Exploring Immunological Effects and Novel Immune Adjuvants in Immunotherapy for Salivary Gland Cancers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. The Immunological Background of Mucoepidermoid Carcinoma
4. The Immunological Background of Salivary Duct Carcinoma
5. The Immunological Background of Adenoid Cystic Carcinoma
6. The Expression Rates and Prognostic Ability of Immune Checkpoint Molecules in Salivary Gland Cancer
7. The Clinical Efficacy of Immune Checkpoint Inhibitors in Salivary Gland Cancers
8. Target-Specific Immunotherapy against Salivary Gland Cancers
9. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AdCC | Adenoid cystic carcinoma |
AR | Androgen receptor |
CAR | Chimeric antigen receptor |
CTLA-4 | Cytotoxic T-lymphocyte-associated protein 4 |
DFS | Disease-free survival |
EGFR | Epidermal growth factor receptor |
HER2 | Human epidermal growth factor receptor 2 |
HLA | Human leukocyte antigen |
ICIs | Immune checkpoint inhibitors |
LAG3 | Lymphocyte activation gene 3 |
MEC | Mucoepidermoid carcinoma |
NOS | Not otherwise specified |
ORR | Objective response rate |
OS | Overall survival |
PD-1 | Programmed death receptor-1 |
PD-L1 | Programmed death ligand-1 |
PD-L2 | Programmed death ligand-2 |
PFS | Progression-free survival |
PSMA | Prostate-specific membrane antigen |
RT | Radiation therapy |
SDC | Salivary duct carcinoma |
SGC | Salivary gland cancer |
TAA | Tumor-associated antigen |
TAM | Tumor-associated macrophage |
TILs | Tumor infiltrating lymphocytes |
TIM3 | T-cell immunoglobulin and mucin domain-containing protein 3 |
TMB | Tumor mutational burden |
TME | Tumor microenvironment |
TSA | Tumor-specific antigen |
VEGF | Vascular endothelial growth factor |
WT1 | Wilm’s tumor gene 1 |
References
- Jang, J.Y.; Choi, N.; Ko, Y.H.; Chung, M.K.; Son, Y.I.; Baek, C.H.; Baek, K.H.; Jeong, H.S. Treatment outcomes in metastatic and localized high-grade salivary gland cancer: High chance of cure with surgery and post-operative radiation in T1-2 N0 high-grade salivary gland cancer. BMC Cancer 2018, 18, 672. [Google Scholar] [CrossRef] [PubMed]
- Ihrler, S.; Guntinas-Lichius, O.; Haas, C.; Mollenhauer, M. Updates on tumours of the salivary glands: 2017 WHO classification. Pathologe 2018, 39, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Theocharis, S.; Tasoulas, J.; Masaoutis, C.; Kokkali, S.; Klijanienko, J. Salivary gland cancer in the era of immunotherapy: Can we exploit tumor microenvironment? Expert. Opin. Ther. Targets 2020, 24, 1047–1059. [Google Scholar] [CrossRef] [PubMed]
- Licitra, L.; Marchini, S.; Spinazzè, S.; Rossi, A.; Rocca, A.; Grandi, C.; Molinari, R. Cisplatin in advanced salivary gland carcinoma. A phase II study of 25 patients. Cancer 1991, 68, 1874–1877. [Google Scholar] [CrossRef]
- Gilbert, J.; Li, Y.; Pinto, H.A.; Jennings, T.; Kies, M.S.; Silverman, P.; Forastiere, A.A. Phase II trial of taxol in salivary gland malignancies (E1394): A trial of the Eastern Cooperative Oncology Group. Head Neck 2006, 28, 197–204. [Google Scholar] [CrossRef]
- Airoldi, M.; Pedani, F.; Succo, G.; Gabriele, A.M.; Ragona, R.; Marchionatti, S.; Bumma, C. Phase II randomized trial comparing vinorelbine versus vinorelbine plus cisplatin in patients with recurrent salivary gland malignancies. Cancer 2001, 91, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.G.; Tong, T.; Maghami, E. Diagnosis and Management of Malignant Salivary Gland Tumors of the Parotid Gland. Otolaryngol. Clin. N. Am. 2016, 49, 343–380. [Google Scholar] [CrossRef]
- Mueller, S.K.; Haderlein, M.; Lettmaier, S.; Agaimy, A.; Haller, F.; Hecht, M.; Fietkau, R.; Iro, H.; Mantsopoulos, K. Targeted Therapy, Chemotherapy, Immunotherapy and Novel Treatment Options for Different Subtypes of Salivary Gland Cancer. J. Clin. Med. 2022, 11, 720. [Google Scholar] [CrossRef]
- Liu, C.; Yang, M.; Zhang, D.; Chen, M.; Zhu, D. Clinical cancer immunotherapy: Current progress and prospects. Front. Immunol. 2022, 13, 961805. [Google Scholar] [CrossRef]
- Kyi, C.; Postow, M.A. Immune checkpoint inhibitor combinations in solid tumors: Opportunities and challenges. Immunotherapy 2016, 8, 821–837. [Google Scholar] [CrossRef]
- Sato, R.; Kumai, T.; Ishida, Y.; Yuasa, R.; Kubota, A.; Wakisaka, R.; Komatsuda, H.; Yamaki, H.; Wada, T.; Harabuchi, Y. The efficacy of PD-1 inhibitors in patients with salivary gland carcinoma: A retrospective observational study. Laryngoscope Investig. Otolaryngol. 2022, 7, 1808–1813. [Google Scholar] [CrossRef]
- Ueda, Y.; Okano, S.; Enokida, T.; Fujisawa, T.; Ito, K.; Sato, M.; Tanaka, H.; Wada, A.; Tahara, M. Nivolumab for recurrent or metastatic head and neck cancer patients with non-squamous cell carcinoma and/or a primary subsite excluded from CheckMate141, a retrospective study. Oral Oncol. 2022, 130, 105932. [Google Scholar] [CrossRef]
- Mahmood, U.; Bang, A.; Chen, Y.H.; Mak, R.H.; Lorch, J.H.; Hanna, G.J.; Nishino, M.; Manuszak, C.; Thrash, E.M.; Severgnini, M.; et al. A Randomized Phase 2 Study of Pembrolizumab with or without Radiation in Patients with Recurrent or Metastatic Adenoid Cystic Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Assar, S.; Assar, S.; Mardanifard, H.A.; Jaafari-Ashkavandi, Z. Salivary Gland Tumors in Iran: A Systematic Review of 2870 Cases Based on the New WHO Classification. Iran. J. Pathol. 2023, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.H.; Hasse, A.; Carroll, T.; Pearson, A.T.; Cipriani, N.A.; Ginat, D.T. Differentiating low and high grade mucoepidermoid carcinoma of the salivary glands using CT radiomics. Gland Surg. 2021, 10, 1646–1654. [Google Scholar] [CrossRef]
- Zhang, M.J.; Wu, C.C.; Wang, S.; Yang, L.L.; Sun, Z.J. Overexpression of LAG3, TIM3, and A2aR in adenoid cystic carcinoma and mucoepidermoid carcinoma. Oral Dis. 2023, 29, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Tamura, R.; Tanaka, T.; Akasaki, Y.; Murayama, Y.; Yoshida, K.; Sasaki, H. The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: Perspectives for therapeutic implications. Med. Oncol. 2019, 37, 2. [Google Scholar] [CrossRef] [PubMed]
- Shieh, Y.S.; Hung, Y.J.; Hsieh, C.B.; Chen, J.S.; Chou, K.C.; Liu, S.Y. Tumor-associated macrophage correlated with angiogenesis and progression of mucoepidermoid carcinoma of salivary glands. Ann. Surg. Oncol. 2009, 16, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Chiu, K.C.; Lee, C.H.; Liu, S.Y.; Yeh, C.T.; Huang, R.Y.; Yuh, D.Y.; Cheng, J.C.; Chou, Y.T.; Shieh, Y.S. Protumoral effect of macrophage through Axl activation on mucoepidermoid carcinoma. J. Oral Pathol. Med. 2014, 43, 538–544. [Google Scholar] [CrossRef]
- Mosconi, C.; Arantes, D.A.C.; Goncalves, A.S.; Alencar, R.C.G.; Oliveira, J.C.; Silva, T.A.; Mendonca, E.F.; Batista, A.C. Immunohistochemical investigations on the expression of programmed cell death ligand 1, human leukocyte antigens G and E, and granzyme B in intraoral mucoepidermoid carcinoma. Arch. Oral Biol. 2017, 83, 55–62. [Google Scholar] [CrossRef]
- Nagatani, Y.; Kiyota, N.; Imamura, Y.; Koyama, T.; Funakoshi, Y.; Komatsu, M.; Teshima, M.; Nibu, K.-I.; Sakai, K.; Nishio, K.; et al. Abstract 6143: Tumor immune microenvironment in salivary gland cancer. Cancer Res. 2022, 82, 6143. [Google Scholar] [CrossRef]
- Kang, H.; Seo, M.K.; Park, B.; Yoon, S.O.; Koh, Y.W.; Kim, D.; Kim, S. Characterizing intrinsic molecular features of the immune subtypes of salivary mucoepidermoid carcinoma. Transl. Oncol. 2022, 24, 101496. [Google Scholar] [CrossRef]
- Hong, J.; Choi, E.; Kim, D.; Seo, M.K.; Kang, H.; Park, B.; Kim, S. Immunological subtyping of salivary gland cancer identifies histological origin-specific tumor immune microenvironment. NPJ Precis. Oncol. 2024, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.R.; Sharma, A.; Schmitt, N.C.; Johnson, J.T.; Ferris, R.L.; Duvvuri, U.; Kim, S. A 20-Year Review of 75 Cases of Salivary Duct Carcinoma. JAMA Otolaryngol. Head Neck Surg. 2016, 142, 489–495. [Google Scholar] [CrossRef]
- Nakaguro, M.; Tada, Y.; Faquin, W.C.; Sadow, P.M.; Wirth, L.J.; Nagao, T. Salivary duct carcinoma: Updates in histology, cytology, molecular biology, and treatment. Cancer Cytopathol. 2020, 128, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Stodulski, D.; Mikaszewski, B.; Majewska, H.; Kuczkowski, J. Parotid salivary duct carcinoma: A single institution’s 20-year experience. Eur. Arch. Otorhinolaryngol. 2019, 276, 2031–2038. [Google Scholar] [CrossRef] [PubMed]
- Hirai, H.; Nakaguro, M.; Tada, Y.; Saigusa, N.; Kawakita, D.; Honma, Y.; Kano, S.; Tsukahara, K.; Ozawa, H.; Okada, T.; et al. Prognostic value and clinicopathological roles of the tumor immune microenvironment in salivary duct carcinoma. Virchows Arch. 2023, 483, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Alame, M.; Cornillot, E.; Cacheux, V.; Tosato, G.; Four, M.; De Oliveira, L.; Gofflot, S.; Delvenne, P.; Turtoi, E.; Cabello-Aguilar, S.; et al. The molecular landscape and microenvironment of salivary duct carcinoma reveal new therapeutic opportunities. Theranostics 2020, 10, 4383–4394. [Google Scholar] [CrossRef] [PubMed]
- Linxweiler, M.; Kuo, F.; Katabi, N.; Lee, M.; Nadeem, Z.; Dalin, M.G.; Makarov, V.; Chowell, D.; Dogan, S.; Ganly, I.; et al. The Immune Microenvironment and Neoantigen Landscape of Aggressive Salivary Gland Carcinomas Differ by Subtype. Clin. Cancer Res. 2020, 26, 2859–2870. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Jungbluth, A.A.; Frosina, D.; Alzumaili, B.; Aleynick, N.; Slodkowska, E.; Higgins, K.; Ho, A.; Morris, L.; Ghossein, R.; et al. The immune microenvironment and expression of PD-L1, PD-1, PRAME and MHC I in salivary duct carcinoma. Histopathology 2019, 75, 672–682. [Google Scholar] [CrossRef]
- Laurie, S.A.; Ho, A.L.; Fury, M.G.; Sherman, E.; Pfister, D.G. Systemic therapy in the management of metastatic or locally recurrent adenoid cystic carcinoma of the salivary glands: A systematic review. Lancet Oncol. 2011, 12, 815–824. [Google Scholar] [CrossRef]
- Fang, Y.; Peng, Z.; Wang, Y.; Gao, K.; Liu, Y.; Fan, R.; Zhang, H.; Xie, Z.; Jiang, W. Current opinions on diagnosis and treatment of adenoid cystic carcinoma. Oral Oncol. 2022, 130, 105945. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, S.; Yu, J.B.; Wilson, L.D.; Decker, R.H. Determinants and patterns of survival in adenoid cystic carcinoma of the head and neck, including an analysis of adjuvant radiation therapy. Am. J. Clin. Oncol. 2011, 34, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Licitra, L.; Cavina, R.; Grandi, C.; Palma, S.D.; Guzzo, M.; Demicheli, R.; Molinari, R. Cisplatin, doxorubicin and cyclophosphamide in advanced salivary gland carcinoma. A phase II trial of 22 patients. Ann. Oncol. 1996, 7, 640–642. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, H.; Wang, W.; Zhang, J.; Jia, S.; Wang, J.; Wei, J.; Lei, D.; Hu, K.; Yang, X. CCL2/CCR2 Axis Promotes the Progression of Salivary Adenoid Cystic Carcinoma via Recruiting and Reprogramming the Tumor-Associated Macrophages. Front. Oncol. 2019, 9, 231. [Google Scholar] [CrossRef] [PubMed]
- Mosconi, C.; de Arruda, J.A.A.; de Farias, A.C.R.; Oliveira, G.A.Q.; de Paula, H.M.; Fonseca, F.P.; Mesquita, R.A.; Silva, T.A.; Mendonca, E.F.; Batista, A.C. Immune microenvironment and evasion mechanisms in adenoid cystic carcinomas of salivary glands. Oral Oncol. 2019, 88, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, V.; Gjini, E.; Liao, X.; Chau, N.G.; Haddad, R.I.; Severgnini, M.; Hammerman, P.; El-Naggar, A.; Freeman, G.J.; Hodi, F.S.; et al. Immune Profiling of Adenoid Cystic Carcinoma: PD-L2 Expression and Associations with Tumor-Infiltrating Lymphocytes. Cancer Immunol. Res. 2016, 4, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Michaelides, I.; Kunzel, J.; Ettl, T.; Beckhove, P.; Bohr, C.; Brochhausen, C.; Mamilos, A. Adenoid cystic carcinoma of the salivary glands: A pilot study of potential therapeutic targets and characterization of the immunological tumor environment and angiogenesis. Eur. Arch. Otorhinolaryngol. 2023, 280, 2937–2944. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Fung, A.S.; McIntyre, J.B.; Simpson, R.; Afzal, A.R.; Hao, D.; Lau, H. Assessment of Tumour Infiltrating Lymphocytes And Pd-l1 Expression in Adenoid Cystic Carcinoma of the Salivary Gland. Clin. Investig. Med. 2021, 44, E38–E41. [Google Scholar] [CrossRef]
- Dou, S.; Li, R.; He, N.; Zhang, M.; Jiang, W.; Ye, L.; Yang, Y.; Zhao, G.; Yang, Y.; Li, J.; et al. The Immune Landscape of Chinese Head and Neck Adenoid Cystic Carcinoma and Clinical Implication. Front. Immunol. 2021, 12, 618367. [Google Scholar] [CrossRef]
- Arolt, C.; Meyer, M.; Ruesseler, V.; Nachtsheim, L.; Wuerdemann, N.; Dreyer, T.; Gattenlohner, S.; Wittekindt, C.; Buettner, R.; Quaas, A.; et al. Lymphocyte activation gene 3 (LAG3) protein expression on tumor-infiltrating lymphocytes in aggressive and TP53-mutated salivary gland carcinomas. Cancer Immunol. Immunother. 2020, 69, 1363–1373. [Google Scholar] [CrossRef]
- Persson, M.; Andrén, Y.; Mark, J.; Horlings, H.M.; Persson, F.; Stenman, G. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc. Natl. Acad. Sci. USA 2009, 106, 18740–18744. [Google Scholar] [CrossRef]
- Ho, A.S.; Kannan, K.; Roy, D.M.; Morris, L.G.; Ganly, I.; Katabi, N.; Ramaswami, D.; Walsh, L.A.; Eng, S.; Huse, J.T.; et al. The mutational landscape of adenoid cystic carcinoma. Nat. Genet. 2013, 45, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.S.; Ochoa, A.; Jayakumaran, G.; Zehir, A.; Valero Mayor, C.; Tepe, J.; Makarov, V.; Dalin, M.G.; He, J.; Bailey, M.; et al. Genetic hallmarks of recurrent/metastatic adenoid cystic carcinoma. J. Clin. Investig. 2019, 129, 4276–4289. [Google Scholar] [CrossRef] [PubMed]
- Sahara, S.; Herzog, A.E.; Nör, J.E. Systemic therapies for salivary gland adenoid cystic carcinoma. Am. J. Cancer Res. 2021, 11, 4092–4110. [Google Scholar] [PubMed]
- Agulnik, M.; Cohen, E.W.E.; Cohen, R.B.; Chen, E.X.; Vokes, E.E.; Hotte, S.J.; Winquist, E.; Laurie, S.; Hayes, D.N.; Dancey, J.E.; et al. Phase II Study of Lapatinib in Recurrent or Metastatic Epidermal Growth Factor Receptor and/or erbB2 Expressing Adenoid Cystic Carcinoma and Non–Adenoid Cystic Carcinoma Malignant Tumors of the Salivary Glands. J. Clin. Oncol. 2007, 25, 3978–3984. [Google Scholar] [CrossRef]
- Keam, B.; Kim, S.B.; Shin, S.H.; Cho, B.C.; Lee, K.W.; Kim, M.K.; Yun, H.J.; Lee, S.H.; Yoon, D.H.; Bang, Y.J. Phase 2 study of dovitinib in patients with metastatic or unresectable adenoid cystic carcinoma. Cancer 2015, 121, 2612–2617. [Google Scholar] [CrossRef] [PubMed]
- Dillon, P.M.; Petroni, G.R.; Horton, B.J.; Moskaluk, C.A.; Fracasso, P.M.; Douvas, M.G.; Varhegyi, N.; Zaja-Milatovic, S.; Thomas, C.Y. A Phase II Study of Dovitinib in Patients with Recurrent or Metastatic Adenoid Cystic Carcinoma. Clin. Cancer Res. 2017, 23, 4138–4145. [Google Scholar] [CrossRef]
- Ho, A.L.; Sherman, E.J.; Baxi, S.S.; Haque, S.; Ni, A.; Antonescu, C.R.; Katabi, N.; Morris, L.G.; Chan, T.A.-T.; Pfister, D.G. Phase II study of regorafenib in progressive, recurrent/metastatic adenoid cystic carcinoma. J. Clin. Oncol. 2016, 34, 6096. [Google Scholar] [CrossRef]
- Tchekmedyian, V.; Sherman, E.J.; Dunn, L.; Tran, C.; Baxi, S.; Katabi, N.; Antonescu, C.R.; Ostrovnaya, I.; Haque, S.S.; Pfister, D.G.; et al. Phase II Study of Lenvatinib in Patients with Progressive, Recurrent or Metastatic Adenoid Cystic Carcinoma. J. Clin. Oncol. 2019, 37, 1529–1537. [Google Scholar] [CrossRef]
- Tan, H.Y.; Wang, N.; Lam, W.; Guo, W.; Feng, Y.; Cheng, Y.C. Targeting tumour microenvironment by tyrosine kinase inhibitor. Mol. Cancer 2018, 17, 43. [Google Scholar] [CrossRef]
- Yang, W.; Lee, K.W.; Srivastava, R.M.; Kuo, F.; Krishna, C.; Chowell, D.; Makarov, V.; Hoen, D.; Dalin, M.G.; Wexler, L.; et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat. Med. 2019, 25, 767–775. [Google Scholar] [CrossRef]
- Patel, S.P.; Kurzrock, R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol. Cancer Ther. 2015, 14, 847–856. [Google Scholar] [CrossRef]
- Mukaigawa, T.; Hayashi, R.; Hashimoto, K.; Ugumori, T.; Hato, N.; Fujii, S. Programmed death ligand-1 expression is associated with poor disease free survival in salivary gland carcinomas. J. Surg. Oncol. 2016, 114, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Haderlein, M.; Scherl, C.; Semrau, S.; Lettmaier, S.; Hecht, M.; Erber, R.; Iro, H.; Fietkau, R.; Agaimy, A. Impact of postoperative radiotherapy and HER2/new overexpression in salivary duct carcinoma: A monocentric clinicopathologic analysis. Strahlenther. Onkol. 2017, 193, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Kim, J.S.; Choi, Y.J.; Cho, J.G.; Woo, J.S.; Kim, A.; Kim, J.S.; Kang, E.J. Overexpression of PD-L2 is associated with shorter relapse-free survival in patients with malignant salivary gland tumors. OncoTargets Ther. 2017, 10, 2983–2992. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Ferdous, T.; Ueyama, Y. PD-L1 expression in malignant salivary gland tumors. BMC Cancer 2018, 18, 156. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, M.; Marszalek, A.; Sygut, J.; Golusinski, P.; Golusinski, W. Prognostic markers in salivary gland cancer and their impact on survival. Head Neck 2019, 41, 3338–3347. [Google Scholar] [CrossRef]
- Nakano, T.; Takizawa, K.; Uezato, A.; Taguchi, K.; Toh, S.; Masuda, M. Prognostic value of programed death ligand-1 and ligand-2 co-expression in salivary gland carcinomas. Oral Oncol. 2019, 90, 30–37. [Google Scholar] [CrossRef]
- Vital, D.; Ikenberg, K.; Moch, H.; Rossle, M.; Huber, G.F. The expression of PD-L1 in salivary gland carcinomas. Sci. Rep. 2019, 9, 12724. [Google Scholar] [CrossRef]
- Hamza, A.; Roberts, D.; Su, S.; Weber, R.S.; Bell, D.; Ferrarotto, R. PD-L1 expression by immunohistochemistry in salivary duct carcinoma. Ann. Diagn. Pathol. 2019, 40, 49–52. [Google Scholar] [CrossRef]
- Gargano, S.M.; Senarathne, W.; Feldman, R.; Florento, E.; Stafford, P.; Swensen, J.; Vranic, S.; Gatalica, Z. Novel therapeutic targets in salivary duct carcinoma uncovered by comprehensive molecular profiling. Cancer Med. 2019, 8, 7322–7329. [Google Scholar] [CrossRef]
- Kesar, N.; Winkelmann, R.; Oppermann, J.; Ghanaati, S.; Martin, D.; Neumayer, T.; Balster, S.; Rodel, C.; Rodel, F.; von der Grun, J.; et al. Prognostic impact of CD8-positive tumour-infiltrating lymphocytes and PD-L1 expression in salivary gland cancer. Oral Oncol. 2020, 111, 104931. [Google Scholar] [CrossRef]
- Witte, H.M.; Gebauer, N.; Lappohn, D.; Umathum, V.G.; Riecke, A.; Arndt, A.; Steinestel, K. Prognostic Impact of PD-L1 Expression in Malignant Salivary Gland Tumors as Assessed by Established Scoring Criteria: Tumor Proportion Score (TPS), Combined Positivity Score (CPS), and Immune Cell (IC) Infiltrate. Cancers 2020, 12, 873. [Google Scholar] [CrossRef]
- Higashino, M.; Kawata, R.; Nishikawa, S.; Terada, T.; Haginomori, S.I.; Kurisu, Y.; Hirose, Y. Programmed death ligand-1 expression is associated with stage and histological grade of parotid carcinoma. Acta Otolaryngol. 2020, 140, 175–180. [Google Scholar] [CrossRef]
- Chatzopoulos, K.; Collins, A.R.; Sotiriou, S.; Keeney, M.G.; Visscher, D.W.; Rivera, M.; Schembri-Wismayer, D.J.; Lewis, J.E.; Greipp, P.T.; Sukov, W.R.; et al. Increased ERBB2 Gene Copy Numbers Reveal a Subset of Salivary Duct Carcinomas with High Densities of Tumor Infiltrating Lymphocytes and PD-L1 Expression. Head Neck Pathol. 2020, 14, 951–965. [Google Scholar] [CrossRef] [PubMed]
- Guazzo, E.; Cooper, C.; Wilkinson, L.; Feng, S.; King, B.; Simpson, F.; Porceddu, S.; Panizza, B.; Coward, J.I.G. Therapeutic implications of immune-profiling and EGFR expression in salivary gland carcinoma. Head Neck 2021, 43, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Sato, F.; Ono, T.; Kawahara, A.; Matsuo, K.; Kondo, R.; Sato, K.; Akiba, J.; Kawaguchi, T.; Kakuma, T.; Chitose, S.I.; et al. Prognostic Value of Tumor Proportion Score in Salivary Gland Carcinoma. Laryngoscope 2021, 131, E1481–E1488. [Google Scholar] [CrossRef] [PubMed]
- Schvartsman, G.; Bell, D.; Rubin, M.L.; Tetzlaff, M.; Hanna, E.; Lee, J.J.; Weber, R.; Phan, J.; Glisson, B.S.; Ferrarotto, R. The tumor immune contexture of salivary duct carcinoma. Head Neck 2021, 43, 1213–1219. [Google Scholar] [CrossRef]
- Fang, Q.; Wu, Y.; Du, W.; Zhang, X.; Chen, D. Incidence and Prognostic Significance of PD-L1 Expression in High-Grade Salivary Gland Carcinoma. Front. Oncol. 2021, 11, 701181. [Google Scholar] [CrossRef] [PubMed]
- Vos, J.L.; Burman, B.; Jain, S.; Fitzgerald, C.W.R.; Sherman, E.J.; Dunn, L.A.; Fetten, J.V.; Michel, L.S.; Kriplani, A.; Ng, K.K.; et al. Nivolumab plus ipilimumab in advanced salivary gland cancer: A phase 2 trial. Nat. Med. 2023, 29, 3077–3089. [Google Scholar] [CrossRef] [PubMed]
- Bou Zerdan, M.; Kumar, P.A.; Zaccarini, D.; Ross, J.; Huang, R.; Sivapiragasam, A. Molecular Targets in Salivary Gland Cancers: A Comprehensive Genomic Analysis of 118 Mucoepidermoid Carcinoma Tumors. Biomedicines 2023, 11, 519. [Google Scholar] [CrossRef]
- Wu, L.; Jiang, C.; Zhu, Z.; Sun, Y.; Zhang, T. Prognostic role of PD-L1 expression in patients with salivary gland carcinoma: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0272080. [Google Scholar] [CrossRef]
- Wang, Y.; Du, J.; Gao, Z.; Sun, H.; Mei, M.; Wang, Y.; Ren, Y.; Zhou, X. Evolving landscape of PD-L2: Bring new light to checkpoint immunotherapy. Br. J. Cancer 2022, 128, 1196–1207. [Google Scholar] [CrossRef]
- Yearley, J.H.; Gibson, C.; Yu, N.; Moon, C.; Murphy, E.; Juco, J.; Lunceford, J.; Cheng, J.; Chow, L.Q.M.; Seiwert, T.Y.; et al. PD-L2 Expression in Human Tumors: Relevance to Anti-PD-1 Therapy in Cancer. Clin. Cancer Res. 2017, 23, 3158–3167. [Google Scholar] [CrossRef]
- Wang, A.; Chu, H.; Jin, Z.; Jia, Q.; Zhu, B. Programmed Cell Death Protein Ligand 2 Is a Potential Biomarker That Predicts the Efficacy of Immunotherapy. Dis. Markers 2021, 2021, 9453692. [Google Scholar] [CrossRef]
- Fayette, J.; Even, C.; Digue, L.; Geoffrois, L.; Rolland, F.; Cupissol, D.; Guigay, J.; Tourneau, C.L.; Dillies, A.-F.; Zanetta, S.; et al. NISCAHN: A phase II, multicenter nonrandomized trial aiming at evaluating nivolumab (N) in two cohorts of patients (pts) with recurrent/metastatic (R/M) salivary gland carcinoma of the head and neck (SGCHN), on behalf of the Unicancer Head & Neck Group. J. Clin. Oncol. 2019, 37, 6083. [Google Scholar] [CrossRef]
- Cohen, R.B.; Delord, J.P.; Doi, T.; Piha-Paul, S.A.; Liu, S.V.; Gilbert, J.; Algazi, A.P.; Damian, S.; Hong, R.L.; Le Tourneau, C.; et al. Pembrolizumab for the Treatment of Advanced Salivary Gland Carcinoma: Findings of the Phase 1b KEYNOTE-028 Study. Am. J. Clin. Oncol. 2018, 41, 1083–1088. [Google Scholar] [CrossRef]
- Niwa, K.; Kawakita, D.; Nagao, T.; Takahashi, H.; Saotome, T.; Okazaki, M.; Yamazaki, K.; Okamoto, I.; Hirai, H.; Saigusa, N.; et al. Multicentre, retrospective study of the efficacy and safety of nivolumab for recurrent and metastatic salivary gland carcinoma. Sci. Rep. 2020, 10, 16988. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.P.; Wu, Q.V.; Voutsinas, J.; Fromm, J.R.; Jiang, X.; Pillarisetty, V.G.; Lee, S.M.; Santana-Davila, R.; Goulart, B.; Baik, C.S.; et al. A Phase II Trial of Pembrolizumab and Vorinostat in Recurrent Metastatic Head and Neck Squamous Cell Carcinomas and Salivary Gland Cancer. Clin. Cancer Res. 2020, 26, 837–845. [Google Scholar] [CrossRef]
- Hanai, N.; Shimizu, Y.; Kariya, S.; Yasumatsu, R.; Yokota, T.; Fujii, T.; Tsukahara, K.; Yoshida, M.; Hanyu, K.; Ueda, T.; et al. Effectiveness and safety of nivolumab in patients with head and neck cancer in Japanese real-world clinical practice: A multicenter retrospective clinical study. Int. J. Clin. Oncol. 2021, 26, 494–506. [Google Scholar] [CrossRef]
- Even, C.; Delord, J.P.; Price, K.A.; Nakagawa, K.; Oh, D.Y.; Burge, M.; Chung, H.C.; Doi, T.; Fakih, M.; Takahashi, S.; et al. Evaluation of pembrolizumab monotherapy in patients with previously treated advanced salivary gland carcinoma in the phase 2 KEYNOTE-158 study. Eur. J. Cancer 2022, 171, 259–268. [Google Scholar] [CrossRef]
- Rodriguez, C.P.; Wu, V.; Ng, K.; Voutsinas, J.M.; Dumenigo-Jimenez, A.; Fromm, J.R.; Martins, R.G.; Eaton, K.D.; Santana-Davila, R.; Baik, C.S.; et al. Dual PD1 and CTLA4 immune checkpoint blockade and hypofractionated radiation in patients with salivary gland cancers. J. Clin. Oncol. 2023, 41, 6011. [Google Scholar] [CrossRef]
- Mohamadpour, M.; Sherman, E.J.; Kriplani, A.; Fetten, J.V.; Dunn, L.; Michel, L.S.; Hung, K.W.; Baxi, S.S.; McDonald, E.; Conybeare, R.; et al. A phase II study of lenvatinib plus pembrolizumab in patients with progressive, recurrent/metastatic adenoid cystic carcinoma. J. Clin. Oncol. 2023, 41, 6048. [Google Scholar] [CrossRef]
- Patel, S.P.; Othus, M.; Chae, Y.K.; Giles, F.J.; Hansel, D.E.; Singh, P.P.; Fontaine, A.; Shah, M.H.; Kasi, A.; Baghdadi, T.A.; et al. A Phase II Basket Trial of Dual Anti-CTLA-4 and Anti-PD-1 Blockade in Rare Tumors (DART SWOG 1609) in Patients with Nonpancreatic Neuroendocrine Tumors. Clin. Cancer Res. 2020, 26, 2290–2296. [Google Scholar] [CrossRef]
- Fushimi, C.; Tada, Y.; Takahashi, H.; Nagao, T.; Ojiri, H.; Masubuchi, T.; Matsuki, T.; Miura, K.; Kawakita, D.; Hirai, H.; et al. A prospective phase II study of combined androgen blockade in patients with androgen receptor-positive metastatic or locally advanced unresectable salivary gland carcinoma. Ann. Oncol. 2018, 29, 979–984. [Google Scholar] [CrossRef]
- Ho, A.L.; Foster, N.R.; Zoroufy, A.J.; Campbell, J.D.; Worden, F.; Price, K.; Adkins, D.; Bowles, D.W.; Kang, H.; Burtness, B.; et al. Phase II Study of Enzalutamide for Patients with Androgen Receptor-Positive Salivary Gland Cancers (Alliance A091404). J. Clin. Oncol. 2022, 40, 4240–4249. [Google Scholar] [CrossRef]
- Locati, L.D.; Cavalieri, S.; Bergamini, C.; Resteghini, C.; Colombo, E.; Calareso, G.; Mariani, L.; Quattrone, P.; Alfieri, S.; Bossi, P.; et al. Abiraterone Acetate in Patients with Castration-Resistant, Androgen Receptor–Expressing Salivary Gland Cancer: A Phase II Trial. J. Clin. Oncol. 2021, 39, 4061–4068. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Fujioka, N.; Pease, D.F.; Feldman, L.E.; Worden, F.P.; Laux, D.E.; Boumber, Y.; Mehra, R.; Racila, E.; Cao, Q.; et al. BTCRC-HN17-111, A phase 2 trial of ADT (goserelin) in combination with pembrolizumab for patients with advanced salivary gland tumors expressing androgen receptor (AR). J. Clin. Oncol. 2022, 40, e18091. [Google Scholar] [CrossRef]
- Gavrielatou, N.; Doumas, S.; Economopoulou, P.; Foukas, P.G.; Psyrri, A. Biomarkers for immunotherapy response in head and neck cancer. Cancer Treat. Rev. 2020, 84, 101977. [Google Scholar] [CrossRef]
- Ross, J.S.; Gay, L.M.; Wang, K.; Vergilio, J.A.; Suh, J.; Ramkissoon, S.; Somerset, H.; Johnson, J.M.; Russell, J.; Ali, S.; et al. Comprehensive genomic profiles of metastatic and relapsed salivary gland carcinomas are associated with tumor type and reveal new routes to targeted therapies. Ann. Oncol. 2017, 28, 2539–2546. [Google Scholar] [CrossRef]
- Kumai, T.; Yamaki, H.; Kono, M.; Hayashi, R.; Wakisaka, R.; Komatsuda, H. Antitumor Peptide-Based Vaccine in the Limelight. Vaccines 2022, 10, 70. [Google Scholar] [CrossRef]
- Imamura, Y.; Kiyota, N.; Tahara, M.; Hanai, N.; Asakage, T.; Matsuura, K.; Ota, I.; Saito, Y.; Sano, D.; Kodaira, T.; et al. Systemic therapy for salivary gland malignancy: Current status and future perspectives. Jpn. J. Clin. Oncol. 2022, 52, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Kumai, T.; Oikawa, K.; Aoki, N.; Kimura, S.; Harabuchi, Y.; Kobayashi, H. Assessment of the change in cetuximab-induced antibody-dependent cellular cytotoxicity activity of natural killer cells by steroid. Head Neck 2016, 38, 410–416. [Google Scholar] [CrossRef]
- Takahashi, H.; Tada, Y.; Saotome, T.; Akazawa, K.; Ojiri, H.; Fushimi, C.; Masubuchi, T.; Matsuki, T.; Tani, K.; Osamura, R.Y.; et al. Phase II Trial of Trastuzumab and Docetaxel in Patients with Human Epidermal Growth Factor Receptor 2-Positive Salivary Duct Carcinoma. J. Clin. Oncol. 2019, 37, 125–134. [Google Scholar] [CrossRef]
- Kinoshita, I.; Kano, S.; Shimizu, Y.; Kiyota, N.; Tada, Y.; Ijichi, K.; Yamazaki, T.; Homma, A.; Ito, Y.M.; Ono, K.; et al. Abstract CT137: Phase II study of trastuzumab and docetaxel therapy in patients with HER2-positive recurrent and/or metastatic salivary gland carcinoma. Cancer Res. 2019, 79, CT137. [Google Scholar] [CrossRef]
- Kawakita, D.; Nagao, T.; Takahashi, H.; Kano, S.; Honma, Y.; Hirai, H.; Saigusa, N.; Akazawa, K.; Tani, K.; Ojiri, H.; et al. Survival benefit of HER2-targeted or androgen deprivation therapy in salivary duct carcinoma. Ther. Adv. Med. Oncol. 2022, 14, 17588359221119538. [Google Scholar] [CrossRef]
- Jakob, J.A.; Kies, M.S.; Glisson, B.S.; Kupferman, M.E.; Liu, D.D.; Lee, J.J.; El-Naggar, A.K.; Gonzalez-Angulo, A.M.; Blumenschein, G.R., Jr. Phase II study of gefitinib in patients with advanced salivary gland cancers. Head Neck 2015, 37, 644–649. [Google Scholar] [CrossRef]
- Locati, L.D.; Bossi, P.; Perrone, F.; Potepan, P.; Crippa, F.; Mariani, L.; Casieri, P.; Orsenigo, M.; Losa, M.; Bergamini, C.; et al. Cetuximab in recurrent and/or metastatic salivary gland carcinomas: A phase II study. Oral Oncol. 2009, 45, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Yasumatsu, R.; Hashimoto, K.; Kuga, R.; Hongo, T.; Yamamoto, H.; Matsuo, M.; Wakasaki, T.; Jiromaru, R.; Manako, T.; et al. Retrospective Study of Cisplatin/Carboplatin, 5-Fluorouracil Plus Cetuximab (EXTREME) for Advanced-stage Salivary Gland Cancer. Vivo 2022, 36, 979–984. [Google Scholar] [CrossRef]
- Sato, R.; Yuasa, R.; Kumai, T.; Wakisaka, R.; Komatsuda, H.; Kono, M.; Yamaki, H.; Ishida, Y.; Wada, T.; Takahara, M.; et al. Efficacy of Cetuximab Combined with Paclitaxel in Patients with Recurrent Salivary Gland Carcinoma: A Retrospective Observational Study. ORL J. Otorhinolaryngol. Relat. Spec. 2023, 86, 41–49. [Google Scholar] [CrossRef]
- Makita, Y.; Kunii, N.; Sakurai, D.; Ihara, F.; Motohashi, S.; Suzuki, A.; Nakayama, T.; Okamoto, Y. Activated iNKT cells enhance the anti-tumor effect of antigen specific CD8 T cells on mesothelin-expressing salivary gland cancer. BMC Cancer 2018, 18, 1254. [Google Scholar] [CrossRef]
- Secondino, S.; Canino, C.; Alaimo, D.; Muzzana, M.; Galli, G.; Borgetto, S.; Basso, S.; Bagnarino, J.; Pulvirenti, C.; Comoli, P.; et al. Clinical Trials of Cellular Therapies in Solid Tumors. Cancers 2023, 15, 3667. [Google Scholar] [CrossRef]
- He, M.; Zhang, D.; Cao, Y.; Chi, C.; Zeng, Z.; Yang, X.; Yang, G.; Sharma, K.; Hu, K.; Enikeev, M. Chimeric antigen receptor-modified T cells therapy in prostate cancer: A comprehensive review on the current state and prospects. Heliyon 2023, 9, e19147. [Google Scholar] [CrossRef]
- Narayan, V.; Barber-Rotenberg, J.S.; Jung, I.Y.; Lacey, S.F.; Rech, A.J.; Davis, M.M.; Hwang, W.T.; Lal, P.; Carpenter, E.L.; Maude, S.L.; et al. PSMA-targeting TGFbeta-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: A phase 1 trial. Nat. Med. 2022, 28, 724–734. [Google Scholar] [CrossRef]
- Klein Nulent, T.J.W.; Valstar, M.H.; Smit, L.A.; Smeele, L.E.; Zuithoff, N.P.A.; de Keizer, B.; de Bree, R.; van Es, R.J.J.; Willems, S.M. Prostate-specific membrane antigen (PSMA) expression in adenoid cystic carcinoma of the head and neck. BMC Cancer 2020, 20, 519. [Google Scholar] [CrossRef]
- van Boxtel, W.; Lutje, S.; van Engen-van Grunsven, I.C.H.; Verhaegh, G.W.; Schalken, J.A.; Jonker, M.A.; Nagarajah, J.; Gotthardt, M.; van Herpen, C.M.L. 68Ga-PSMA-HBED-CC PET/CT imaging for adenoid cystic carcinoma and salivary duct carcinoma: A phase 2 imaging study. Theranostics 2020, 10, 2273–2283. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, M.; Zang, J.; Jiang, Y.; Chen, X.; Zhu, Z.; Chen, X. A pilot study of 68Ga-PSMA-617 PET/CT imaging and (177)Lu-EB-PSMA-617 radioligand therapy in patients with adenoid cystic carcinoma. EJNMMI Res 2022, 12, 52. [Google Scholar] [CrossRef]
- Klein Nulent, T.J.W.; van Es, R.J.J.; Willems, S.M.; Braat, A.; Devriese, L.A.; de Bree, R.; de Keizer, B. First experiences with (177)Lu-PSMA-617 therapy for recurrent or metastatic salivary gland cancer. EJNMMI Res. 2021, 11, 126. [Google Scholar] [CrossRef]
- Ahmed, N.; Brawley, V.; Hegde, M.; Bielamowicz, K.; Kalra, M.; Landi, D.; Robertson, C.; Gray, T.L.; Diouf, O.; Wakefield, A.; et al. HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial. JAMA Oncol. 2017, 3, 1094–1101. [Google Scholar] [CrossRef]
- Hein, K.Z.; Yao, S.; Fu, S. Wilms’ Tumor 1 (WT1): The Vaccine for Cancer. J. Immunother. Precis. Oncol. 2020, 3, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Shirakata, T.; Oka, Y.; Nishida, S.; Hosen, N.; Tsuboi, A.; Oji, Y.; Murao, A.; Tanaka, H.; Nakatsuka, S.; Inohara, H.; et al. WT1 peptide therapy for a patient with chemotherapy-resistant salivary gland cancer. Anticancer Res. 2012, 32, 1081–1085. [Google Scholar] [PubMed]
- Sasabe, E.; Hamada, F.; Iiyama, T.; Udaka, K.; Sugiyama, H.; Yamamoto, T. Wilm’s tumor gene WT1 peptide immunotherapy for pulmonary metastasis from adenoid cystic carcinoma of the salivary gland. Oral Oncol. 2011, 47, 77–78. [Google Scholar] [CrossRef]
- Ho, S.Y.; Chang, C.M.; Liao, H.N.; Chou, W.H.; Guo, C.L.; Yen, Y.; Nakamura, Y.; Chang, W.C. Current Trends in Neoantigen-Based Cancer Vaccines. Pharmaceuticals 2023, 16, 392. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Yang, B.; Sheng, W.; Zhou, Z.; Zhang, T.; Qin, B.; Ji, L.; Li, P.; Wang, D.; Zhang, X.; et al. Safety and efficacy of mutant neoantigen-specific T-cell treatment combined anti-PD-1 therapy in stage IV solid tumors. Immunotherapy 2022, 14, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017, 547, 217–221. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, S.; Han, N.; Jiang, J.; Xu, Y.; Ma, D.; Lu, L.; Guo, X.; Qiu, M.; Huang, Q.; et al. A Neoantigen-Based Peptide Vaccine for Patients with Advanced Pancreatic Cancer Refractory to Standard Treatment. Front. Immunol. 2021, 12, 691605. [Google Scholar] [CrossRef]
- Ichimiya, S.; Fujimura, A.; Masuda, M.; Masuda, S.; Yasumatsu, R.; Umebayashi, M.; Tanaka, H.; Koya, N.; Nakagawa, S.; Yew, P.Y.; et al. Contribution of pre-existing neoantigen-specific T cells to a durable complete response after tumor-pulsed dendritic cell vaccine plus nivolumab therapy in a patient with metastatic salivary duct carcinoma. Immunol. Investig. 2022, 51, 1498–1514. [Google Scholar] [CrossRef]
- Zhu, J.; Fang, P.; Wang, C.; Gu, M.; Pan, B.; Guo, W.; Yang, X.; Wang, B. The immunomodulatory activity of lenvatinib prompts the survival of patients with advanced hepatocellular carcinoma. Cancer Med. 2021, 10, 7977–7987. [Google Scholar] [CrossRef]
- Kato, Y.; Tabata, K.; Kimura, T.; Yachie-Kinoshita, A.; Ozawa, Y.; Yamada, K.; Ito, J.; Tachino, S.; Hori, Y.; Matsuki, M.; et al. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS ONE 2019, 14, e0212513. [Google Scholar] [CrossRef]
- Nishimura, H.; Jin, D.; Kinoshita, I.; Taniuchi, M.; Higashino, M.; Terada, T.; Takai, S.; Kawata, R. Increased Chymase-Positive Mast Cells in High-Grade Mucoepidermoid Carcinoma of the Parotid Gland. Int. J. Mol. Sci. 2023, 24, 8267. [Google Scholar] [CrossRef]
- Xiao, C.; Pan, Y.; Zeng, X.; Wang, L.; Li, Z.; Yan, S.; Wang, H. Downregulation of hypoxia-inducible factor-1alpha inhibits growth, invasion, and angiogenesis of human salivary adenoid cystic carcinoma cells under hypoxia. Oncol. Rep. 2018, 40, 1675–1683. [Google Scholar] [CrossRef] [PubMed]
- Colton, M.; Cheadle, E.J.; Honeychurch, J.; Illidge, T.M. Reprogramming the tumour microenvironment by radiotherapy: Implications for radiotherapy and immunotherapy combinations. Radiat. Oncol. 2020, 15, 254. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Pang, X.; Zhu, X.; Shanzhou, Q.; Wen, G.; Ma, D. Low-dose radiotherapy combined with immunotherapy for suboral adenoid cystic carcinoma with bilateral lung metastasis: A case report and literature review. Oncol. Lett. 2022, 24, 279. [Google Scholar] [PubMed]
- Jeske, S.S.; Weissinger, S.E.; Veit, J.A.; Brunner, C.; Huber, U.; Theodoraki, M.N.; Hoffmann, T.K.; Schuler, P.J.; Doescher, J. Treatment-induced changes of lymphocyte subsets in patients with adenoid cystic carcinoma of the head and neck. Eur. Arch. Otorhinolaryngol. 2019, 276, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Franks, S.E.; Santiago-Sanchez, G.S.; Fabian, K.P.; Solocinski, K.; Chariou, P.L.; Hamilton, D.H.; Kowalczyk, J.T.; Padget, M.R.; Gameiro, S.R.; Schlom, J.; et al. Exploiting docetaxel-induced tumor cell necrosis with tumor targeted delivery of IL-12. Cancer Immunol. Immunother. 2023, 72, 2783–2797. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Xu, W.; Guan, R.; Wang, Y.; Wu, J.; Zhai, L.; Chen, G.; Hu, S. Adjuvant effect of docetaxel on HPV16 L2E6E7 fusion protein vaccine in a mouse model. Int. Immunopharmacol. 2016, 38, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Harrop, R.; Chu, F.; Gabrail, N.; Srinivas, S.; Blount, D.; Ferrari, A. Vaccination of castration-resistant prostate cancer patients with TroVax (MVA-5T4) in combination with docetaxel: A randomized phase II trial. Cancer Immunol. Immunother. 2013, 62, 1511–1520. [Google Scholar] [CrossRef]
- Kumai, T.; Lee, S.; Cho, H.I.; Sultan, H.; Kobayashi, H.; Harabuchi, Y.; Celis, E. Optimization of Peptide Vaccines to Induce Robust Antitumor CD4 T-cell Responses. Cancer Immunol. Res. 2017, 5, 72–83. [Google Scholar] [CrossRef]
No. | Author | PD-L1 Scoring | Cut Off | SDC | Adenocarcinoma-NOS | MEC | AdCC | ACC | Others | Total |
---|---|---|---|---|---|---|---|---|---|---|
1 | Mukaigawa et al., 2016 [55] | TC | ≥1% | 15/31 (48%) | 4/11 (36%) | 3/34 (9%) | 1/53 (2%) | 0/18 (0%) | 9/28 (32%) | 50/219 (23%) |
IC | ≥1% | 9/31 (29%) | 2/11 (18%) | 2/34 (6%) | 0/53 (0%) | 1/18 (6%) | 6/28 (21%) | 28/219 (13%) | ||
2 | Sridharan et al., 2016 [38] | TC | ≥5% | 0/21 (0%) | 0/21 (0%) | |||||
3 | Haderlein et al., 2017 [56] | CPS | ≥5 | 11/50 (22%) | 11/50 (22%) | |||||
4 | Chang et al., 2017 [57] | H-score | ≥1 | 5/11 (45%) | 7/27 (26%) | 4/15 (27%) | 16/53 (30%) | |||
5 | Harada et al., 2018 [58] | TC | ≥5% | 5/9 (56%) | 7/11 (64%) | 11/25 (44%) | 1/2 (50%) | 24/47 (51%) | ||
6 | Szewczyk et al., 2019 [59] | TC | ≥5% | 1/16 (6%) | 1/13 (8%) | 3/16 (19%) | 10/33 (30%) | 0/15 (0%) | 0/9 (0%) | 20/115 (17%) |
IC | ≥5% | 2/16 (13%) | 0/13 (0%) | 1/16 (6%) | 0/33 (0%) | 0/15 (0%) | 0/9 (0%) | 3/115 (3%) | ||
7 | Nakano et al., 2019 [60] | TC | ≥1% | 4/8 (50%) | 4/7 (57%) | 0/11 (0%) | 1/4 (25%) | 11/32 (34%) | ||
8 | Vital et al., 2019 [61] | TC | ≥1% | 3/10 (30%) | 2/12 (17%) | 9/36 (25%) | 3/36 (8%) | 7/37 (19%) | 28/161 (17%) | |
9 | Mosconi et al., 2019 [37] | TC | ≥10% | 0/36 (0%) | 0/36 (0%) | |||||
10 | Hamza et al., 2019 [62] | TC | ≥1% | 29/113 (26%) | 29/113 (26%) | |||||
11 | Gargano et al., 2019 [63] | TC | ≥1% | 5/28 (18%) | 5/28 (18%) | |||||
12 | Xu et al., 2019 [31] | CPS | ≥1 | 20/36 (56%) | 15/17 (88%) | 35/53 (66%) | ||||
13 | Kesar et al., 2020 [64] | TC | ≥5% | 6/26 (23%) | 2/10 (20%) | 0/16 (0%) | 1/7 (14%) | 4/8 (50%) | 13/67 (19%) | |
14 | Witte et al., 2020 [65] | TC | ≥1% | 1/1 (100%) | 12/12 (100%) | 11/21 (52%) | 16/41 (39%) | 13/16 (81%) | 3/3 (100%) | 61/94 (65%) |
IC | ≥5% | 1/1 (100%) | 8/12 (66%) | 7/21 (33%) | 7/41 (17%) | 2/16 (13%) | 0/1 (0%) | 25/92 (27%) | ||
CPS | ≥1 | 1/1 (100%) | 12/12 (100%) | 15/21 (71%) | 10/41 (24%) | 10/16 (63%) | 2/3 (67%) | 75/94 (80%) | ||
15 | Higashino et al., 2020 [66] | TC | ≥1% | 6/10 (60%) | 0/1 (0%) | 10/33 (30%) | 1/17 (6%) | 5/19 (26%) | 14/34 (41%) | 36/127 (28%) |
16 | Chatzopoulos et al., 2020 [67] | CPS | ≥1 | 13/32 (41%) | 13/32 (41%) | |||||
17 | Guazzo et al., 2021 [68] | CPS | ≥1 | 5/14 (36%) | 2/11 (18%) | 0/17 (0%) | 0/6 (0%) | 7/48 (15%) | ||
18 | Sato et al., 2021 [69] | TC | ≥1% | 5/8 (63%) | 2/4 (50%) | 8/20 (40%) | 2/13 (15%) | 2/7 (29%) | 5/10 (50%) | 24/62 (39%) |
IC | ≥1% | 7/8 (88%) | 4/4 (100%) | 12/20 (60%) | 2/13 (15%) | 6/7 (86%) | 35/62 (56%) | |||
CPS | ≥1 | 7/8 (88%) | 4/4 (100%) | 12/20 (60%) | 3/13 (20%) | 6/7 (86%) | 37/62 (60%) | |||
19 | Schvartsman et al., 2021 [70] | TC | ≥1% | 9/17 (53%) | 9/17 (53%) | |||||
20 | Dou et al., 2021 [41] | TC | ≥1% | 17/62 (27%) | 17/62 (27%) | |||||
21 | Chen et al., 2021 [40] | TC | ≥1% | 0/16 (0%) | 0/16 (0%) | |||||
22 | Fang et al., 2021 [71] | TC | ≥1% | 14/33 (42%) | 8/15 (53%) | 19/47 (40%) | 41/95 (43%) | |||
IC | ≥1% | 13/33 (39%) | 7/15 (47%) | 21/47(45%) | 41/95 (43%) | |||||
CPS | ≥1 | 25/33 (76%) | 12/15 (80%) | 38/47 (81%) | 75/95 (79%) | |||||
23 | Vos et al., 2023 [72] | TC | ≥1% | 1/6 (33%) | 0/2 (0%) | 2/25 (8%) | 2/4 (50%) | 2/10 (20%) | 7/47 (15%) | |
24 | Hirai et al., 2023 [28] | TC | ≥1% | 32/175 (18%) | 32/175 (18%) | |||||
CPS | ≥1 | 93/175 (53%) | 93/175 (53%) | |||||||
25 | Michaelides et al., 2023 [39] | CPS | ≥5 | 0/12 (0%) | 0/12 (0%) | |||||
26 | Zerdan et al., 2023 [73] | TC | ≥1% | 31/118 (26%) | 31/118 (26%) |
No. | Author | Number of Cases | Types of SGCs | Treatment Regimens | ORR | CBR | Median OS (M) | Median PFS (M) |
---|---|---|---|---|---|---|---|---|
1 | Fayette et al., 2019 [78] | 98 | Total | Nivolumab | 4.6% | 53.2% | 21.1 | - |
46 | AdCC | 8.7% | 33.3% | 18.1 | - | |||
52 | Non AdCC | 3.8% | 14.0% | 9.5 | - | |||
2 | Niwa et al., 2020 [80] | 24 | Any | Nivolumab | 4.2% | 12.5% | - | - |
3 | Hanai et al., 2021 [82] | 22 | Any | Nivolumab | 13.6% | - | NR | 2.1 |
4 | Ueda et al., 2022 [12] | 12 | Any | Nivolumab | 25.0% | - | 16.2 | - |
5 | Cohen et al., 2018 [79] | 26 | PD-L1 positive SGC | Pembrolizumab | 11.5% | 23.0% | 13 | 4.0 |
6 | Mahmood et al., 2020 [13] | 10 | Any | Pembrolizumab | 0% | 70.0% | 27.2 | 6.6 |
10 | Any | Pembrolizumab + RT | 0% | 50.0% | NR | 4.5 | ||
7 | Even et al., 2022 [83] | 105 | Total | Pembrolizumab | 4.0% | 54.1% | 21.1 | 4.0 |
28 | PD-L1 positive SGC | 10.7% | 42.8% | - | - | |||
77 | PD-L1 negative SGC | 2.6% | 58.4% | - | - | |||
8 | Sato et al., 2022 [11] | 12 | Any | Nivolumab or Pembrolizumab | 33.3% | 33.3% | 13.5 | 4.0 |
9 | Patel et al., 2021 [54] | 26 | AdCC | Nivolumab + Ipilimumab | 4.0% | - | 12.0 | - |
35 | Non AdCC | 9.0% | - | NR | - | |||
10 | Vos et al., 2023 [72] | 32 | AdCC | Nivolumab + Ipilimumab | 6.3% | 34.4% | 19.3 | 4.4 |
32 | Non AdCC | 16.0% | 18.8% | 2.2 | 2.2 | |||
11 | Rodriguez et al., 2020 [81] | 25 | Any | Pembrolizumab + Vorinostat | 16.0% | 72.0% | 14.0 | 6.9 |
12 | Rodriguez et al., 2023 [84] | 20 | Any | Nivolumab + Ipilimumab + RT | 20.0% | 50.0% | 25.0 | 7.2 |
13 | Mohamadpour et al., 2023 [85] | 17 | AdCC | Pembrolizumab + Lenvatinib | 6.0% | 82.0% | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, R.; Yamaki, H.; Komatsuda, H.; Wakisaka, R.; Inoue, T.; Kumai, T.; Takahara, M. Exploring Immunological Effects and Novel Immune Adjuvants in Immunotherapy for Salivary Gland Cancers. Cancers 2024, 16, 1205. https://doi.org/10.3390/cancers16061205
Sato R, Yamaki H, Komatsuda H, Wakisaka R, Inoue T, Kumai T, Takahara M. Exploring Immunological Effects and Novel Immune Adjuvants in Immunotherapy for Salivary Gland Cancers. Cancers. 2024; 16(6):1205. https://doi.org/10.3390/cancers16061205
Chicago/Turabian StyleSato, Ryosuke, Hidekiyo Yamaki, Hiroki Komatsuda, Risa Wakisaka, Takahiro Inoue, Takumi Kumai, and Miki Takahara. 2024. "Exploring Immunological Effects and Novel Immune Adjuvants in Immunotherapy for Salivary Gland Cancers" Cancers 16, no. 6: 1205. https://doi.org/10.3390/cancers16061205
APA StyleSato, R., Yamaki, H., Komatsuda, H., Wakisaka, R., Inoue, T., Kumai, T., & Takahara, M. (2024). Exploring Immunological Effects and Novel Immune Adjuvants in Immunotherapy for Salivary Gland Cancers. Cancers, 16(6), 1205. https://doi.org/10.3390/cancers16061205