Efficacy of NSCLC Rechallenge with Immune Checkpoint Inhibitors following Disease Progression or Relapse
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Primary versus Acquired Resistance
1.2. Oligo versus Systemic Acquired Resistance
2. Methods
3. Discussion
3.1. Retrospective Rw Data
3.1.1. Cohorts of Patients Who Discontinued Initial IO Due to PD
Fujita et al., 2018 [17]
Fujita et al., 2020 [20]
Watanabe et al., 2019 [18]
Katayama et al., 2019 [19]
Xu et al., 2022 [21]
3.1.2. Cohorts of Patients Who Discontinued Initial IO Due to PD, Toxicity, or Physician Decision
Gettinger et al., 2018 [27]
Niki et al., 2018 [22]
Kitagawa et al., 2020 [23]
Gobbini et al., 2020 [24]
Furuya et al., 2021 [25]
Ito et al., 2021 [26]
Takahara et al., 2022 [29]
Levra et al., 2019 [30]
3.1.3. Overview
3.2. Post Hoc Analyses of Clinical Trials
3.2.1. KEYNOTE 042
3.2.2. KEYNOTE 024
3.2.3. KEYNOTE 010
3.2.4. Overview
3.3. Phase-II Trial of Nivolumab Retreatment for Patients with NSCLC [28]
3.4. Ongoing Clinical Trials
3.5. Biological Rationale—The Example of Melanoma
4. Conclusions
5. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Kazandjian, D.; Suzman, D.L.; Blumenthal, G.; Mushti, S.; He, K.; Libeg, M.; Keegan, P.; Pazdur, R. FDA Approval Summary: Nivolumab for the Treatment of Metastatic Non-Small Cell Lung Cancer with Progression on or After Platinum-Based Chemotherapy. Oncologist 2016, 21, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Horn, L.; Borghaei, H.; Spigel, D.R.; Steins, M.; Ready, N.; Chow, L.Q.M.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Phase III, randomized trial (CheckMate 057) of nivolumab (NIVO) versus docetaxel (DOC) in advanced non-squamous cell (non-SQ) non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2015, 33 (Suppl. S18), LBA109. [Google Scholar] [CrossRef]
- Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; D’Amico, T.A.; et al. NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 2.2021. J. Nat. Compr. Cancer Netw. JNCCN 2021, 19, 254–266. [Google Scholar] [CrossRef]
- O’Reilly, D.; Botticella, A.; Barry, S.; Cotter, S.; Donington, J.S.; Le Pechoux, C.; Naidoo, J. Treatment Decisions for Resectable Non-Small-Cell Lung Cancer: Balancing Less with More? Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e389950. [Google Scholar] [CrossRef]
- Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; DeCamp, M.; et al. NCCN Guidelines® Insights: Non–Small Cell Lung Cancer, Version 2.2023: Featured Updates to the NCCN Guidelines. J. Nat. Compr. Cancer Netw. 2023, 21, 340–350. [Google Scholar] [CrossRef] [PubMed]
- de Castro, G.; Kudaba, I.; Wu, Y.-L.; Lopes, G.; Kowalski, D.M.; Turna, H.Z.; Caglevic, C.; Zhang, L.; Karaszewska, B.; Laktionov, K.K.; et al. Five-Year Outcomes with Pembrolizumab Versus Chemotherapy as First-Line Therapy in Patients with Non–Small-Cell Lung Cancer and Programmed Death Ligand-1 Tumor Proportion Score ≥ 1% in the KEYNOTE-042 Study. J. Clin. Oncol. 2023, 41, 1986–1991. [Google Scholar] [CrossRef]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Five-Year Outcomes with Pembrolizumab Versus Chemotherapy for Metastatic Non–Small-Cell Lung Cancer with PD-L1 Tumor Proportion Score ≥ 50%. J. Clin. Oncol. 2021, 39, 2339–2349. [Google Scholar] [CrossRef]
- Schoenfeld, A.J.; Hellmann, M.D. Acquired Resistance to Immune Checkpoint Inhibitors. Cancer Cell 2020, 37, 443–455. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Kuczynski, E.A.; Sargent, D.J.; Grothey, A.; Kerbel, R.S. Drug rechallenge and treatment beyond progression—Implications for drug resistance. Nat. Rev. Clin. Oncol. 2013, 10, 571–587. [Google Scholar] [CrossRef]
- Riaz, N.; Havel, J.J.; Makarov, V.; Desrichard, A.; Urba, W.J.; Sims, J.S.; Hodi, F.S.; Martín-Algarra, S.; Mandal, R.; Sharfman, W.H.; et al. Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab. Cell 2017, 171, 934–949.e16. [Google Scholar] [CrossRef]
- Schoenfeld, A.J.; Antonia, S.J.; Awad, M.M.; Felip, E.; Gainor, J.; Gettinger, S.N.; Hodi, F.S.; Johnson, M.L.; Leighl, N.B.; Lovly, C.M.; et al. Clinical definition of acquired resistance to immunotherapy in patients with metastatic non-small-cell lung cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2021, 32, 1597–1607. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, A.J.; Rizvi, H.A.; Memon, D.; Shaverdian, N.; Bott, M.J.; Sauter, J.L.; Tsai, C.J.; Lihm, J.; Hoyos, D.; Plodkowski, A.J.; et al. Systemic and Oligo-Acquired Resistance to PD-(L)1 Blockade in Lung Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2022, 28, 3797–3803. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Zhan, P.; Song, Y.; Liu, H.; Lv, T. Safety and efficacy of retreatment with immune checkpoint inhibitors in non-small cell lung cancer: A systematic review and meta-analysis. Transl. Lung Cancer Res. 2022, 11, 1555–1566. [Google Scholar] [CrossRef]
- Feng, Y.; Tao, Y.; Chen, H.; Zhou, Y.; Tang, L.; Liu, C.; Hu, X.; Shi, Y. Efficacy and safety of immune checkpoint inhibitor rechallenge in non-small cell lung cancer: A systematic review and meta-analysis. Thorac. Cancer 2023, 14, 2536–2547. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Uchida, N.; Kanai, O.; Okamura, M.; Nakatani, K.; Mio, T. Retreatment with pembrolizumab in advanced non-small cell lung cancer patients previously treated with nivolumab: Emerging reports of 12 cases. Cancer Chemother. Pharmacol. 2018, 81, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Kubo, T.; Ninomiya, K.; Kudo, K.; Minami, D.; Murakami, E.; Ochi, N.; Ninomiya, T.; Harada, D.; Yasugi, M.; et al. The effect and safety of immune checkpoint inhibitor rechallenge in non-small cell lung cancer. Jpn. J. Clin. Oncol. 2019, 49, 762–765. [Google Scholar] [CrossRef]
- Katayama, Y.; Shimamoto, T.; Yamada, T.; Takeda, T.; Yamada, T.; Shiotsu, S.; Chihara, Y.; Hiranuma, O.; Iwasaku, M.; Kaneko, Y.; et al. Retrospective Efficacy Analysis of Immune Checkpoint Inhibitor Rechallenge in Patients with Non-Small Cell Lung Cancer. J. Clin. Med. 2019, 9, 102. [Google Scholar] [CrossRef]
- Fujita, K.; Yamamoto, Y.; Kanai, O.; Okamura, M.; Hashimoto, M.; Nakatani, K.; Sawai, S.; Mio, T. Retreatment with anti-PD-1 antibody in non-small cell lung cancer patients previously treated with anti-PD-L1 antibody. Thorac. Cancer 2020, 11, 15–18. [Google Scholar] [CrossRef]
- Xu, Z.; Hao, X.; Yang, K.; Wang, Q.; Wang, J.; Lin, L.; Teng, F.; Li, J.; Xing, P. Immune checkpoint inhibitor rechallenge in advanced or metastatic non-small cell lung cancer: A retrospective cohort study. J. Cancer Res. Clin. Oncol. 2022, 148, 3081–3089. [Google Scholar] [CrossRef] [PubMed]
- Niki, M.; Nakaya, A.; Kurata, T.; Yoshioka, H.; Kaneda, T.; Kibata, K.; Ogata, M.; Nomura, S. Immune checkpoint inhibitor re-challenge in patients with advanced non-small cell lung cancer. Oncotarget 2018, 9, 32298–32304. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, S.; Hakozaki, T.; Kitadai, R.; Hosomi, Y. Switching administration of anti-PD-1 and anti-PD-L1 antibodies as immune checkpoint inhibitor rechallenge in individuals with advanced non-small cell lung cancer: Case series and literature review. Thorac. Cancer 2020, 11, 1927–1933. [Google Scholar] [CrossRef] [PubMed]
- Gobbini, E.; Toffart, A.C.; Pérol, M.; Assié, J.-B.; Duruisseaux, M.; Coupez, D.; Dubos, C.; Westeel, V.; Delaunay, M.; Guisier, F.; et al. Immune Checkpoint Inhibitors Rechallenge Efficacy in Non-Small-Cell Lung Cancer Patients. Clin. Lung Cancer 2020, 21, e497–e510. [Google Scholar] [CrossRef]
- Furuya, N.; Nishino, M.; Wakuda, K.; Ikeda, S.; Sato, T.; Ushio, R.; Tanzawa, S.; Sata, M.; Ito, K. Real-world efficacy of atezolizumab in non-small cell lung cancer: A multicenter cohort study focused on performance status and retreatment after failure of anti-PD-1 antibody. Thorac. Cancer 2021, 12, 613–618. [Google Scholar] [CrossRef]
- Ito, S.; Asahina, H.; Honjo, O.; Tanaka, H.; Honda, R.; Oizumi, S.; Nakamura, K.; Takamura, K.; Hommura, F.; Kawai, Y.; et al. Prognostic factors in patients with advanced non-small cell lung cancer after long-term Anti-PD-1 therapy (HOT1902). Lung Cancer 2021, 156, 12–19. [Google Scholar] [CrossRef]
- Gettinger, S.N.; Wurtz, A.; Goldberg, S.B.; Rimm, D.; Schalper, K.; Kaech, S.; Kavathas, P.; Chiang, A.; Lilenbaum, R.; Zelterman, D.; et al. Clinical Features and Management of Acquired Resistance to PD-1 Axis Inhibitors in 26 Patients with Advanced Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 831–839. [Google Scholar] [CrossRef]
- Akamatsu, H.; Teraoka, S.; Takamori, S.; Miura, S.; Hayashi, H.; Hata, A.; Toi, Y.; Shiraishi, Y.; Mamesaya, N.; Sato, Y.; et al. Nivolumab Retreatment in Non-Small Cell Lung Cancer Patients Who Responded to Prior Immune Checkpoint Inhibitors and Had ICI-Free Intervals (WJOG9616L). Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2022, 28, OF1–OF7. [Google Scholar] [CrossRef]
- Takahara, Y.; Tanaka, T.; Ishige, Y.; Shionoya, I.; Yamamura, K.; Sakuma, T.; Nishiki, K.; Nakase, K.; Nojiri, M.; Kato, R.; et al. Efficacy and predictors of rechallenge with immune checkpoint inhibitors in non-small cell lung cancer. Thorac. Cancer 2022, 13, 624–630. [Google Scholar] [CrossRef]
- Giaj Levra, M.; Cotté, F.-E.; Corre, R.; Calvet, C.; Gaudin, A.-F.; Penrod, J.R.; Grumberg, V.; Jouaneton, B.; Jolivel, R.; Assié, J.-B.; et al. Immunotherapy rechallenge after nivolumab treatment in advanced non-small cell lung cancer in the real-world setting: A national data base analysis. Lung Cancer 2020, 140, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, D.; Kim, M.; Lee, Y.; Ahn, H.K.; Cho, J.H.; Kim, I.H.; Lee, Y.; Shin, S.; Park, S.E.; et al. Long-term outcomes in patients with advanced and/or metastatic non–small cell lung cancer who completed 2 years of immune checkpoint inhibitors or achieved a durable response after discontinuation without disease progression: Multicenter, real-world data (KCSG LU20-11). Cancer 2022, 128, 778–787. [Google Scholar] [CrossRef]
- Herbst, R.S.; Garon, E.B.; Kim, D.-W.; Cho, B.C.; Gervais, R.; Perez-Gracia, J.L.; Han, J.-Y.; Majem, M.; Forster, M.D.; Monnet, I.; et al. Five Year Survival Update From KEYNOTE-010: Pembrolizumab Versus Docetaxel for Previously Treated, Programmed Death-Ligand 1-Positive Advanced NSCLC. J. Thorac. Oncol. 2021, 16, 1718–1732. [Google Scholar] [CrossRef]
- O’Donnell, J.S.; Teng, M.W.L.; Smyth, M.J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 2019, 16, 151–167. [Google Scholar] [CrossRef]
- Rodríguez-Ruiz, M.E.; Vanpouille-Box, C.; Melero, I.; Formenti, S.C.; Demaria, S. Immunological Mechanisms Responsible for Radiation-Induced Abscopal Effect. Trends Immunol. 2018, 39, 644–655. [Google Scholar] [CrossRef]
Study | Fujita et al., 2018 [17] | Watanabe et al., 2019 [18] | Katayama et al., 2019 [19] | Fujita et al., 2020 [20] | Xu et al., 2022 [21] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No of patients | 12 | 14 | 35 | 15 | 40 | ||||||
Discontinuation reason * | PD | PD | PD | PD | PD | ||||||
IO course | 1st course | Rechallenge | 1st course | Rechallenge | 1st course | Rechallenge | 1st course | Rechallenge | 1st course | Rechallenge | |
Agent used | Anti-PD-1 | Anti-PD-1 | Anti-PD (L)-1 | Anti-PD-1 | Anti-PD (L)-1 | Anti-PD (L)-1 | Anti-PD-L1 | Anti-PD-1 | Anti-PD-1 ± Chemo ± anti-angio | Anti-PD (L)-1 ± Chemo ± anti-angio | |
Nivolumab, N (%) | 12 (100) | 12 (100) | 11 (78.6) | 9 (64.3) | 19 (54.3) | 7 (20.0) | 0 (0) | 8 (53.3) | NR | NR | |
Pembrolizumab, N (%) | 0 (0) | 0 (0) | 1 (7.1) | 5 (35.7) | 12 (34.3) | 5 (14.3) | 0 (0) | 7 (46.7) | NR | NR | |
Atezolizumab, N (%) | 0 (0) | 0 (0) | 2 (14.3) | 0 (0) | 4 (11.4) | 23 (65.7) | 14 (93.3) | 0 (0) | NR | NR | |
Durvalumab, N (%) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (6.7) | 0 (0) | NR | NR | |
Immunotherapy-free interval | NR | NR | 5.2 (3.5–7.9) | NR | NR | ||||||
Line of treatment, Median (Range) | 3 (2–5) | NR | NR | NR | 3 (1–15) | 4 (2–19) | NR | NR | 1 (1–NR) | 2 (2–NR) | |
No of cycles, Median (Range) | 12.5 (2–32) | 3.5 (1–17) | NR | NR | NR | NR | 5 (1–15) | Nivolumab: 4 (1–7) Pembrolizumab: (1–14) | NR | NR | |
PFS [Median (95% CI)], months | 6.2 (2.8–13.7) | 3.1 (1.2–12.6) | 3.7 (1.3–7.1) | 1.6 (0.8–2.6) | 4 (3–4.6) | 2.7 (1.4–3.7) | Atezolizumab: 2.8 Durvalumab: 6.0 | Nivolumab: 1.9 (0.4–3.0) Pembrolizumab: 2.8 (0.47–13.4) | 5.7 (4.1–7.2) | 6.8 (5.8–7.8) | |
ORR, N (%) | 7 (58.3) | 1 (8.3) | 3 (21.4) | 1 (7.1) | 12 (34.3) | 1 (2.9) | 0 (0) | 0 (0) | 14 (35) | 9 (22.5) | |
DCR, N (%) | 9 (75) | 5 (41.6) | 8 (57.1) | 3 (21.4) | 24 (68.6) | 15 (43.0) | 4 (28.6) | Nivolumab: 1/7 (14.3) Pembrolizumab: 3/8 (37.5) | 33 (83) | 34 (85.0) | |
BOR | |||||||||||
CR | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
PR | 7 (58.3) | 1 (8.3) | 3 (21.4) | 1 (7.1) | 12 (34.3) | 1 (2.9) | 0 (0) | 0 (0) | 14 (35) | 9 (22.5) | |
SD | 2 (16.7) | 4 (33.3) | 5 (35.7) | 2 (14.3) | 12 (34.3) | 14 (40.0) | 4 (28.6) | Nivolumab: 1/7 (14.3) Pembrolizumab: 3/8 (37.5) | 19 (48) | 25 (62.5) | |
PD | 3 (25) | 6 (50.0) | 6 (42.9) | 11 (78.6) | 10 (28.6) | 18 (51.4) | 9 (64.3) | Nivolumab: 5/7 (71.4) Pembrolizumab: 4/8 (50.0) | 7 (18) | 6 (15.0) |
Study | Niki et al., 2018 [22] | Kitagawa et al., 2020 [23] | Gobbini et al., 2020 [24] | Furuya et al., 2021 [25] | Ito et al., 2021 [26] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No of patients | 11 | 17 | 144 | 38 | 37 | ||||||
Discontinuation reason | NR | PD, Toxicity | PD, Toxicity, Physician decision | PD, Toxicity, Physician decision | Mixed | ||||||
IO course | 1st course | Rechallenge | 1st course | Rechallenge | 1st course | Rechallenge | 1st course | Rechallenge | 1st course | Rechallenge | |
Agent used | Anti-PD-1 | Anti-PD-1 | Anti-PD-1 | Anti-PD-L1 | Anti-PD (L)-1 | Anti-PD (L)-1 | Anti-PD-1 | Anti-PD-L1 | Anti-PD-1 | Anti-PD (L)-1 | |
Nivolumab, N (%) | 11 (100) | 1 (9.1) | 11 (64.7) | 2 (11.8) | NR | NR | 29 (76.3) | 0 (0) | NR | 10 | |
Pembrolizumab, N (%) | 0 (0) | 10 (90.9) | 4 (23.5) | 0 (0) | NR | NR | 8 (21.1) | 0 (0) | NR | 11 | |
Atezolizumab, N (%) | 0 (0) | 0 (0) | 2 (11.8) | 15 (88.2) | NR | NR | 0 (0) | 38 (100) | 0 (0) | 16 | |
Durvalumab, N (%) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | NR | NR | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Immunotherapy-free interval | 4.2 (1.0–12.7) months. | NR | NR | NR | NR | ||||||
Line of treatment, Median (Range) | 5 (3–8) | NR | 2 (1–4) | 3 (2–9) | 2 (1–(>3)) | 3 (1–(>3)) | NR | NR | NR | NR | |
PFS [Median (95% CI)], months | 4.9 (0.7–18.2) | 2.7 (0.5–16.1) | 9.7 (0.7–34.9) | 4.0 (0.4–8.0) | 13 (10–16.5) | 4.4 (3–6.5) | NR | NR | NR | 2.2 (1.5–4.3) | |
ORR, N (%) | 5 (45) | 3 (27.2) | 6 (35.3) | 1 (5.9) | 50 | 16 | 8 (21.1) | 1 (2.6) | 22 (59.5) | NR | |
DCR, N (%) | 7 (63) | 5 (45.5) | 9 (52.9) | 10 (58.8) | 76 | 47 | 24 (63.2) | 13 (34.2) | 31 (83.8) | NR | |
BOR | |||||||||||
CR | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 10 (7) | 5 (3) | 0 (0) | 0 (0) | 1 (0.03) | NR | |
PR | 5 (45) | 3 (27.2) | 6 (35.3) | 1 (5.9) | 61 (43) | 18 (13) | 8 (21.1) | 1 (2.6) | 21 (56.8) | NR | |
SD | 2 (18.2) | 2 (18.2) | 9 (52.9) | 9 (52.9) | 38 (26) | 45 (31) | 16 (42.1) | 12 (31.6) | 9 (24.3) | NR | |
PD | 4 (36.4) | 6 (54.5) | 2 (11.8) | 7 (41.2) | 26 (18) | 54 (38) | 11 (29.9) | 19 (50) | 6 (16.2) | NR |
Trial Name (Line) | KEYNOTE 042 (First) | KEYNOTE 024 (First) | KEYNOTE 010 (Second) | |
---|---|---|---|---|
Population *1 (selection) | 1274 (PD-L1 ≥ 1%) | 305 (PD-L1 ≥ 50%) | 1033 (PD-L1 ≥ 1%) | |
Arms | (1) Pem200 mg Q3w (2) Chemo | (1) Pem200 mg Q3w, (2) Chemo | (1) Pem2 mg/kg Q2w (2) Pem10 mg/kg Q2w (3) Doce 75 mg/m2 Q3w | |
ORR-1, N (%) | ||||
Total population | 174 (27.3) (95% CI, 23.9 to 31.0) | 71 (46.1) (95% CI, 38.1 to 54.3) | Pem2 mg/kg: 62 (18) Pem10 mg/kg: 64 (18) | |
PD-L1 TPS ≥ 50% | 117 (39.1) (95% CI, 33.6 to 44.9) | 71 (46.1) (95% CI, 38.1 to 54.3) | Pem2 mg/kg: 42 (30) Pem10 mg/kg: 44 (29) | |
DCR-1, N (%) | 420 (65.9) for PD-L1 TPS ≥ 1% 206 (68.9) for PD-L1 TPS ≥ 50%. | 106 (68.8) | NR | |
Second course ICI | ||||
N out of intention-to-treat ICI patients | 33 of 637 | 12 of 154 | 21 of 690 | |
N out of patients who completed ICI treatment | 33 of 102 | 12 of 39 | 21 of 79 | |
Data cutoff [Median (Range)], months | 63.7 (52.0–75.2) from randomization | 34.7 months (31.2–44.1) from completion of first ICI course *2 | 68.1 (60.5–74.5) from randomization | |
ORR-R, N (%) | 5 (15.2) | 4 (33.3) | 11 (52.3) | |
DCR-R, N (%) | 25 (75.8) | 10 (83.3) | 17 (81.0) | |
BOR-R | ||||
CR, N (%) | 0 (0.0) | 0 (0.0) | 1 (4.8) | |
PR, N (%) | 5 (15.2) | 4 (33.3) | 10 (47.6) | |
SD, N (%) | 20 (60.6) | 6 (50) | 6 (28.6) | |
PD, N (%) | 3 (9.1) | 1 (8.3) | 3 (14.3) | |
PD by data cutoff, N (%) | 15 (45. | 3 (25) | 11 (52.3) | |
Death by data cutoff, N (%) | 11 (33.3) | 4 (33.3) | 6 (28.6) | |
AEs (No of patients, %) | NR | 5 (41.7) | 10 (47.6) |
NCT Number | Cancer Type | Rechallenge ICI Regimen | Phase | Primary Outcome |
---|---|---|---|---|
NCT03976375 | NSCLC | Pembrolizumab + Lenvatinib | III | OS, PFS |
NCT05450692 | NSCLC | Durvalumab + Ceralasertib | III | OS |
NCT05941897 | NSCLC | Durvalumab + Ceralasertib | II | ORR |
NCT03334617 | NSCLC | Durvalumab + Olaparib/AZD9150/Ceralasertib/Vistusertib/Oleclumab/Trastuzumab Deruxtecan/Cediranib | II | ORR |
NCT03833440 | NSCLC | Durvalumab + Monalizumab/Oleclumab/Ceralasertib/ Savolitinib | II | 12-week DCR |
NCT05007769 | NSCLC | Atezolizumab + N-803 + Ramucirumab | II | ORR |
NCT03977467 | NSCLC | Atezolizumab + Tiragolumab/Chemotherapy | II | ORR |
NCT05781308 | NSCLC | Atezolizumab + Paclitaxel + Bevacizumab | II | 6-month PFS |
NCT03600701 | NSCLC | Atezolizumab + Cobimetinib | II | Durable Response Rate |
NCT04691817 | NSCLC | Atezolizumab + Tocilizumab | I/II | ORR |
NCT04911166 | NSCLC | Atezolizumab + Interleukin-12 Gene Therapy | I | 6-month PFS |
NCT04884282 | NSCLC | Nivolumab + Tedopi | II | 1-year OS |
NCT03527108 | NSCLC | Nivolumab + Ramucirumab | II | DCR |
NCT04340882 | NSCLC | Pembrolizumab + Docetaxel + Ramucirumab | II | 6-month PFS |
NCT06028633 | NSCLC | Pembrolizumab + nab-Paclitaxel + Lenvatinib | II | ORR |
NCT05443971 | Multiple | Pembrolizumab + EDP1503 | II | Safety, tolerability, ORR |
NCT04725188 | NSCLC | Pembrolizumab/Vibostolimab coformulation | II | PFS |
NCT03881488 | Multiple | Pembrolizumab + CTX-471 | I | DLT, AEs, Dose |
NCT05886439 | NSCLC | Pembrolizumab/Durvalumab + LK101 | I | DLT *, AEs |
NCT05401786 | NSCLC | Ipilimumab + Cemiplimab + SBRT *2 | II | Clinical Benefit Rate |
NCT06182800 | NSCLC | Adebrelimab + Bevacizumab + Docetaxel | II | 6-month PFS |
NCT05842018 | NSCLC | Toripalimab + Anlotinib + Chemotherapy | II | PFS |
NCT06127303 | NSCLC | Toripalimab + Cryoablation | II | PFS |
NCT03228667 | Multiple | PD-(L)1 inhibitor+ N-803 + PD-L1 t-haNK | II | ORR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Livanou, M.E.; Nikolaidou, V.; Skouras, V.; Fiste, O.; Kotteas, E. Efficacy of NSCLC Rechallenge with Immune Checkpoint Inhibitors following Disease Progression or Relapse. Cancers 2024, 16, 1196. https://doi.org/10.3390/cancers16061196
Livanou ME, Nikolaidou V, Skouras V, Fiste O, Kotteas E. Efficacy of NSCLC Rechallenge with Immune Checkpoint Inhibitors following Disease Progression or Relapse. Cancers. 2024; 16(6):1196. https://doi.org/10.3390/cancers16061196
Chicago/Turabian StyleLivanou, Maria Effrosyni, Vasiliki Nikolaidou, Vasileios Skouras, Oraianthi Fiste, and Elias Kotteas. 2024. "Efficacy of NSCLC Rechallenge with Immune Checkpoint Inhibitors following Disease Progression or Relapse" Cancers 16, no. 6: 1196. https://doi.org/10.3390/cancers16061196
APA StyleLivanou, M. E., Nikolaidou, V., Skouras, V., Fiste, O., & Kotteas, E. (2024). Efficacy of NSCLC Rechallenge with Immune Checkpoint Inhibitors following Disease Progression or Relapse. Cancers, 16(6), 1196. https://doi.org/10.3390/cancers16061196