. Nature 2013, 495, 384–388. [Google Scholar] [CrossRef]
- Ando, T.; Kasamatsu, A.; Kawasaki, K.; Hiroshima, K.; Fukushima, R.; Iyoda, M.; Nakashima, D.; Endo-Sakamoto, Y.; Uzawa, K. Tumor Suppressive Circular RNA-102450: Development of a Novel Diagnostic Procedure for Lymph Node Metastasis from Oral Cancer. Cancers 2021, 13, 5708. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, S.; Wu, J.; Cui, J.; Zhong, L.; Zeng, L.; Ge, S. CircRNA_100290 Plays a Role in Oral Cancer by Functioning as a Sponge of the MiR-29 Family. Oncogene 2017, 36, 4551–4561. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Li, J.; Wang, H.; Su, X.; Hou, J.; Gu, Y.; Qian, C.; Lin, Y.; Liu, X.; Huang, M.; et al. Circular RNA CircMTO1 Acts as the Sponge of MicroRNA-9 to Suppress Hepatocellular Carcinoma Progression. Hepatology 2017, 66, 1151–1164. [Google Scholar] [CrossRef]
- Oshima, S.; Asai, S.; Seki, N.; Minemura, C.; Kinoshita, T.; Goto, Y.; Kikkawa, N.; Moriya, S.; Kasamatsu, A.; Hanazawa, T.; et al. Identification of Tumor Suppressive Genes Regulated by MiR-31-5p and MiR-31-3p in Head and Neck Squamous Cell Carcinoma. Int. J. Mol. Sci. 2021, 22, 6199. [Google Scholar] [CrossRef]
- Bu, P.; Wang, L.; Chen, K.-Y.; Rakhilin, N.; Sun, J.; Closa, A.; Tung, K.-L.; King, S.; Kristine Varanko, A.; Xu, Y.; et al. MiR-1269 Promotes Metastasis and Forms a Positive Feedback Loop with TGF-β. Nat. Commun. 2015, 6, 6879. [Google Scholar] [CrossRef]
- Hu, Y.; Dingerdissen, H.; Gupta, S.; Kahsay, R.; Shanker, V.; Wan, Q.; Yan, C.; Mazumder, R. Identification of Key Differentially Expressed MicroRNAs in Cancer Patients through Pan-Cancer Analysis. Comput. Biol. Med. 2018, 103, 183–197. [Google Scholar] [CrossRef]
- Gan, T.-Q.; Tang, R.-X.; He, R.-Q.; Dang, Y.-W.; Xie, Y.; Chen, G. Upregulated MiR-1269 in Hepatocellular Carcinoma and Its Clinical Significance. Int. J. Clin. Exp. Med. 2015, 8, 714–721. [Google Scholar]
- Kawashima, Y.; Nagai, H.; Konno, R.; Ishikawa, M.; Nakajima, D.; Sato, H.; Nakamura, R.; Furuyashiki, T.; Ohara, O. Single-Shot 10K Proteome Approach: Over 10,000 Protein Identifications by Data-Independent Acquisition-Based Single-Shot Proteomics with Ion Mobility Spectrometry. J. Proteome Res. 2022, 21, 1418–1427. [Google Scholar] [CrossRef] [PubMed]
- Uzawa, K.; Amelio, A.L.; Kasamatsu, A.; Saito, T.; Kita, A.; Fukamachi, M.; Sawai, Y.; Toeda, Y.; Eizuka, K.; Hayashi, F.; et al. Resveratrol Targets Urokinase-Type Plasminogen Activator Receptor Expression to Overcome Cetuximab-Resistance in Oral Squamous Cell Carcinoma. Sci. Rep. 2019, 9, 12179. [Google Scholar] [CrossRef] [PubMed]
- Mootha, V.K.; Lindgren, C.M.; Eriksson, K.-F.; Subramanian, A.; Sihag, S.; Lehar, J.; Puigserver, P.; Carlsson, E.; Ridderstråle, M.; Laurila, E.; et al. PGC-1alpha-Responsive Genes Involved in Oxidative Phosphorylation Are Coordinately Downregulated in Human Diabetes. Nat. Genet. 2003, 34, 267–273. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed]
- Liberzon, A.; Subramanian, A.; Pinchback, R.; Thorvaldsdóttir, H.; Tamayo, P.; Mesirov, J.P. Molecular Signatures Database (MSigDB) 3.0. Bioinformatics 2011, 27, 1739–1740. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the CBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The CBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Anaya, J. OncoLnc: Linking TCGA Survival Data to MRNAs, MiRNAs, and LncRNAs. PeerJ Comput. Sci. 2016, 2, e67. [Google Scholar] [CrossRef]
- Baba, T.; Sakamoto, Y.; Kasamatsu, A.; Minakawa, Y.; Yokota, S.; Higo, M.; Yokoe, H.; Ogawara, K.; Shiiba, M.; Tanzawa, H.; et al. Persephin: A Potential Key Component in Human Oral Cancer Progression through the RET Receptor Tyrosine Kinase-Mitogen-Activated Protein Kinase Signaling Pathway. Mol. Carcinog. 2015, 54, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Kita, A.; Kasamatsu, A.; Nakashima, D.; Endo-Sakamoto, Y.; Ishida, S.; Shimizu, T.; Kimura, Y.; Miyamoto, I.; Yoshimura, S.; Shiiba, M.; et al. Activin B Regulates Adhesion, Invasiveness, and Migratory Activities in Oral Cancer: A Potential Biomarker for Metastasis. J. Cancer 2017, 8, 2033–2041. [Google Scholar] [CrossRef]
- Yamamoto, A.; Kasamatsu, A.; Ishige, S.; Koike, K.; Saito, K.; Kouzu, Y.; Koike, H.; Sakamoto, Y.; Ogawara, K.; Shiiba, M.; et al. Exocyst Complex Component Sec8: A Presumed Component in the Progression of Human Oral Squamous-Cell Carcinoma by Secretion of Matrix Metalloproteinases. J. Cancer Res. Clin. Oncol. 2013, 139, 533–542. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Xie, F. T-Regulatory Cell/T Helper 17 Cell Imbalance Functions as Prognostic Biomarker of Oral Squamous Cell Carcinoma—CONSORT. Medicine 2020, 99, e23145. [Google Scholar] [CrossRef]
- Sim, Y.C.; Hwang, J.-H.; Ahn, K.-M. Overall and Disease-Specific Survival Outcomes Following Primary Surgery for Oral Squamous Cell Carcinoma: Analysis of Consecutive 67 Patients. J. Korean Assoc. Oral Maxillofac. Surg. 2019, 45, 83–90. [Google Scholar] [CrossRef]
- Vo, J.N.; Cieslik, M.; Zhang, Y.; Shukla, S.; Xiao, L.; Zhang, Y.; Wu, Y.-M.; Dhanasekaran, S.M.; Engelke, C.G.; Cao, X.; et al. The Landscape of Circular RNA in Cancer. Cell 2019, 176, 869–881.e13. [Google Scholar] [CrossRef]
- Patop, I.L.; Kadener, S. CircRNAs in Cancer. Curr. Opin. Genet. Dev. 2018, 48, 121–127. [Google Scholar] [CrossRef]
- Szabo, L.; Salzman, J. Detecting Circular RNAs: Bioinformatic and Experimental Challenges. Nat. Rev. Genet. 2016, 17, 679–692. [Google Scholar] [CrossRef]
- Liu, X.; Abraham, J.M.; Cheng, Y.; Wang, Z.; Wang, Z.; Zhang, G.; Ashktorab, H.; Smoot, D.T.; Cole, R.N.; Boronina, T.N.; et al. Synthetic Circular RNA Functions as a MiR-21 Sponge to Suppress Gastric Carcinoma Cell Proliferation. Mol. Ther. Nucleic Acids 2018, 13, 312–321. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Q.; Ye, X.-F.; Liu, S.; Lin, X.-F.; Chen, M.-C. Roles of PLC-Gamma2 and PKCalpha in TPA-Induced Apoptosis of Gastric Cancer Cells. World J. Gastroenterol. 2003, 9, 2413–2418. [Google Scholar] [CrossRef]
- Graham, D.B.; Robertson, C.M.; Bautista, J.; Mascarenhas, F.; Diacovo, M.J.; Montgrain, V.; Lam, S.K.; Cremasco, V.; Dunne, W.M.; Faccio, R.; et al. Neutrophil-Mediated Oxidative Burst and Host Defense Are Controlled by a Vav-PLCgamma2 Signaling Axis in Mice. J. Clin. Investig. 2007, 117, 3445–3452. [Google Scholar] [CrossRef] [PubMed]
- Shearn, C.T.; Reigan, P.; Petersen, D.R. Inhibition of Hydrogen Peroxide Signaling by 4-Hydroxynonenal Due to Differential Regulation of Akt1 and Akt2 Contributes to Decreases in Cell Survival and Proliferation in Hepatocellular Carcinoma Cells. Free Radic. Biol. Med. 2012, 53, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lv, Q.; Ma, J.; Liu, Y. PLCγ2 Promotes Apoptosis While Inhibits Proliferation in Rat Hepatocytes through PKCD/JNK MAPK and PKCD/P38 MAPK Signalling. Cell Prolif. 2018, 51, e12437. [Google Scholar] [CrossRef] [PubMed]
- Kuo, W.-H.; Chen, J.-H.; Lin, H.-H.; Chen, B.-C.; Hsu, J.-D.; Wang, C.-J. Induction of Apoptosis in the Lung Tissue from Rats Exposed to Cigarette Smoke Involves P38/JNK MAPK Pathway. Chem. Biol. Interact. 2005, 155, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, A.; Ridgway, L.D.; Korapati, A.L.; Zhang, Q.; Tian, L.; Wang, Y.; Siddik, Z.H.; Mills, G.B.; Claret, F.X. Sustained Activation of JNK/P38 MAPK Pathways in Response to Cisplatin Leads to Fas Ligand Induction and Cell Death in Ovarian Carcinoma Cells. J. Biol. Chem. 2003, 278, 19245–19256. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.C.; Pellecchia, M. Apoptosis-Based Therapies for Hematologic Malignancies. Blood 2005, 106, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Coutinho-Camillo, C.M.; Lourenço, S.V.; Nishimoto, I.N.; Kowalski, L.P.; Soares, F.A. Caspase Expression in Oral Squamous Cell Carcinoma. Head Neck 2011, 33, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Derfuss, T.; Fickenscher, H.; Kraft, M.S.; Henning, G.; Lengenfelder, D.; Fleckenstein, B.; Meinl, E. Antiapoptotic Activity of the Herpesvirus Saimiri-Encoded Bcl-2 Homolog: Stabilization of Mitochondria and Inhibition of Caspase-3-like Activity. J. Virol. 1998, 72, 5897–5904. [Google Scholar] [CrossRef]
- Casciola-Rosen, L.A.; Anhalt, G.J.; Rosen, A. DNA-Dependent Protein Kinase Is One of a Subset of Autoantigens Specifically Cleaved Early during Apoptosis. J. Exp. Med. 1995, 182, 1625–1634. [Google Scholar] [CrossRef]
Protein Name | Symbol | Ave Ratio | p-Value | |
---|---|---|---|---|
2X | 4X | |||
Calcium-binding and coiled-coil domain-containing protein 2 | CALCOCO2 | 2.20 | 2.11 | 2.68 × 10−7 |
Collagen and calcium-binding EGF domain-containing protein 1 | CCBE1 | 28.49 | 26.84 | 3.41 × 10−5 |
Cap-specific mRNA (nucleoside-2′-O-)-methyltransferase 1 | CMTR1 | 2.64 | 2.19 | 8.67 × 10−7 |
Cytokine receptor-like factor 3 | CRLF3 | 2.32 | 2.36 | 1.25 × 10−4 |
Deoxycytidine kinase | DCK | 2.35 | 2.17 | 1.44 × 10−5 |
DCN1-like protein 5 | DCUN1D5 | 2.20 | 2.04 | 4.82 × 10−7 |
Coagulation factor X | F10 | 72.09 | 87.02 | 4.06 × 10−6 |
Fibroblast growth factor 2 | FGF2 | 2.63 | 2.85 | 5.48 × 10−7 |
Peptidyl-prolyl cis-trans isomerase FKBP4 | FKBP4 | 2.50 | 2.20 | 1.13 × 10−6 |
Glucosamine 6-phosphate N-acetyltransferase | GNPNAT1 | 2.27 | 2.13 | 3.88 × 10−5 |
Interferon-induced protein with tetratricopeptide repeats 1 | IFIT1 | 44.90 | 40.03 | 5.39 × 10−10 |
Interferon-induced protein with tetratricopeptide repeats 5 | IFIT5 | 6.50 | 5.34 | 9.78 × 10−8 |
Interferon-related developmental regulator 1 | IFRD1 | 2.07 | 2.00 | 4.98 × 10−8 |
Interleukin-1 receptor accessory protein-like 1 | IL1RAPL1 | 2.98 | 3.30 | 1.53 × 10−2 |
tRNA N(3)-methylcytidine methyltransferase METTL2B | METTL2B | 3.87 | 3.33 | 3.88 × 10−6 |
Neuron navigator 1 | NAV1 | 4.05 | 4.22 | 1.68 × 10−2 |
U8 snoRNA-decapping enzyme | NUDT16 | 3.07 | 2.55 | 6.66 × 10−7 |
Partitioning defective 6 homolog beta | PARD6B | 2.12 | 2.27 | 1.32 × 10−7 |
Protocadherin-7 | PCDH7 | 2.04 | 2.15 | 4.26 × 10−3 |
Chronophin | PDXP | 2.93 | 2.30 | 3.78 × 10−5 |
1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2 | PLCG2 | 4.85 | 6.47 | 3.81 × 10−3 |
Pleckstrin homology domain-containing family B member 2 | PLEKHB2 | 3.85 | 4.31 | 1.16 × 10−4 |
Phospholipid scramblase 1 | PLSCR1 | 4.49 | 4.23 | 2.25 × 10−7 |
Purine nucleoside phosphorylase | PNP | 2.44 | 2.37 | 8.05 × 10−7 |
Podocalyxin | PODXL | 2.12 | 2.42 | 4.34 × 10−5 |
Amidophosphoribosyltransferase | PPAT | 2.40 | 2.17 | 6.02 × 10−7 |
Proteasome assembly chaperone 1 | PSMG1 | 2.44 | 2.04 | 1.90 × 10−6 |
Sulfhydryl oxidase 1 | QSOX1 | 2.02 | 2.08 | 1.32 × 10−6 |
Ras-related protein Rab-43 | RAB43 | 2.15 | 2.10 | 2.17 × 10−7 |
Serine/threonine-protein kinase RIO2 | RIOK2 | 2.18 | 2.06 | 4.80 × 10−7 |
GTP-binding protein Rit1 | RIT1 | 2.49 | 2.35 | 7.59 × 10−4 |
E3 ubiquitin-protein ligase RNF114 | RNF114 | 2.35 | 2.30 | 2.13 × 10−4 |
RWD domain-containing protein 1 | RWDD1 | 2.34 | 2.03 | 1.63 × 10−4 |
Deoxynucleoside triphosphate triphosphohydrolase SAMHD1 | SAMHD1 | 8.28 | 6.54 | 9.29 × 10−8 |
GTP-binding protein SAR1a | SAR1A | 2.61 | 2.33 | 1.37 × 10−5 |
Sodium-coupled neutral amino acid transporter 2 | SLC38A2 | 2.17 | 2.29 | 1.12 × 10−4 |
Protein sprouty homolog 4 | SPRY4 | 3.37 | 3.30 | 7.71 × 10−6 |
Signal transducer and activator of transcription 2 | STAT2 | 2.49 | 2.21 | 1.12 × 10−5 |
Antigen peptide transporter 2 | TAP2 | 2.04 | 2.09 | 1.80 × 10−6 |
Tax1-binding protein 1 | TAX1BP1 | 5.42 | 5.74 | 2.15 × 10−9 |
Tumor necrosis factor receptor superfamily member 10A | TNFRSF10A | 3.48 | 3.75 | 1.50 × 10−6 |
Tripartite motif-containing protein 14 | TRIM14 | 2.18 | 2.10 | 2.27 × 10−6 |
E3 ubiquitin-protein ligase TRIM38 | TRIM38 | 10.57 | 11.20 | 1.19 × 10−6 |
TSC22 domain family protein 2 | TSC22D2 | 2.24 | 2.37 | 5.14 × 10−5 |
Thioredoxin-like protein 1 | TXNL1 | 2.65 | 2.24 | 1.90 × 10−6 |
tRNA wybutosine-synthesizing protein 3 homolog | TYW3 | 2.55 | 2.24 | 1.14 × 10−4 |
Ubiquitin-associated and SH3 domain-containing protein B | UBASH3B | 2.26 | 2.15 | 4.69 × 10−4 |
Ubiquitin/ISG15-conjugating enzyme E2 L6 | UBE2L6 | 4.59 | 3.82 | 2.30 × 10−6 |
Ubiquitin thioesterase OTU1 | YOD1 | 9.71 | 7.68 | 1.37 × 10−4 |
YrdC domain-containing protein, mitochondrial | YRDC | 2.52 | 2.43 | 7.59 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasamatsu, A.; Nozaki, R.; Kawasaki, K.; Saito, T.; Minemura, C.; Seki, N.; Moss, J.; Uzawa, K. Synthetic Circular RNA for microRNA-1269a Suppresses Tumor Progression in Oral Squamous Cell Carcinoma. Cancers 2024, 16, 1242. https://doi.org/10.3390/cancers16061242
Kasamatsu A, Nozaki R, Kawasaki K, Saito T, Minemura C, Seki N, Moss J, Uzawa K. Synthetic Circular RNA for microRNA-1269a Suppresses Tumor Progression in Oral Squamous Cell Carcinoma. Cancers. 2024; 16(6):1242. https://doi.org/10.3390/cancers16061242
Chicago/Turabian StyleKasamatsu, Atsushi, Ryunosuke Nozaki, Kohei Kawasaki, Tomoaki Saito, Chikashi Minemura, Naohiko Seki, Joel Moss, and Katsuhiro Uzawa. 2024. "Synthetic Circular RNA for microRNA-1269a Suppresses Tumor Progression in Oral Squamous Cell Carcinoma" Cancers 16, no. 6: 1242. https://doi.org/10.3390/cancers16061242
APA StyleKasamatsu, A., Nozaki, R., Kawasaki, K., Saito, T., Minemura, C., Seki, N., Moss, J., & Uzawa, K. (2024). Synthetic Circular RNA for microRNA-1269a Suppresses Tumor Progression in Oral Squamous Cell Carcinoma. Cancers, 16(6), 1242. https://doi.org/10.3390/cancers16061242