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Simple Summary: Lung cancer remains the number one public health burden related to cancer world-
wide. The integration of genomic profiling with in-depth proteomic profiling has introduced a new
dimension of molecular cancer research, termed proteogenomics. This new-born scientific field is
anticipated to fill significant knowledge gaps created by transitioning from the genome to the proteome
and assist in the discovery of novel treatment pathways for lung cancer patients. This review consists of
a comprehensive investigation of recent studies undertaken in the lung cancer proteogenomics setting,
focusing on how elucidation of such features can evoke tangible clinical outcomes.

Abstract: Background: Lung cancer is associated with a high incidence of mortality worldwide.
Molecular mechanisms governing the disease have been explored by genomic studies; however,
several aspects remain elusive. The integration of genomic profiling with in-depth proteomic profiling
has introduced a new dimension to lung cancer research, termed proteogenomics. The aim of
this review article was to investigate proteogenomic approaches in lung cancer, focusing on how
elucidation of proteogenomic features can evoke tangible clinical outcomes. Methods: A strict
methodological approach was adopted for study selection and key article features included molecular
attributes, tumor biomarkers, and major hallmarks involved in oncogenesis. Results: As a consensus,
in all studies it becomes evident that proteogenomics is anticipated to fill significant knowledge
gaps and assist in the discovery of novel treatment options. Genomic profiling unravels patient
driver mutations, and exploration of downstream effects uncovers great variability in transcript
and protein correlation. Also, emphasis is placed on defining proteogenomic traits of tumors of
major histological classes, generating a diverse portrait of predictive markers and druggable targets.
Conclusions: An up-to-date synthesis of landmark lung cancer proteogenomic studies is herein
provided, underpinning the importance of proteogenomics in the landscape of personalized medicine
for combating lung cancer.

Keywords: lung cancer; NSCLC; SCLC; proteogenomics; genetic alterations; aberrant protein expression;
multi-omics
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1. Introduction

Malignancies of the lungs are the second most prevalent type of cancer, in addition
to being the leading cause of mortality attributed to the disease [1]. A low overall 5-year
survival rate has been observed (22%), with histological type and clinical staging signifi-
cantly influencing patient outcomes [2–4]. Two main types of lung cancer are described:
non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) [5], with the former
characterized as the major subtype of neuroendocrine tumors by the 2015 WHO Clas-
sification of Lung Tumors [6]. Representing 85% of lung cancer diagnoses, NSCLC is
currently further subdivided into three principal categories on the basis of histological and
molecular features. Specifically, these include lung adenocarcinoma (LUAD), squamous
cell carcinoma (SCC), and large cell carcinoma (LCC) [6,7].

Despite considerable regional variability, a twofold incidence of lung cancer is ob-
served in men on a global scale [1]. Particularly in developed countries, disease epi-
demiology is largely driven by the tobacco epidemic [8]. Notwithstanding the significant
correlation between smoking and lung cancer, it is estimated that 25% of cases occur among
non-smokers [5,9,10]. Particularly in East Asia, high disease burden has been noted among
non-smoking women [11,12]. Indeed, in this population group, exposure to indoor pollu-
tants such as fumes generated by cooking oils or charcoal use for household heating have
been implicated in carcinogenesis [13–15].

Furthermore, a striking example presented by a nationwide study conducted in Tai-
wan revealed that 92.1% of female lung cancer patients had never smoked. The high
incidence of disease occurrence in the specific population group was partly attributed to
air pollution [16]. Along with the high frequency of epidermal growth factor receptor
(EGFR) activating mutations, the early onset of lung adenocarcinoma (LUAD) among
never-smokers in this region is suggestive of a genetic contribution towards disease presen-
tation [17]. Meta-analysis of 11 genetic loci encountered in Asian non-smoking adenocar-
cinoma patients discovered through genome-wide association studies (GWAS) revealed
two novel SNPs (rs3817963 in BTNL2 and rs2179920 in HLA-DPB1) characterized as LUAD
risk factors [18]. It is, therefore, evident that distinct molecular, environmental and clinical
factors underpin the etiopathology of lung cancer [19].

Within this context, the need to elucidate the molecular architecture of lung can-
cer in a geographically diverse setting has arisen. Identification of the tumor molec-
ular profile/signature on an individual patient basis is crucial in the era of precision
medicine [20,21]. Undoubtedly, clinical course and disease progression are defined by each
patient’s unique mutational background. Principally focusing on smoking, genomic studies
have provided us with extensive catalogues of somatic mutations present in lung cancer
patients, linking mutational patterns to risk factors. Most notably, thus far, genomic studies
have revealed the mutational background and gene expression patterns commonly found
in LUAD, paving the way for advances in targeted therapeutic strategies [22,23]. While
progress achieved by genomics has shed light on key molecular mechanisms governing
lung cancer, the downstream effects of genetic alterations, along with drivers of drug
resistance, remain poorly understood.

In an effort to address these substantial knowledge gaps regarding the biology of tumor
development and drug target identification, the field of proteogenomics has emerged [24].
Encompassing the integration of next generation sequencing (NGS) technology and mass
spectrometry (MS) proteomics, proteogenomics is propelling the exploration of functional
impacts associated with genetic alterations, including driver mutations and chromosomal
aberrations. The combined genomic profiling and proteomic and phosphoproteomic
analysis of clinical samples [24,25] is anticipated to provide a holistic view of disease
severity and patient management.

The number of studies aimed at elucidating the proteogenomic landscape of lung
cancer, particularly LUAD, through tumor tissue analysis and by identifying its muta-
tional profile, proteomic signatures, phosphorylation patterns and protein co-variation, is
rapidly increasing.
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The present review consists of a critical synthesis of landmark proteogenomic studies,
providing the research community with a comprehensive map of findings on the molecular
attributes of lung cancer, tumor biomarkers, and major hallmarks involved in oncogenesis
and pathobiology.

2. Materials and Methods

The systematic review adhered to the guidelines set forth by the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) [26]. The study was registered
with OSF (Open Science Framework) Registries, DOI: (https://doi.org/10.17605/OSF.IO/
3X2DH, accessed on 23 February 2024). A comprehensive search was conducted across mul-
tiple databases, including PubMed, Google Scholar, and ScienceDirect. The initial database
retrieval involved screening by title and abstract, employing specific search terms such as
“lung cancer”, “proteogenomics”, “multi-omics”, “LUAD”, “NSCLC”, “lung tumor”, “pro-
teomics”, “genomics”, “phosphoproteomics”, “epigenomics”, “lung malignancy”, “lung
adenocarcinoma”, “squamous cell carcinoma”, “WGS”, “WES”, “LPA”, “AIS”, and “MIA”.

For inclusion, articles were required to meet specific criteria: publication in the English
language and use of integrative proteogenomic techniques. Articles reporting data from
animal model studies and isolated genomic or proteomic studies were excluded from
the present review process. The initial search yielded 58 articles. Following removal of
duplicates, 55 studies remained, 20 of which were included in the present study after
application of inclusion/exclusion criteria and final manual inspection.

The present article focuses on reviewing milestone studies that integrate proteoge-
nomics platforms to elucidate features of lung cancer; therefore, the results of these studies
will be presented according to sample and cancer type.

3. Results
3.1. Tissue Samples
3.1.1. Non-Small Cell Lung Cancer—Adenocarcinoma

A study carried out by Biswas et al. in 2017 combined whole genome sequencing
(WGS) with MS-proteomics to analyze the primary and metastatic tumor profile of a patient
with metastatic lung adenocarcinoma receiving ERBB2-targeted therapy [27]. Interestingly,
the compatibility of somatic mutations between the two tumor sites did not exceed 1%,
while overly expressed ACTA2 molecules were deemed responsible for the early incidence
of metastasis in this patient. Tumor cell proliferation was primarily attributed to activa-
tion of the ERBB2 and CDK12 pathways; lung and lymph node specific mutations were
also detected. The above case-oriented analysis concluded that despite the presence of
great tumor heterogeneity, key oncogenic mechanisms remain intact, as in the case of the
patient studied.

The mechanisms driving intratumor mutational heterogeneity was explored by Roper et al.
in their study of primary NSCLC [28]. They reported a total of between 182 and 1058 silent
mutations in individual patient samples, identified using whole exome sequencing of either
primary or metastatic tumors. According to this study, aberrations in EGFR and KRAS were
encountered in both primary and metastatic tumors, while certain mutations such as HRAS
could only be traced to metastatic tumors. Mutational tumor heterogeneity was among other
parameters related to TP53 mutation and significantly correlated with APOBEC mutagenesis,
resulting from altered expression of APOBEC3 region transcripts. Overexpression of transcripts
was linked to increased activity of interferon pathways [28].

In a combined proteomic, transcriptomic analysis of 51 surgically removed lung
adenocarcinomas in 2018, Sharpnack et al. attempted to elucidate mechanisms driving
disease relapse despite prompt and complete removal of the cancer tissue and the possible
benefits of using adjuvant chemotherapy, or lack thereof [29]. The researchers used liquid
chromatography-mass spectrometry, and RNA-sequencing in an effort to identify any
biomarkers, quantifying both proteins and mRNA expression accordingly. These could be
utilized toward better management of the disease with improvement of survival rate for

https://doi.org/10.17605/OSF.IO/3X2DH
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patients, as they display a capacity for recurrence rate prediction. According to the study
findings, translocase of inner mitochondrial membrane 50 (TIMM50), which encodes the
protein Tim50, was the gene with the highest degree of differential correlation. Upregulation
of Tim50, a protein of the mitochondrial apoptosis pathway resulting from mutant p53, has
been demonstrated in cell lines [30].

Furthermore, in 2020, Nishimura et al. utilized mass spectrometry (MS) to identify
and quantify a wide range of disease-related proteins which are specifically expressed in
lung adenocarcinoma patients and are correlated with specific gene expression [31]. As
suggested by the authors, protein identification may lead to appropriate categorization
of adenocarcinoma specimens in the three relevant subtypes, i.e., lepidic predominant
invasive adenocarcinoma (LPA), adenocarcinoma in situ (AIS), and minimally invasive
adenocarcinoma (MIA). In turn, this may not simply improve disease prognosis but also
assist in the correct treatment design, where these proteins can be associated with promising
therapeutic targets. Most notably, tumor categorization in the above study into different
subtypes was based on 2023 proteins [31].

In 2020, Chen et al. combined whole exome sequencing (WES), RNA-seq, proteomics,
and phosphoproteomics to assess the proteogenomic profile of LUAD with a focus on East
Asia, in a cohort mainly consisting of Taiwanese non-smokers (83%) [32]. High prevalence
of EGFR mutations, with detection of these in 85% of patients, was revealed by genomic
profiling of genes involved in oncogenesis according to the Cancer Gene Census (COSMIC).
These were followed by TP53 and RBM10 mutations, occurring in 33% and 20% of patients
respectively. Single nucleotide variations (SNVs) detected in this group of patients vastly
differed from those reported in the Cancer Genome Atlas. The above discrepancy was not
solely attributed to smoking, as both smokers and non-smokers in the examined cohort
displayed similar proportions of SNVs. Similarly, a significantly higher frequency of several
mutations was observed in the cohort of Chen et al. in comparison to other series. These
included aberrations in EGFR, RBM10 and CDC27, RB1, two genes involved in cell-cycle
regulation. In contrast, the somatic mutations TP53, KRAS, and KEAP1 displayed a lower
frequency. Yet again, these conflicting findings were not artefacts generated by the lower
percentage of smokers in this cohort, as isolated study of the non-smokers also revealed that
EGFR, RBM10, RNF213, ATP2B3, and TET2 mutations were many times more prevalent,
while KRAS mutations were significantly lower. Hence, significant differences in the LUAD
genomic profile of Taiwanese never-smokers compared to that registered in the Cancer
Genome Atlas were discovered.

RNA sequencing and proteomic and phosphoproteomic analyses carried out on the
same cohort revealed a transcriptional boost of DNA replication, glycolysis, glutathione
pathways, and immune-associated processes. Moreover, proteomic data attested to up-
regulated DNA repair, protein refinement, transport mechanisms, and downregulated
cell-adhesion processes. The proteogenomic layer of the above integrative analysis re-
vealed a positive association of TP53 mutations, with genes regulating the cell cycle and
phosphoproteins modulating DNA topology and repair, providing further evidence of its
established synthetic lethal functions [32]. The researchers noted co-modulation of the
phosphorylation pattern in MAPK pathway components (proteins), which differentiated
patients into those with high and those with low activation, the former being correlated
with EGFR and KRAS mutations and the latter with TP53 mutations, particularly in later
stages. Hence, this evidence may shed light on the role of TP53 in the regulation of key
underlying mechanisms in non-small cell lung cancer (NSCLC).

Gillette et al. [33] undertook deep proteogenomic characterization of 110 lung ade-
nocarcinoma (LUAD) tumors matched to 101 normal adjacent tissues (NAT). Their study
employed a multi-omic approach, utilizing various acetylproteomic, phosphoproteomic,
genomic, and epigenomic methods. Examined samples originated from the National Can-
cer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC), and the study was
characterized by the inclusion of a more diverse population in terms of smoking status
and ethnic diversity than previous research efforts in the field. Proteogenomic analysis
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revealed four distinct clusters within the LUAD tumor tissues examined: Cluster 1 (C1)
was characterized as proximal-inflammatory, STK11 wild-type, displaying an increased
presence of TP53 mutations and a high status of CpG island methylator phenotype (CIMP);
Cluster 2 (C2), mainly stemming from patients of US origin, was identified as proximal-
proliferative and characterized by wild-type EGFR and TP53, as well as an intermediate
degree of CIMP; Cluster 3 (C3), also proximal-proliferative, was characterized by STK11
mutations and predominantly included patients of Vietnamese nationality; Cluster 4 (C4),
termed the terminal respiratory unit cluster, lacked STK11 and KRAS mutations but exhib-
ited a notable presence of EGFR mutations. This cluster mainly consisted of patients of
Chinese nationality and female patients.

The abovementioned study revealed differential phosphorylation of ALK Y1507 in
samples with ALK fusion, providing evidence of its importance in ALK fusion cancers. Ob-
served extensive differences in the phosphoproteome highlighted potential druggable tar-
gets that could be modulated by kinase-targeting drugs. In other respects, Gillette et al. [33]
discovered that that STK11 mutations bestowed an immune-cold behavior, suggestive
of an immune system escape mechanism through neutrophil degranulation. Further-
more, lung cancers retrieved from non-smokers tended to present a higher incidence of
ARHGEF5 phosphorylation dysregulation, potentially indicating a druggable oncogenic
mechanism. However, the interconnectedness of various factors such as mutation sta-
tus, ethnic background, geographical location, gender, and smoking habits, which may
introduce confounding factors, making the isolation of specific causal relationships chal-
lenging, was among the study limitations noted by the authors. Furthermore, the authors
highlighted the lack of spatial and cellular resolution, which limited estimation of the
microenvironment’s effect on tumor formation and development.

Clustering of surgically resected tumors from a US cohort consisting of 87 patients,
based on their gene signature profiles, revealed the presence of three subtypes. Specifically,
in their proteogenomic study, Soltis et al. [34] discovered a transition high, a transversion
high, and a structurally altered subtype utilizing somatic genome signature analysis. Never-
smokers with a high prevalence of EGFR mutations and current smokers with aberrations in
KRAS, STK11 composed the majority of the former two subtypes, respectively. A difference
in TMB was noted regarding these subtypes, as this was very low in transition high and
high in transversion high tumors. In contrast, the third subtype, termed structurally
altered, was characterized by a high prevalence of former smokers, mutations in TP53,
high TMB, and the overall highest degree of genetic alterations. For instance, the highest
number of structural deletions and insertions were detected in tumor samples belonging to
this subtype. The authors also explored RNA-protein correlation from a gene viewpoint.
Remarkably, this was found to be associated with tumor purity, displaying a wider range
in immune-enriched tumors. Predictors of clinical outcome, namely expression patterns of
specific proteins, RNAs, and co-expressed RNAs-proteins, were identified by the study.

Proteogenomic clustering of tumors in Soltis et al. was performed according to
previously defined RNA-based subtypes (Terminal Respiratory Unit—TRU, Proximal
Proliferative—PP and Proximal Inflammatory—PI). Indeed, the authors detected high
concordance between the RNA, protein, and multi-omic classification of tumors. Several
targetable molecular pathways were detected within each subtype, requiring further vali-
dation. These included EGFR, IFN-γ signaling in TRU and PI subtype tumors respectively,
and several modulations possibly responsive to CDK and glutaminase inhibitors in the PP
subtype. Nevertheless, as admitted by the authors, the above study did not incorporate
normal adjacent lung tissue samples.

Recently, a deletion in Chromosome 4, specifically that of Chr4q12, was found to drive
adenocarcinoma progression from pre-invasive to invasive [35]. The molecular phenomena
surrounding LUAD progression were investigated by Zhang et al. in an approximately
equal number of pre-invasive and invasive tumors (98 and 99, respectively). Their pro-
teogenomic investigation incorporated whole exon, RNA sequencing, proteomics, and
phosphoproteomics. High prevalence of TP53 mutations in IAC and the pre-existence of
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aberrations in EGFR in AIS/MIA subtype tumors were noted. Critically, the abovemen-
tioned chromosomal deletion was linked to a corresponding deletion in SPATA18, which,
according to the authors, may promote tumor growth through mitophagy suppression. In
conjunction with the above, the comprehensive proteomic analysis revealed the presence
of three subtypes (SI, SII, SIII) representative of staging, with regard to tumor progression.
The first subtype, primarily constituting of AIS/MIA subtype tumors, was associated with
improved patient overall/recurrence-free survival. On the contrary, while SII acted as
an intermediate subcategory, patients with IAC were mostly grouped in the SIII subtype,
and worse patient overall/recurrence-free survival was observed for this group. However,
the sole inclusion of East Asian patients in the study, thus resulting in the increased pres-
ence of non-smoking women and a high prevalence of EGFR mutations within the cohort,
constituted major limitations, as stressed by the authors.

3.1.2. Non-Small Cell Lung Cancer—Squamous Cell Carcinoma

A pilot proteogenomic study comparing LUAD to lung squamous cell carcinoma
(LSCC) was conducted by Stewart et al. in 2015, using quantitative proteomics in conjunc-
tion with a customized AffymetrixGeneChip micro array platform [36]. Tissue samples
used for the analysis were derived from three patients diagnosed with LUAD and three with
LSCC, and the raw files required for comparative analyses were obtained from previously
published data and/or the ProteomeXchange consortium database [36–38]. According to
the results, differential expression of 565 proteins and 629 genes was discovered between
LUAD and LSCC, while simultaneous gene and protein level differential expression was
noted for 113 of these [36]. Overexpression of the proteins MCT1 (encoded by SLC16A1)
and GLUT 1 (encoded by SLC2A1) in LSCC was noted by the authors in all examined
studies; hence, these were investigated further. In combination with a survival analysis
using publicly available datasets, the observed differential expression of these two proteins,
with regard to the gene level, highlighted the role of MCT1 and GLUT1 in LUAD and LSCC
as prognostic tools and therapeutic targets, respectively [36].

In a study of 108 patients, most of whom were of non-Hispanic white ethnicity/race,
Stewart et al. integrated mass spectrometry with RNA-seq and genomic analysis in an
attempt to define LSCC molecular subtypes and identify major alterations that drive disease
pathogenesis [39]. Based on proteomic characterization, three subtypes were identified,
with the first two encompassing the majority of tumor samples (87%). In detail, these
included an Inflamed and a Redox subtype, the former associated with immune cell
infiltration and the latter enriched for oxidation-reduction pathways [39]. Hence, according
to the authors, therapies targeting immune cells, including neutrophils and/or B cells, or
the metabolic modulation of tumor intrinsic pathways could prove beneficial for LSCC
patients. Critically, the Inflamed subtype exhibited elevated expression of PD-1, whereas
more NFE2L2/KEAP1 alterations and copy gain in 3q2 locus were found in Redox subtype
tumors. Concerning this subtype, metabolic vulnerabilities associated with TP63, PSAT1,
and TFRC were identified. Whilst Stewart et al. noted a lack of correlation between the
above proteomic subtypes and patient survival, they also discovered that the presence of B-
cell-enriched lymph nodes, commonly found among the Inflamed cluster, conferred better
survival. According to the authors, compared to previous research efforts [23,38,40], their
study constituted the most comprehensive integrative analysis of genomic, transcriptomic,
and proteomic datasets in lung cancer [36,37,41].

Satpathy et al. in 2022 analyzed 108 prospectively collected treatment-naïve pri-
mary lung squamous cell carcinoma (LSCC) tumors and 99 paired normal adjacent tissues
(NATs) [42]. Their study focused on the discovery of druggable therapeutic protein targets,
additionally investigating cellular signaling pathways and exploring post-translational
modifications. A total of 5523 copy number alteration-mRNA events were observed,
2154 of which displayed significant correlation with protein expression. Among the latter,
138 cancer-associated genes were identified. The discovery of six amplified (i.e., WHSC1L1,
CCND1, and SOX2) and 29 deleted (i.e., NCOR1, SETD2, and CBL) cancer associated genes
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was highlighted. Clustering based on the genomic, transcriptomic, and proteomic data
obtained from the respective analyses of the 108 tumor tissues revealed five molecular
subtypes of LSCC. The first subtype, termed “Basal-Inclusive”—(B-I), exhibited metabolic,
immune, and estrogen receptor signaling. EMT-related pathways were found to be upregu-
lated in the second subtype (“Epithelial to Mesenchymal Transition-Enriched”—EMT-E),
which further displayed phosphorylation-driven PDGFR and ROR2 signaling. The third
subtype (“Classical”) was characterized by mutations in CUL3, KEAP1, and NFE2L2,
along with high-level amplification of SOX2 and TP63. In the fourth subtype (“Inflamed-
Secretory” (I-S)) immune-related pathways were observed as being significantly upreg-
ulated. Finally, the fifth subtype (“Proliferative-Primitive” (P-P)) exhibited upregulation
of proliferation-related pathways, downregulation of immune signaling, and enrichment
of CIMP-low samples. Remarkably, all subtypes displayed a loss of CDK4/6 pathway
inhibitors, while the expression of Rb1 displayed great variability amongst subtypes.
However, as noted by the authors, their study [42] was constrained by inherent tumor
heterogeneity.

3.1.3. Non-Small Cell Lung Cancer—All Subtypes

Lehtiö et al. [43] conducted a deep proteogenomic characterization of 141 non-small
cell lung cancer (NSCLC) tumors, encompassing all major histological groups. Approxi-
mately 14,000 proteins were examined, providing an overview of the molecular landscape
of NSCLC. Their study identified six distinct subtypes of NSCLC tumors: Subtype 1 was
characterized by a comparatively higher occurrence of EGFR mutations. Meanwhile, sub-
types 2 and 3 were distinguished by significant immune infiltration levels, an observation
reflected in the expression of neoantigens and chemokines, thereby suggesting an active
immune response among these. On the other hand, Subtype 4 exhibited mutations in
KEAP1, STK11, and SMARCA4. Intriguingly, the highest count of overexpressed oncogenes
per sample displaying similar overexpression of RET receptor tyrosine kinase was observed
in this subtype. The majority of samples in Subtype 5 consisted of large cell neuroendocrine
carcinoma (LCNEC) tumors. Subtype 5 exhibited a higher occurrence of RB1 mutations
and demonstrated overexpression of the transcriptional activator MYB, as well as the
proteins BCL2 and CDK2. Additionally, it displayed increased E2F signaling, which was
possibly attributed to reduced degradation of E2F1. Subtype 6 was primarily comprised of
squamous cell carcinoma (SqCC) cells. This subtype was characterized by TP53 mutations
and elevated expression of the surface protein B7-H4. Increased expression of B7-H4 has
been additionally implicated in reduced immune response against these tumors [44].

A phosphoproteomic investigation of extracellular vesicles by Qiao et al. in 2022 at-
tempted to elucidate the role of kinase networks in lung cancer. Specimens from 13 subjects
with NSCLC were analyzed and 1567 proteins harboring 2473 phosphorylation sites were
identified. Regarding the kinase network, 152 kinases were recognized, 25 of which had ex-
pression alterations. Key phosphoproteins of this study included MAPK6S189, IKBKES172,
SRCY530, CDK7S164, and CDK1 [25].

3.1.4. Small Cell Lung Cancer

Despite the high incidence of mortality associated with SCLC, the proteogenomic
landscape of this lung cancer type remains, for the most part, unexplored. In their recent
study of 112 tumors and paired normal adjacent tissues, Liu et al. [45] attempted to delin-
eate the disease proteogenomic features and identify prognostic markers. Additionally, the
discovery of treatment strategies adapted to specific tumor subtypes was attempted. The
authors demonstrated a correlation between multiple genetic alterations, such as aberrant
expression of FAT1, deletion of RB1, loss of the long (q) arm of chromosome 5, and lung
cancer. The proteomic analysis yielded 138 proteins with at least twofold change in expres-
sion, 25 of which were present in the majority (90%) of tumor-NAT pairs. Moreover, two
novel biomarkers with prognostic value were discovered and experimentally validated
by Liu et al., namely the proteins HMGB3 and CASP10. As noted by the authors, patient
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overall survival was associated with protein expression levels: overexpression of HMGB3
resulted in poor outcomes, with the opposite being true for CASP10. Furthermore, immune
cell infiltration was correlated with ZFHX3 mutation and, according to the proteogenomic
analysis, DDR activity was linked to immune suppression via dissipation of cGAS-STING
pathway activation. Finally, unsupervised clustering was utilized to divide tumors into
four subtypes with distinct biological characteristics and therefore unique treatment vulner-
abilities. Nevertheless, Liu et al. point towards the need for a concerted effort to validate
conclusions reached by the above study, as a significant fraction of the identified molecular
aberrations were hypothesis-generating.

Therefore, it becomes evident that proteogenomic analysis of clinical samples offers
a unique insight into the complex mechanisms governing lung cancer. The inclusion of
diverse patient cohorts in proteogenomics studies has revealed distinct patterns of genetic
aberrations (Table 1).

Table 1. Characteristics of proteogenomics studies utilizing clinical samples.

First Author &
Year of

Publication

Study
Design

Region & Period
of Sample
Collection

Age
(Years) Cancer Type Aberrantly Expressed

Genes Driver Mutations

Biswas et al., 2017
[27] NA North America

NA NA LUAD ACTA2 CDK12 G879V

Roper et al., 2019
[28] SC

North America
December

2013–Present
42–71 LUAD, TC CCND1, STAT1

EGFR, KRAS, HRAS, TP53,
STK11, CLYB, CREBBP,
CTNNB1, EML4, EXT2,
FOXL2, GNAS, MED12,
MLL3, MTOR, NTRK1,

PTPRD, RICTOR, STAT3,
EGFRT790M, etc.

Sharpnack et al.,
2008
[29]

MC North America
NA NA LUAD

TIMM50
(325 hypotheses of

dysregulated genes)
NA

Nishimura et al.,
2020
[31]

SC Asia
2000–2014 53–78 LUAD

(AIS, MIA, LPA) NA EGFR, ERBB2 p.
Gly776delinValVal

Chen et al., 2020
[32] MC

Asia
July 2016–July

2018
40–86 LUAD, LSCC,

ASC, Other RBM10
EGFR, TTN, TP53, RBM10,

KRAS, RNF13, MUC4,
MUC15, FLG, etc.

Gillette et al.,
2020
[27]

MC
North America,

Asia, Europe
2011–Present

35–81 LUAD
CALU, CIAO1,

PRPF40B, PLEC,
MUC22, etc..

KRAS, EGFR, ALK, RB1,
KEAP1, STK11, TP53 etc.

Soltis et al.,
2022
[34]

MC North America
2012–2018 41–85 LUAD NA

TP53, KRAS, STK11,
EGFR, TLR4, KEAP1,

RBM10, PIK3CA, SFTPB 3′
UTR, ZNHIT6 prom., etc.

Zhang et al., 2024
[35] SC Asia

NA 28–84 LUAD
(AIS, MIA, IAC)

SPATA18, NPC1,
TIMM17B, NDUFA1

EGFR etc.

EGFR, TP53, MUC16,
TTN, RBM10, RYR2,
ERBB2, BRAF, etc.

Stewart et al.,
2015
[36]

SC North America
NA NA LUAD, LSCC

MCT1, GLUT1, LMO7
etc.

(629 differentially
expressed genes)

NA

Stewart et al.,
2019
[39]

SC North America
NA 63–78 LSCC PD-1

TP53, MLL22, NFE2L2,
KEAP1, RB1, APC,

CTNNB1 etc.

Satpathy et al.,
2021
[42]

MC

North America,
Asia, Europe

May 2016–August
2018

40–88 LSCC

LRIF1, PITX1, REPIN1,
TRPS1, PLAU, FADS2,

PTGS3, RPP25, ZNF597,
SN16A3, MTCL1,
FAM110A, MX1,

FAM50A etc.

TP53, ARID1A, KMT2D,
CDKN2A, CUL3, KEAP1,
NFE2L2, PTEN, NF1, etc.
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Table 1. Cont.

First Author &
Year of

Publication

Study
Design

Region & Period
of Sample
Collection

Age
(Years) Cancer Type Aberrantly Expressed

Genes Driver Mutations

Lehtiö et al.,
2021
[43]

MC

Europe
Pre–2004/2014–
present/2006–

2015

36–84

NSCLC
(all major

histological
types)

HNF1A, FGL1, CPS1
(speculated)

EGFR, STK11, KEAP1,
SMARCA4, RB1, TP53,

KRAS

Qiao et al., 2022
[25] SC Asia

NA
55 ± 8,
55 ± 10 LUAD, LSCC NA NA

Liu et al.,
2024
[45]

SC
Asia

April 2012–June
2019

38–81 SCLC NA TP53, GNAS, FAT1

LUAD: Lung Adenocarcinoma; TC: Thymic Carcinoma; AIS: Adenocarcinoma In Situ; MIA: Minimally Inva-
sive Adenocarcinoma; LPA: Lepidic-predominant Adenocarcinoma; LSCC: Lung Squamous Cell Carcinoma;
ASC: Adenosquamous Carcinoma; IAC: Invasive Adenocarcinoma; NSCLC: Non-Small Cell Lung Cancer;
SCLC: Small Cell Lung Cancer. SC: Single Center, MC: Multicenter.

Furthermore, this plethora of genomic information, analyzed in tandem with gener-
ated patient proteomic profiles and gene expression data, has enabled the discovery of
novel drug targets and prognostic markers (Table 2). Correlation analyses of mutations in
genes and identified proteins have been presented by relevant studies [25,33–35,42]. For
instance, Gillette et al. [33] observed a correlation between RB1 mutation and CDK4 protein
abundance and EGFR mutation with CTNNB1 protein expression. Meanwhile, Satpathy
et al. [42] linked RB1 mutations to expression patterns of cell cycle proteins. It is noteworthy
that proteogenomic clustering has unearthed unexplored associations between mutations
and proteins [34].

Table 2. Proteogenomic findings and key outcomes of reviewed studies investigating clinical samples.

First Author & Year
of Publication Cancer Type Proteins Differentially

Expressed

mRNA-Protein
Correlation

(Spearman’s ρ)
Therapeutic Targets Prognostic Markers

Sharpnack et al., 2018
[29] LUAD

NA
(N = 66 differentially
expressed proteins)

0.07/0.017
(*) NA

SUMO1, PCBD1,
PSMC5, ARCN1,

PPA2, SRI

Nishimura et al., 2020
[31]

LUAD
(AIS, MIA, LPA) SRPRB, HYOU1 NA NA NA

Chen et al., 2020
[32]

LUAD, LSCC,
ASC, Other

NSCLC pathway: RBM10,
EGFR, ERBB2, Ras, PCK,

JAK3, STATs etc.
Other: AKT1, ADAMTS4,

AHCY, AKR1A1,
AKR1C3

0.14 (0.31)
(#)

MMP2, MMP11,
MMP12, MMP14,

etc.
MMP11

Gillette et al., 2020
[33] LUAD

GREM1, LAPTM4A,
GFPT1, BZW2, PDIA4,
P4HB, PMM2, CDK1,
CCNB1, MET, CXL8,

THY1, etc.

0.53 (0.525)
(#)

PTPN11/Shp2, SOS1,
STK11

ERO1A, DHFR,
MANF, HYOU1,

LDHA, CBX8

Soltis et al., 2022
[34] LUAD

IRS2, PKM, NIT2, GSTP1,
GSR, CBR1, GPX2,

GCLM, GCLC, CPS1,
GPT2 PFAS, CTPS2,

PPAT, CTPS1, GMPS,
GFPT1, ADSSL1, GDAP1,
GPX4, GPX1, GLS, SDC,
LPCAT3, SCD, HELLS,

G6PD, CYP4F11,
AKR1C3, AKR1C2

0.47 (0.23–0.69)
(#)

PD-L1, PRKCE,
RPS6KA1

SAMA4B, ERO1A,
MAFF, GAPDHS,
CREG1, RFXAP,

CCT8, etc.
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Table 2. Cont.

First Author & Year
of Publication Cancer Type Proteins Differentially

Expressed

mRNA-Protein
Correlation

(Spearman’s ρ)
Therapeutic Targets Prognostic Markers

Zhang et al., 2024
[35]

LUAD
(AIS, MIA, IAC)

SPATA18, NPC2, VPS11,
CFD, FCN3, C2, C5, C6,

C7, C8B, APOH,
SDR16C5, CARDS2, LOX

TAOK3, etc.

0.39 NA

SPATA18, TIMM17B,
GHITM, LAMC2,

CHDH5, CFB,
C2, APOH,
SDR16, C5,

CARDS2, LOX,
TAOK3, STX4,

NOTCH1, C1QB,
SERPINA1, CDK7

Stewart et al., 2015
[36] LUAD, LSCC

KRT6C, KRT6A,
KRT6B, PKP1, MCT1,

COL7A1, GLUT1, ABCF3,
LMO7 1

0.16 MCT1, GLUT1
(in LSCC only)

MCT1, GLUT1
(in LUAD)

Stewart et al., 2019
[39] LSCC NA 0.38 PSAT1, TP63,

TFRC
Presence/Absence of

TLN

Satpathy et al., 2021
[42] LSCC

TGFBR2, MSI2, SPRED1,
SF3B1, SESN1, UBR5,
CDKN2C, IFNGR1,

NUF2, CDKN1B, MSI1,
SLFN11, etc.

NA
NSD3, BIRC5,

LSD1, KDM3A,
EZH2

TOP2A, ZC3H8,
CDCA8, SMC2,
QSOX2, HSPA5

Qiao et al., 2022
[35] LUAD, LSCC SCR, MAPK6, CDK1,

CDK7 NA

BUB1, CAV1, CDK3,
ERBB3, MAP2K4,

MAP3K5, MAP3K8,
PTK7, PTPN6, STAM,

TRIM24

NA

Liu et al., 2024
[45] SCLC

STMN2, STMN1, UCLH1,
H1-5, TOP2A, TMA7,

FEN1,
MCM6, PCNA, MCM4,
MCM3, MCM7, PARP1,

etc.

0.47 (0.31) ATR, TOP1, DLL3 HMGB3, CASP10

* Measured in two cohorts (comparisons of 3004 and 4656 genes, respectively); # Gene-wise and sample-wise
correlation in (); 1 Differential protein expression was investigated between LUAD and LSCC.

3.2. Cell Lines

Treue et al. [46] presented a systems analysis of cell lines in a model of EGFR-mutated
non-small cell lung cancer (NSCLC) resistant to targeted therapy, the aim being to identify
novel mechanisms of resistance and propose combination therapies. The analysis consti-
tuted an integration of mass spectrometry-based discovery time-course phosphoproteomics
with whole exome sequencing and computational modeling. In more detail, this approach
was applied to the H1650 and HCC827 human lung cancer cell lines that displayed different
responsiveness to gefitinib, an EGFR tyrosine kinase inhibitor, due to an EGFR Exon 19 mu-
tation. The global phosphoproteomic changes were analyzed in a time-resolved manner in
order to identify mechanisms of targeted therapy resistance and relate the phosphoprotein
profiles to the corresponding mutational ones [46].

In total, 44 proteins and 35 topologically close genetic alterations were discovered
after the authors successfully reduced the complexity of 2186 genetic variants, including
1312 copy number variations and 873 simple somatic mutations [46]. Interestingly, single
and/or combination drug testing against the predicted phosphoproteins revealed that
exploitation of HSBP1, DBNL, and AKT1 as therapeutic targets ultimately inhibits cell
proliferation, thus surmounting resistance against EGFR inhibitors [46]. Despite the fact
that the results of the study demonstrated an efficacy in overcoming resistance to EGFR
inhibition, poor availability of inhibitors against some of the predicted phosphosite targets,
as well as the use of indirectly acting (such as thiolutin for HSBP1) and/or of small-molecule
inhibitors characterized by various off-target effects, served as strong limitations of the
research conducted [46].
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In a study by Wu et al., 14 differentially expressed proteins were found among non-
small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cell lines, using quantita-
tive proteomic analysis and transcriptomic data [47]. These included annexin A1(ANXA1)
and annexin A2 (ANXA2), both known to be associated with lung cancer. According to the
bioinformatic analysis conducted, all 14 factors were implicated in disease modulation, as
they were strongly involved in the proliferation, migration, and invasion of lung cancer
cells. It is noteworthy that a positive correlation was discovered between these proteins
and their gene expression data, while, in some cases, a correlation with lung cancer was
established for the first time. For the quantitative proteomics-based comparative analysis,
cell lines representative of each lung cancer type were used, namely A549 and H1975, for
the study of NSCLC, and H446, H69 for SCLC [47]. Proteomic analysis identified a total
of 3970 proteins, 147 of which were differentially expressed. A major limitation of the
Wu et al. study, as highlighted by the authors, was the use of cell lines rather than cancer
tissue samples.

Proteogenomic analysis, primarily of cell lines, yielded promising results with regard
to both high tumor mutational burden (TMB) and low tumor mutational burden (TMB)
cancers. Qi et al. [48] used a combination of NGS and mass spectrometry to identify
proteins prevalent in melanoma and lung adenocarcinoma, with the ultimate goal of identi-
fying immunogenic human leukocyte antigen (HLA) class I-presented peptides. Twelve
variant peptides and 40 class I-presented CG antigen-derived peptides were discovered;
according to the researchers, these could prove beneficial in vaccine and general precision
immunotherapy development and could be used as treatments in other types of cancer [48].

3.3. Bioinformatic Analyses of Retrieved Multi-Omics Data

N6-methyladenosine (m6A) is a ribonucleic acid modification implicated in oncoge-
nesis [49]. The clinicopathological significance and multi-omic profile of m6-A-related
genes in LUAD diagnosis and prognosis were investigated by Wang et al. [50]. RNA-
sequencing data was obtained from the Cancer Genome Atlas (TCGA) database, and a
set of 21 previously identified m6A regulators were analyzed. Univariate Cox regression
was used to determine the correlation between overall survival (OS) of LUAD patients and
m6A-linked gene transcription, and a patient risk profile was constructed using the LASSO
(least absolute shrinkage and selection operator) approach [50]. Based on analysis of the
transcriptomic data, 18 m6A regulators were significantly differentially expressed in LUAD
tumors, a third (6) of which were associated with patient overall survival. Interestingly,
the IGF2BP1, IGF2BP2, and HNRNPC genes displayed strong prognostic performance
in adenocarcinoma, as validated in two independent cohorts of patients [50]. Regarding
the risk profiles, the authors noted that a high-risk score was suggestive of drug resis-
tance, presence of TP53 mutation, and increased tumor immune cell infiltration. Wang
et al. [50] validated HNRNPC involvement in cell proliferation and/or invasion in vitro in
a cell culture analysis and transwell assay utilizing cell lines, transfected so as to modulate
(up/down regulate) HNRNPC expression. Hence, a novel perspective, with regard to the
prognostic value of gene expression and personalized medicine for lung adenocarcinoma,
was described [50].

Regulation of signaling pathways, including those involved in cytolysis, by the im-
munomodulatory factor TIM3 may modulate the proliferative ability and cell infiltration of
lung adenocarcinoma cells, according to observations by Wu et al. [51]. It is also suggested
that the above factor may control the tumor immune microenvironment in LUAD. Notably,
an indirect influence on predicted patient outcomes and survival was discovered, arising
from risk correlation with tumor cell resistance to therapeutic agents. In their data-oriented
multi-omic analysis, the researchers utilized Cox and LASSO regression to filter genes
related to cytolytic activity. Overall, differential expression of 450 genes associated with
cytolysis was revealed, 273 of which were upregulated and 177 downregulated. Predictive
value, with regard to the course of disease in LUAD, was ascertained for 91 genes. More-
over, Kaplan Meir survival curves were constructed for patients respectively identified as
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high and low risk through prognostic modeling. The generated risk score was also associ-
ated with patient sensitivity to the therapeutic agents AKT inhibitor VIII, Lenalidomide,
and Tipifarnib [51]. Immunohistochemistry studies were carried out on 10 lung cancer
tissues in order to characterize the expression of key immunomodulatory factors, with a
focus on TIM3. The high expression of TIM3 in low-risk patients points to the need for
further elucidation of its role as a regulator in cytolysis, especially within the context of
novel drug target exploration.

Further, it is worth noting that several chromosomal aberrations have been corre-
lated with multiple types of malignancies. In particular, genetic mutations located on
Chromosome 9 (Chr9) have been implicated in the emergence of various cancer types,
including lung cancer [52,53]. Proteogenomic data was analyzed by Ahn et al. [54] in order
to pinpoint Chromosome 9 proteins (Chr 9), SNPs, and mutations involved in lung cancer
and to characterize Chr9-encoded “missing proteins”. Missing proteins are those whose
existence is supported by genetic evidence, but which have not yet been verified through
mass spectrometry (MS) or antibody detection [55]. Their study detected 15 Chr9 proteins
highly selective for lung cancer in comparison to healthy lung tissue (i.e., RAD23B, RPS6,
ARPC5). Interestingly, correlation with various cancer types had previously been estab-
lished for the majority of these, with some having been directly associated with lung cancer.
For instance, mutated variants of the UV excision repair protein (RAD23B) were linked
to the emergence of primary lung cancer regardless of patient ethnicity, and RPS6 was
associated with drug resistance in non-small cell lung cancer, whereas the protein ARPC5
was found to upregulate a tumor suppressor agent in lung squamous cell carcinoma [56–58].
Additionally, the researchers discovered four peptides identified in lung cancer cells, which
had amino acid substitutions owing to known mutations of their encoding genes, therefore
demonstrating a link between proteomic analysis and registered genomic data [54].

4. Discussion

Lung cancer is a heterogenous disease affecting patients from diverse backgrounds
and is associated with a high incidence of mortality [5]. The aim of this review article was to
provide a comprehensive synthesis of landmark proteogenomic studies, thus highlighting
the potential of this innovative platform as a tool of anticancer research. While molecular
mechanisms governing crucial cancer traits, e.g., neoangiogenesis, apoptosis resistance,
immune evasion, and metastatic potential, have been previously addressed by genomics,
proteogenomics is anticipated to fill significant knowledge gaps and assist in the discovery
of novel treatment options (Figure 1). As echoed in our findings, present research efforts
reflect disease epidemiology, primarily focusing on adenocarcinoma, exploring metastatic
potential, cancer progression, and hallmarks in non-smokers. It is worth noting that patients
from North America are the most frequently studied cohort to date, followed by Asian
non-smokers (Figure 1).

Genomic profiling provides evidence of shared driver mutations among patients,
including EGFR, KRAS, RBM10, TP53, and other genes (as seen in Table 1). In particular,
the mutational landscape driving adenocarcinoma incidence in East Asia has been linked
to EGFR mutations and patient demographics, including age and sex [32]. Mutation
frequencies and relative incidence among patients of different ethnicities and cancer types
is presented in Figure 2.

Nonetheless, gene aberrance is characterized by greater diversity. Exploration of the
downstream effect generated by genomic alterations has uncovered great variability in
gene- and sample-wise mRNA-protein correlation (Figure 3). Differential expression of
genes may not be concurrently reflected in transcripts and proteins, and could be tissue-
specific with regard to the latter [28,29] (Figure 3). Besides being an indicator of cellular
process regulation, mRNA-protein correlation is a valuable prognostic tool in the discovery
of biomarkers indicative of lung cancer recurrence [29].
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Figure 1. Overview of lung cancer proteogenomic studies. (a) Schematic representation of a proteo-
genomics workflow commonly adopted by the majority of investigated articles. (b) Boxplot of geo-
graphic distribution of patient population cohorts by continent (only studies with adequate data 
availability were included). Multi − Continent: North America, Europe, and Asia. 

Figure 1. Overview of lung cancer proteogenomic studies. (a) Schematic representation of a pro-
teogenomics workflow commonly adopted by the majority of investigated articles. (b) Boxplot of
geographic distribution of patient population cohorts by continent (only studies with adequate data
availability were included). Multi-Continent: North America, Europe, and Asia.
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Figure 2. Mutational landscape of patient cohorts from reviewed articles. (a) Top 10 driver muta-
tions based on frequency (%) of appearance in the examined cohorts *. (b,c) Relative incidence of 
these top 10 driver mutations in different ethnicities and lung cancer types, as defined by histologi-
cal evidence. * Mutation data were publicly available in 5 studies, involving a total of 716 patients. 
Han: Han Chinese; ASCC: Adenosquamous Carcinoma; LUAD: Lung Adenocarcinoma; SCC: Squa-
mous Cell Carcinoma. 

  

Figure 2. Mutational landscape of patient cohorts from reviewed articles. (a) Top 10 driver mutations
based on frequency (%) of appearance in the examined cohorts *. (b,c) Relative incidence of these top
10 driver mutations in different ethnicities and lung cancer types, as defined by histological evidence.
* Mutation data were publicly available in 5 studies, involving a total of 716 patients. Han: Han Chinese;
ASCC: Adenosquamous Carcinoma; LUAD: Lung Adenocarcinoma; SCC: Squamous Cell Carcinoma.
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Figure 3. Key proteogenomic findings derived from reviewed articles. (a) Boxplot depicting gene-
wise mRNA-protein correlation in tumor samples of cohorts corresponding to the references on the 
x-axis [32–34,39]. Circles represent outlier and central (black) dots represent median values. The y-
axis values represent mRNA-protein correlation expressed as Spearman’s correlation. (b) Incidence 
of top 5 differentially expressed proteins in the examined paper cohort. Only studies with adequate 
data availability were included. 

Figure 3. Key proteogenomic findings derived from reviewed articles. (a) Boxplot depicting gene-
wise mRNA-protein correlation in tumor samples of cohorts corresponding to the references on the
x-axis [32–34,39]. Circles represent outlier and central (black) dots represent median values. The
y-axis values represent mRNA-protein correlation expressed as Spearman’s correlation. (b) Incidence
of top 5 differentially expressed proteins in the examined paper cohort. Only studies with adequate
data availability were included.

Much emphasis has been placed on defining proteogenomic subtypes of tumors be-
longing to the major histological classes. Multi-omic data integrative analysis has been
utilized to cluster patient samples displaying unique mutational gene expression patterns
and proteomic, phosphoproteomic profiles. Proteogenomic clusters highlight distinct
therapeutic vulnerabilities displayed by tumors, aiding the discovery of novel drug tar-
gets [32–35,42,45]. Therefore, a diverse picture of therapeutic targets has emerged, including
metaloproteinases (e.g., MMP2, MMP11, MMP2, MMP4) significantly upregulated in East
Asian non-smokers with LUAD [32], the proteins MCT1 and GLUT1 overexpressed in
LUAD [36] and SOS, and PTPN11/Sph2 targetable in patients harboring KRAS and EGFR
mutations [33], to name a few (Table 2). This is of particular significance, as very few
of these have either been characterized to date or are entirely lacking in well-defined,
i.e., LUAD, and rare, i.e., SCLC, lung cancer types, respectively [33,45]. Additionally,
a similar landscape of prognostic markers in NSCLC has arisen, while proteogenomic
characterization of SCLC is in its infancy.

Furthermore, valuable insights have been generated by the multi-omic analysis of
publicly available omics data, such as those retrievable from the Cancer Genome Atlas
portal. Specifically, integrative bioinformatic analysis of genomics, transcriptomics, and
proteomics data has aided in the discovery of prognostic markers, including the protein
TIM3 and the gene HNRNPC [50,51], while few studies have utilized cell lines to explore the
proteogenomic landscape of lung cancer, yielding significant findings awaiting validation
in clinical samples [46–48].

It is, therefore, evident that the application of proteogenomics in lung cancer has
already generated valuable and potentially actionable information. Future studies should
aim to include larger and more diverse patient cohorts, reflecting disease prevalence. This
would enable further delineation of molecular mechanisms governing lung cancer and
their downstream effects.

5. Conclusions

While a “unified theory” of oncogenesis and cancer progression is likely elusive due
to the complexities of these processes, there is hope that clinically translatable answers may
arise. These answers would deal with specific subtypes of cancer or act as guidance for
personalized patient care. Extensive and detailed mapping in fields where knowledge is
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lacking can be leveraged against cancer, including the emergence of key driver mutations or
the deeper ramifications of perturbations in molecular networks underlying the disease [59].
This will bring us a step closer to the application of personalized medicine for the treatment
of lung cancer.
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