Lung Cancer Proteogenomics: Shaping the Future of Clinical Investigation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Tissue Samples
3.1.1. Non-Small Cell Lung Cancer—Adenocarcinoma
3.1.2. Non-Small Cell Lung Cancer—Squamous Cell Carcinoma
3.1.3. Non-Small Cell Lung Cancer—All Subtypes
3.1.4. Small Cell Lung Cancer
3.2. Cell Lines
3.3. Bioinformatic Analyses of Retrieved Multi-Omics Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Jeon, D.S.; Kim, H.C.; Kim, S.H.; Kim, T.-J.; Kim, H.K.; Moon, M.H.; Beck, K.S.; Suh, Y.-G.; Song, C.; Ahn, J.S.; et al. Five-Year Overall Survival and Prognostic Factors in Patients with Lung Cancer: Results from the Korean Association of Lung Cancer Registry (KALC-R) 2015. Cancer Res. Treat. 2023, 55, 103–111. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Li, H.; Cao, M.; Sun, D.; Yang, F.; Yan, X.; Zhang, S.; He, Y.; Du, L.; Sun, X.; et al. Survival of 7,311 Lung Cancer Patients by Pathological Stage and Histological Classification: A Multicenter Hospital-Based Study in China. Transl. Lung Cancer Res. 2022, 11, 1591–1605. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Leiter, A.; Veluswamy, R.R.; Wisnivesky, J.P. The Global Burden of Lung Cancer: Current Status and Future Trends. Nat. Rev. Clin. Oncol. 2023, 20, 624–639. [Google Scholar] [CrossRef]
- Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization Classification of Lung Tumors. J. Thorac. Oncol. 2015, 10, 1243–1260. [Google Scholar] [CrossRef]
- Testa, U.; Castelli, G.; Pelosi, E. Lung Cancers: Molecular Characterization, Clonal Heterogeneity and Evolution, and Cancer Stem Cells. Cancers 2018, 10, 248. [Google Scholar] [CrossRef]
- Thun, M.; Peto, R.; Boreham, J.; Lopez, A.D. Stages of the Cigarette Epidemic on Entering Its Second Century. Tob. Control 2012, 21, 96–101. [Google Scholar] [CrossRef]
- Sun, S.; Schiller, J.H.; Gazdar, A.F. Lung Cancer in Never Smokers—A Different Disease. Nat. Rev. Cancer 2007, 7, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Bach, P.B. Smoking as a Factor in Causing Lung Cancer. JAMA 2009, 301, 539. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Zhou, C. Lung Cancer in Never Smokers—The East Asian Experience. Transl. Lung Cancer Res. 2018, 7, 450–463. [Google Scholar] [CrossRef] [PubMed]
- Toh, C.-K.; Wong, E.-H.; Lim, W.-T.; Leong, S.-S.; Fong, K.-W.; Wee, J.; Tan, E.-H. The Impact of Smoking Status on the Behavior and Survival Outcome of Patients with Advanced Non-Small Cell Lung Cancer. Chest 2004, 126, 1750–1756. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-Y.; Fang, Y.-H.; Chen, H.-L.; Chang, C.-H.; Huang, H.; Chen, Y.-S.; Liao, K.-M.; Wu, H.-Y.; Chang, G.-C.; Tsai, Y.-H.; et al. Impact of Cooking Oil Fume Exposure and Fume Extractor Use on Lung Cancer Risk in Non-Smoking Han Chinese Women. Sci. Rep. 2020, 10, 6774. [Google Scholar] [CrossRef] [PubMed]
- Barone-Adesi, F.; Chapman, R.S.; Silverman, D.T.; He, X.; Hu, W.; Vermeulen, R.; Ning, B.; Fraumeni, J.F.; Rothman, N.; Lan, Q. Risk of Lung Cancer Associated with Domestic Use of Coal in Xuanwei, China: Retrospective Cohort Study. BMJ 2012, 345, e5414. [Google Scholar] [CrossRef] [PubMed]
- Kurmi, O.P.; Arya, P.H.; Lam, K.-B.H.; Sorahan, T.; Ayres, J.G. Lung Cancer Risk and Solid Fuel Smoke Exposure: A Systematic Review and Meta-Analysis. Eur. Respir. J. 2012, 40, 1228–1237. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.-H.; Tsuang, B.-J.; Chiang, C.-J.; Ku, K.-C.; Tseng, J.-S.; Yang, T.-Y.; Hsu, K.-H.; Chen, K.-C.; Yu, S.-L.; Lee, W.-C.; et al. The Relationship Between Air Pollution and Lung Cancer in Nonsmokers in Taiwan. J. Thorac. Oncol. 2019, 14, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Samet, J.M.; Avila-Tang, E.; Boffetta, P.; Hannan, L.M.; Olivo-Marston, S.; Thun, M.J.; Rudin, C.M. Lung Cancer in Never Smokers: Clinical Epidemiology and Environmental Risk Factors. Clin. Cancer Res. 2009, 15, 5626–5645. [Google Scholar] [CrossRef]
- Seow, W.J.; Matsuo, K.; Hsiung, C.A.; Shiraishi, K.; Song, M.; Kim, H.N.; Wong, M.P.; Hong, Y.-C.; Hosgood, H.D.; Wang, Z.; et al. Association between GWAS-Identified Lung Adenocarcinoma Susceptibility Loci and EGFR Mutations in Never-Smoking Asian Women, and Comparison with Findings from Western Populations. Hum. Mol. Genet. 2016, 26, 454–465. [Google Scholar] [CrossRef]
- LoPiccolo, J.; Gusev, A.; Christiani, D.C.; Jänne, P.A. Lung Cancer in Patients Who Have Never Smoked—An Emerging Disease. Nat. Rev. Clin. Oncol. 2024, 21, 121–146. [Google Scholar] [CrossRef]
- Anagnostopoulos, A.K.; Gaitanis, A.; Gkiozos, I.; Athanasiadis, E.I.; Chatziioannou, S.N.; Syrigos, K.N.; Thanos, D.; Chatziioannou, A.N.; Papanikolaou, N. Radiomics/Radiogenomics in Lung Cancer: Basic Principles and Initial Clinical Results. Cancers 2022, 14, 1657. [Google Scholar] [CrossRef]
- Akhoundova, D.; Rubin, M.A. Clinical Application of Advanced Multi-Omics Tumor Profiling: Shaping Precision Oncology of the Future. Cancer Cell 2022, 40, 920–938. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.D.; Alexandrov, A.; Kim, J.; Wala, J.; Berger, A.H.; Pedamallu, C.S.; Shukla, S.A.; Guo, G.; Brooks, A.N.; Murray, B.A.; et al. Distinct Patterns of Somatic Genome Alterations in Lung Adenocarcinomas and Squamous Cell Carcinomas. Nat. Genet. 2016, 48, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Comprehensive Molecular Profiling of Lung Adenocarcinoma. Nature 2014, 511, 543–550. [CrossRef]
- Chen, J.-Y.; Chou, H.-H.; Lim, S.C.; Huang, Y.-J.; Lai, K.-C.; Guo, C.-L.; Tung, C.-Y.; Su, C.-T.; Wang, J.; Liu, E.; et al. Multiomic Characterization and Drug Testing Establish Circulating Tumor Cells as an Ex Vivo Tool for Personalized Medicine. iScience 2022, 25, 105081. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.; Kong, Y.; Zhang, Y.; Qian, L.; Wang, Z.; Guan, X.; Lu, H.; Xiao, H. Phosphoproteomics of Extracellular Vesicles Integrated with Multiomics Analysis Reveals Novel Kinase Networks for Lung Cancer. Mol. Carcinog. 2022, 61, 1116–1127. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Biswas, R.; Gao, S.; Cultraro, C.; Zhang, X.; Maity, T.; Carter, C.; Thomas, A.; Rajan, A.; Hanada, K.-I.; Song, Y.; et al. P2.01-041 Integrated Proteo-Genomics Analyses Reveal Extensive Tumor Heterogeneity and Novel Somatic Variants in Lung Adenocarcinoma. J. Thorac. Oncol. 2017, 12, S810–S811. [Google Scholar] [CrossRef]
- Roper, N.; Gao, S.; Maity, T.K.; Banday, A.R.; Zhang, X.; Venugopalan, A.; Cultraro, C.M.; Patidar, R.; Sindiri, S.; Brown, A.-L.; et al. APOBEC Mutagenesis and Copy-Number Alterations Are Drivers of Proteogenomic Tumor Evolution and Heterogeneity in Metastatic Thoracic Tumors. Cell Rep. 2019, 26, 2651–2666.e6. [Google Scholar] [CrossRef]
- Sharpnack, M.F.; Ranbaduge, N.; Srivastava, A.; Cerciello, F.; Codreanu, S.G.; Liebler, D.C.; Mascaux, C.; Miles, W.O.; Morris, R.; McDermott, J.E.; et al. Proteogenomic Analysis of Surgically Resected Lung Adenocarcinoma. J. Thorac. Oncol. 2018, 13, 1519–1529. [Google Scholar] [CrossRef]
- Sankala, H.; Vaughan, C.; Wang, J.; Deb, S.; Graves, P.R. Upregulation of the Mitochondrial Transport Protein, Tim50, by Mutant P53 Contributes to Cell Growth and Chemoresistance. Arch. Biochem. Biophys. 2011, 512, 52–60. [Google Scholar] [CrossRef]
- Nishimura, T.; Nakamura, H.; Tan, K.T.; Zhuo, D.-W.; Fujii, K.; Koizumi, H.; Naruki, S.; Takagi, M.; Furuya, N.; Kato, Y.; et al. A Proteogenomic Profile of Early Lung Adenocarcinomas by Protein Co-Expression Network and Genomic Alteration Analysis. Sci. Rep. 2020, 10, 13604. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Roumeliotis, T.I.; Chang, Y.-H.; Chen, C.-T.; Han, C.-L.; Lin, M.-H.; Chen, H.-W.; Chang, G.-C.; Chang, Y.-L.; Wu, C.-T.; et al. Proteogenomics of Non-Smoking Lung Cancer in East Asia Delineates Molecular Signatures of Pathogenesis and Progression. Cell 2020, 182, 226–244.e17. [Google Scholar] [CrossRef]
- Gillette, M.A.; Satpathy, S.; Cao, S.; Dhanasekaran, S.M.; Vasaikar, S.V.; Krug, K.; Petralia, F.; Li, Y.; Liang, W.-W.; Reva, B.; et al. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell 2020, 182, 200–225.e35. [Google Scholar] [CrossRef] [PubMed]
- Soltis, A.R.; Bateman, N.W.; Liu, J.; Nguyen, T.; Franks, T.J.; Zhang, X.; Dalgard, C.L.; Viollet, C.; Somiari, S.; Yan, C.; et al. Proteogenomic Analysis of Lung Adenocarcinoma Reveals Tumor Heterogeneity, Survival Determinants, and Therapeutically Relevant Pathways. Cell Rep. Med. 2022, 3, 100819. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fu, F.; Zhang, Q.; Li, L.; Liu, H.; Deng, C.; Xue, Q.; Zhao, Y.; Sun, W.; Han, H.; et al. Evolutionary Proteogenomic Landscape from Pre-Invasive to Invasive Lung Adenocarcinoma. Cell Rep. Med. 2024, 5, 101358. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.A.; Parapatics, K.; Welsh, E.A.; Müller, A.C.; Cao, H.; Fang, B.; Koomen, J.M.; Eschrich, S.A.; Bennett, K.L.; Haura, E.B. A Pilot Proteogenomic Study with Data Integration Identifies MCT1 and GLUT1 as Prognostic Markers in Lung Adenocarcinoma. PLoS ONE 2015, 10, e0142162. [Google Scholar] [CrossRef] [PubMed]
- Vizcaíno, J.A.; Deutsch, E.W.; Wang, R.; Csordas, A.; Reisinger, F.; Ríos, D.; Dianes, J.A.; Sun, Z.; Farrah, T.; Bandeira, N.; et al. ProteomeXchange Provides Globally Coordinated Proteomics Data Submission and Dissemination. Nat. Biotechnol. 2014, 32, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, T.; Hassanein, M.; Amann, J.M.; Liu, Q.; Slebos, R.J.C.; Rahman, S.M.J.; Kaufman, J.M.; Zhang, X.; Hoeksema, M.D.; Harris, B.K.; et al. In-Depth Proteomic Analysis of Nonsmall Cell Lung Cancer to Discover Molecular Targets and Candidate Biomarkers. Mol. Cell. Proteom. 2012, 11, 916–932. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.A.; Welsh, E.A.; Slebos, R.J.C.; Fang, B.; Izumi, V.; Chambers, M.; Zhang, G.; Cen, L.; Pettersson, F.; Zhang, Y.; et al. Proteogenomic Landscape of Squamous Cell Lung Cancer. Nat. Commun. 2019, 10, 3578. [Google Scholar] [CrossRef] [PubMed]
- Ruggles, K.V.; Krug, K.; Wang, X.; Clauser, K.R.; Wang, J.; Payne, S.H.; Fenyö, D.; Zhang, B.; Mani, D.R. Methods, Tools and Current Perspectives in Proteogenomics. Mol. Cell. Proteom. 2017, 16, 959–981. [Google Scholar] [CrossRef]
- Li, L.; Wei, Y.; To, C.; Zhu, C.-Q.; Tong, J.; Pham, N.-A.; Taylor, P.; Ignatchenko, V.; Ignatchenko, A.; Zhang, W.; et al. Integrated Omic Analysis of Lung Cancer Reveals Metabolism Proteome Signatures with Prognostic Impact. Nat. Commun. 2014, 5, 5469. [Google Scholar] [CrossRef]
- Satpathy, S.; Krug, K.; Jean Beltran, P.M.; Savage, S.R.; Petralia, F.; Kumar-Sinha, C.; Dou, Y.; Reva, B.; Kane, M.H.; Avanessian, S.C.; et al. A Proteogenomic Portrait of Lung Squamous Cell Carcinoma. Cell 2021, 184, 4348–4371.e40. [Google Scholar] [CrossRef] [PubMed]
- Lehtiö, J.; Arslan, T.; Siavelis, I.; Pan, Y.; Socciarelli, F.; Berkovska, O.; Umer, H.M.; Mermelekas, G.; Pirmoradian, M.; Jönsson, M.; et al. Proteogenomics of Non-Small Cell Lung Cancer Reveals Molecular Subtypes Associated with Specific Therapeutic Targets and Immune-Evasion Mechanisms. Nat. Cancer 2021, 2, 1224–1242. [Google Scholar] [CrossRef] [PubMed]
- Sica, G.L.; Choi, I.-H.; Zhu, G.; Tamada, K.; Wang, S.-D.; Tamura, H.; Chapoval, A.I.; Flies, D.B.; Bajorath, J.; Chen, L. B7-H4, a Molecule of the B7 Family, Negatively Regulates T Cell Immunity. Immunity 2003, 18, 849–861. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, J.; Guo, C.; Wang, M.; Wang, C.; Yan, Y.; Sun, L.; Wang, D.; Zhang, L.; Yu, H.; et al. Proteogenomic Characterization of Small Cell Lung Cancer Identifies Biological Insights and Subtype-Specific Therapeutic Strategies. Cell 2024, 187, 184–203.e28. [Google Scholar] [CrossRef] [PubMed]
- Treue, D.; Bockmayr, M.; Stenzinger, A.; Heim, D.; Hester, S.; Klauschen, F. Proteogenomic Systems Analysis Identifies Targeted Therapy Resistance Mechanisms in EGFR-mutated Lung Cancer. Int. J. Cancer 2019, 144, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Hao, Z.; Ma, C.; Li, P.; Dang, L.; Sun, S. Comparative Proteogenomics Profiling of Non-Small and Small Lung Carcinoma Cell Lines Using Mass Spectrometry. PeerJ 2020, 8, e8779. [Google Scholar] [CrossRef]
- Qi, Y.A.; Maity, T.K.; Cultraro, C.M.; Misra, V.; Zhang, X.; Ade, C.; Gao, S.; Milewski, D.; Nguyen, K.D.; Ebrahimabadi, M.H.; et al. Proteogenomic Analysis Unveils the HLA Class I-Presented Immunopeptidome in Melanoma and EGFR-Mutant Lung Adenocarcinoma. Mol. Cell. Proteom. 2021, 20, 100136. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Zhang, J.; Zhu, J.-S. The Role of m6A RNA Methylation in Human Cancer. Mol. Cancer 2019, 18, 103. [Google Scholar] [CrossRef]
- Wang, X.; Yu, Q.; Yu, H.; Wang, Y.; Sun, L.; Yu, L.; Cui, H.; Yang, H. The Prognostic Value and Multiomic Features of m6A-Related Risk Signature in Lung Adenocarcinoma. Am. J. Transl. Res. 2022, 14, 5379–5393. [Google Scholar]
- Wu, L.; Zhong, Y.; Wu, D.; Xu, P.; Ruan, X.; Yan, J.; Liu, J.; Li, X. Immunomodulatory Factor TIM3 of Cytolytic Active Genes Affected the Survival and Prognosis of Lung Adenocarcinoma Patients by Multi-Omics Analysis. Biomedicines 2022, 10, 2248. [Google Scholar] [CrossRef]
- Aravidis, C.; Panani, A.D.; Kosmaidou, Z.; Thomakos, N.; Rodolakis, A.; Antsaklis, A. Detection of Numerical Abnormalities of Chromosome 9 and P16/CDKN2A Gene Alterations in Ovarian Cancer with Fish Analysis. Anticancer Res. 2012, 32, 5309–5313. [Google Scholar] [PubMed]
- Dagher, J.; Dugay, F.; Verhoest, G.; Cabillic, F.; Jaillard, S.; Henry, C.; Arlot-Bonnemains, Y.; Bensalah, K.; Oger, E.; Vigneau, C.; et al. Histologic Prognostic Factors Associated with Chromosomal Imbalances in a Contemporary Series of 89 Clear Cell Renal Cell Carcinomas. Hum. Pathol. 2013, 44, 2106–2115. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.-M.; Kim, M.-S.; Kim, Y.-I.; Jeong, S.-K.; Lee, H.-J.; Lee, S.H.; Paik, Y.-K.; Pandey, A.; Cho, J.-Y. Proteogenomic Analysis of Human Chromosome 9-Encoded Genes from Human Samples and Lung Cancer Tissues. J. Proteome Res. 2014, 13, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Paik, Y.-K.; Jeong, S.-K.; Omenn, G.S.; Uhlen, M.; Hanash, S.; Cho, S.Y.; Lee, H.-J.; Na, K.; Choi, E.-Y.; Yan, F.; et al. The Chromosome-Centric Human Proteome Project for Cataloging Proteins Encoded in the Genome. Nat. Biotechnol. 2012, 30, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.S.; Wrensch, M.R.; Hansen, H.M.; Sison, J.D.; Aldrich, M.C.; Quesenberry, C.P.; Seldin, M.F.; Kelsey, K.T.; Kittles, R.A.; Silva, G.; et al. Nucleotide Excision Repair Genes and Risk of Lung Cancer among San Francisco Bay Area Latinos and African Americans. Int. J. Cancer 2008, 123, 2095–2104. [Google Scholar] [CrossRef] [PubMed]
- Iida, M.; Brand, T.M.; Campbell, D.A.; Starr, M.M.; Luthar, N.; Traynor, A.M.; Wheeler, D.L. Targeting AKT with the Allosteric AKT Inhibitor MK-2206 in Non-Small Cell Lung Cancer Cells with Acquired Resistance to Cetuximab. Cancer Biol. Ther. 2013, 14, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Moriya, Y.; Nohata, N.; Kinoshita, T.; Mutallip, M.; Okamoto, T.; Yoshida, S.; Suzuki, M.; Yoshino, I.; Seki, N. Tumor Suppressive microRNA-133a Regulates Novel Molecular Networks in Lung Squamous Cell Carcinoma. J. Hum. Genet. 2012, 57, 38–45. [Google Scholar] [CrossRef]
- Nishimura, T.; Nakamura, H.; Végvári, Á.; Marko-Varga, G.; Furuya, N.; Saji, H. Current Status of Clinical Proteogenomics in Lung Cancer. Expert Rev. Proteom. 2019, 16, 761–772. [Google Scholar] [CrossRef]
First Author & Year of Publication | Study Design | Region & Period of Sample Collection | Age (Years) | Cancer Type | Aberrantly Expressed Genes | Driver Mutations |
---|---|---|---|---|---|---|
Biswas et al., 2017 [27] | NA | North America NA | NA | LUAD | ACTA2 | CDK12 G879V |
Roper et al., 2019 [28] | SC | North America December 2013–Present | 42–71 | LUAD, TC | CCND1, STAT1 | EGFR, KRAS, HRAS, TP53, STK11, CLYB, CREBBP, CTNNB1, EML4, EXT2, FOXL2, GNAS, MED12, MLL3, MTOR, NTRK1, PTPRD, RICTOR, STAT3, EGFRT790M, etc. |
Sharpnack et al., 2008 [29] | MC | North America NA | NA | LUAD | TIMM50 (325 hypotheses of dysregulated genes) | NA |
Nishimura et al., 2020 [31] | SC | Asia 2000–2014 | 53–78 | LUAD (AIS, MIA, LPA) | NA | EGFR, ERBB2 p. Gly776delinValVal |
Chen et al., 2020 [32] | MC | Asia July 2016–July 2018 | 40–86 | LUAD, LSCC, ASC, Other | RBM10 | EGFR, TTN, TP53, RBM10, KRAS, RNF13, MUC4, MUC15, FLG, etc. |
Gillette et al., 2020 [27] | MC | North America, Asia, Europe 2011–Present | 35–81 | LUAD | CALU, CIAO1, PRPF40B, PLEC, MUC22, etc.. | KRAS, EGFR, ALK, RB1, KEAP1, STK11, TP53 etc. |
Soltis et al., 2022 [34] | MC | North America 2012–2018 | 41–85 | LUAD | NA | TP53, KRAS, STK11, EGFR, TLR4, KEAP1, RBM10, PIK3CA, SFTPB 3′ UTR, ZNHIT6 prom., etc. |
Zhang et al., 2024 [35] | SC | Asia NA | 28–84 | LUAD (AIS, MIA, IAC) | SPATA18, NPC1, TIMM17B, NDUFA1 EGFR etc. | EGFR, TP53, MUC16, TTN, RBM10, RYR2, ERBB2, BRAF, etc. |
Stewart et al., 2015 [36] | SC | North America NA | NA | LUAD, LSCC | MCT1, GLUT1, LMO7 etc. (629 differentially expressed genes) | NA |
Stewart et al., 2019 [39] | SC | North America NA | 63–78 | LSCC | PD-1 | TP53, MLL22, NFE2L2, KEAP1, RB1, APC, CTNNB1 etc. |
Satpathy et al., 2021 [42] | MC | North America, Asia, Europe May 2016–August 2018 | 40–88 | LSCC | LRIF1, PITX1, REPIN1, TRPS1, PLAU, FADS2, PTGS3, RPP25, ZNF597, SN16A3, MTCL1, FAM110A, MX1, FAM50A etc. | TP53, ARID1A, KMT2D, CDKN2A, CUL3, KEAP1, NFE2L2, PTEN, NF1, etc. |
Lehtiö et al., 2021 [43] | MC | Europe Pre–2004/2014–present/2006–2015 | 36–84 | NSCLC (all major histological types) | HNF1A, FGL1, CPS1 (speculated) | EGFR, STK11, KEAP1, SMARCA4, RB1, TP53, KRAS |
Qiao et al., 2022 [25] | SC | Asia NA | 55 ± 8, 55 ± 10 | LUAD, LSCC | NA | NA |
Liu et al., 2024 [45] | SC | Asia April 2012–June 2019 | 38–81 | SCLC | NA | TP53, GNAS, FAT1 |
First Author & Year of Publication | Cancer Type | Proteins Differentially Expressed | mRNA-Protein Correlation (Spearman’s ρ) | Therapeutic Targets | Prognostic Markers |
---|---|---|---|---|---|
Sharpnack et al., 2018 [29] | LUAD | NA (N = 66 differentially expressed proteins) | 0.07/0.017 (*) | NA | SUMO1, PCBD1, PSMC5, ARCN1, PPA2, SRI |
Nishimura et al., 2020 [31] | LUAD (AIS, MIA, LPA) | SRPRB, HYOU1 | NA | NA | NA |
Chen et al., 2020 [32] | LUAD, LSCC, ASC, Other | NSCLC pathway: RBM10, EGFR, ERBB2, Ras, PCK, JAK3, STATs etc. Other: AKT1, ADAMTS4, AHCY, AKR1A1, AKR1C3 | 0.14 (0.31) (#) | MMP2, MMP11, MMP12, MMP14, etc. | MMP11 |
Gillette et al., 2020 [33] | LUAD | GREM1, LAPTM4A, GFPT1, BZW2, PDIA4, P4HB, PMM2, CDK1, CCNB1, MET, CXL8, THY1, etc. | 0.53 (0.525) (#) | PTPN11/Shp2, SOS1, STK11 | ERO1A, DHFR, MANF, HYOU1, LDHA, CBX8 |
Soltis et al., 2022 [34] | LUAD | IRS2, PKM, NIT2, GSTP1, GSR, CBR1, GPX2, GCLM, GCLC, CPS1, GPT2 PFAS, CTPS2, PPAT, CTPS1, GMPS, GFPT1, ADSSL1, GDAP1, GPX4, GPX1, GLS, SDC, LPCAT3, SCD, HELLS, G6PD, CYP4F11, AKR1C3, AKR1C2 | 0.47 (0.23–0.69) (#) | PD-L1, PRKCE, RPS6KA1 | SAMA4B, ERO1A, MAFF, GAPDHS, CREG1, RFXAP, CCT8, etc. |
Zhang et al., 2024 [35] | LUAD (AIS, MIA, IAC) | SPATA18, NPC2, VPS11, CFD, FCN3, C2, C5, C6, C7, C8B, APOH, SDR16C5, CARDS2, LOX TAOK3, etc. | 0.39 | NA | SPATA18, TIMM17B, GHITM, LAMC2, CHDH5, CFB, C2, APOH, SDR16, C5, CARDS2, LOX, TAOK3, STX4, NOTCH1, C1QB, SERPINA1, CDK7 |
Stewart et al., 2015 [36] | LUAD, LSCC | KRT6C, KRT6A, KRT6B, PKP1, MCT1, COL7A1, GLUT1, ABCF3, LMO7 1 | 0.16 | MCT1, GLUT1 (in LSCC only) | MCT1, GLUT1 (in LUAD) |
Stewart et al., 2019 [39] | LSCC | NA | 0.38 | PSAT1, TP63, TFRC | Presence/Absence of TLN |
Satpathy et al., 2021 [42] | LSCC | TGFBR2, MSI2, SPRED1, SF3B1, SESN1, UBR5, CDKN2C, IFNGR1, NUF2, CDKN1B, MSI1, SLFN11, etc. | NA | NSD3, BIRC5, LSD1, KDM3A, EZH2 | TOP2A, ZC3H8, CDCA8, SMC2, QSOX2, HSPA5 |
Qiao et al., 2022 [35] | LUAD, LSCC | SCR, MAPK6, CDK1, CDK7 | NA | BUB1, CAV1, CDK3, ERBB3, MAP2K4, MAP3K5, MAP3K8, PTK7, PTPN6, STAM, TRIM24 | NA |
Liu et al., 2024 [45] | SCLC | STMN2, STMN1, UCLH1, H1-5, TOP2A, TMA7, FEN1, MCM6, PCNA, MCM4, MCM3, MCM7, PARP1, etc. | 0.47 (0.31) | ATR, TOP1, DLL3 | HMGB3, CASP10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vavilis, T.; Petre, M.L.; Vatsellas, G.; Ainatzoglou, A.; Stamoula, E.; Sachinidis, A.; Lamprinou, M.; Dardalas, I.; Vamvakaris, I.N.; Gkiozos, I.; et al. Lung Cancer Proteogenomics: Shaping the Future of Clinical Investigation. Cancers 2024, 16, 1236. https://doi.org/10.3390/cancers16061236
Vavilis T, Petre ML, Vatsellas G, Ainatzoglou A, Stamoula E, Sachinidis A, Lamprinou M, Dardalas I, Vamvakaris IN, Gkiozos I, et al. Lung Cancer Proteogenomics: Shaping the Future of Clinical Investigation. Cancers. 2024; 16(6):1236. https://doi.org/10.3390/cancers16061236
Chicago/Turabian StyleVavilis, Theofanis, Maria Louiza Petre, Giannis Vatsellas, Alexandra Ainatzoglou, Eleni Stamoula, Athanasios Sachinidis, Malamatenia Lamprinou, Ioannis Dardalas, Ioannis N. Vamvakaris, Ioannis Gkiozos, and et al. 2024. "Lung Cancer Proteogenomics: Shaping the Future of Clinical Investigation" Cancers 16, no. 6: 1236. https://doi.org/10.3390/cancers16061236
APA StyleVavilis, T., Petre, M. L., Vatsellas, G., Ainatzoglou, A., Stamoula, E., Sachinidis, A., Lamprinou, M., Dardalas, I., Vamvakaris, I. N., Gkiozos, I., Syrigos, K. N., & Anagnostopoulos, A. K. (2024). Lung Cancer Proteogenomics: Shaping the Future of Clinical Investigation. Cancers, 16(6), 1236. https://doi.org/10.3390/cancers16061236