Cost-Effectiveness of Treatment Optimisation with Biomarkers for Immunotherapy in Solid Tumours: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Searches
2.2. Study Selection, Data Extraction, and Quality Assessment
2.3. Data Synthesis
2.4. Role of the Funding Source
3. Results
3.1. Study Identification
3.2. Study Quality
3.3. Study Characteristics
3.4. Non-Small Cell Lung Cancer (NSCLC)
3.5. Other Tumours
3.5.1. Urothelial, Bladder Cancer, and Renal Cell Carcinoma (RCC)
3.5.2. Head and Neck Cancer Squamous Cell Carcinoma (HNSCC)
3.5.3. Triple-Negative Breast Cancer (TNBC)
3.5.4. Melanoma including Merkel Cell Carcinoma (mMCC)
3.5.5. Cervical and Gastric Cancers
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Food and Drug Administration (FDA). Table of Pharmacogenomic Biomarkers in Drug Labeling. 2020. Available online: https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling (accessed on 24 May 2023).
- Gavrielatou, N.; Doumas, S.; Economopoulou, P.; Foukas, P.G.; Psyrri, A. Biomarkers for immunotherapy response in head and neck cancer. Cancer Treat. Rev. 2020, 84, 101977. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Sprave, T.; Haque, W.; Simone, C.B., II; Chang, J.Y.; Welsh, J.W.; Thomas, C.R., Jr. A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors. J. Immunother. Cancer 2018, 6, 128. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Mucherino, S.; Lorenzoni, V.; Orlando, V.; Triulzi, I.; Del Re, M.; Capuano, A.; Danesi, R.; Turchetti, G.; Menditto, E. Cost-effectiveness of treatment optimisation with biomarkers for immunotherapy in solid tumours: A systematic review protocol. BMJ Open 2021, 11, e048141. [Google Scholar] [CrossRef] [PubMed]
- Dobosz, P.; Dzieciątkowski, T. The Intriguing History of Cancer Immunotherapy. Front. Immunol. 2019, 10, 2965. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.C.; Schünemann, H.J.; Oxman, A.D.; Pottie, K.; Meerpohl, J.J.; Coello, P.A.; Rind, D.; Montori, V.M.; Brito, J.P.; Norris, S.; et al. GRADE guidelines: 15. Going from evidence to recommendation-determinants of a recommendation’s direction and strength. J. Clin. Epidemiol. 2013, 66, 726–735. [Google Scholar] [CrossRef]
- CCEMG-EPPI. Centre Cost Converter v.1.4. Available online: https://eppi.ioe.ac.uk/costconversion/default.aspx (accessed on 24 May 2023).
- Barbier, M.C.; Pardo, E.; Panje, C.M.; Gautschi, O.; Lupatsch, J.E.; Swiss Group for Clinical Cancer Research (SAKK). A cost-effectiveness analysis of pembrolizumab with or without chemotherapy for the treatment of patients with metastatic, non-squamous non-small cell lung cancer and high PD-L1 expression in Switzerland. Eur. J. Health Econ. HEPAC Health Econ. Prev. Care 2021, 22, 669–677. [Google Scholar] [CrossRef]
- Qiao, L.; Zhou, Z.; Zeng, X.; Tan, C. Cost-Effectiveness of Domestic PD-1 Inhibitor Camrelizumab Combined With Chemotherapy in the First-Line Treatment of Advanced Nonsquamous Non-Small-Cell Lung Cancer in China. Front. Pharmacol. 2021, 12, 728440. [Google Scholar] [CrossRef]
- Insinga, R.P.; Feliciano, J.L.; Qiao, N.; Vandormael, K.; Zhang, Y. Cost-effectiveness of pembrolizumab + chemotherapy versus chemotherapy and pembrolizumab monotherapy in first line treatment of NSCLC in the US—Updated analyses with additional trial follow-up. J. Med. Econ. 2021, 24, 792–805. [Google Scholar] [CrossRef]
- Hu, H.; She, L.; Liao, M.; Shi, Y.; Yao, L.; Ding, D.; Zhu, Y.; Zeng, S.; Carbone, D.P.; Huang, J. Cost-Effectiveness Analysis of Nivolumab Plus Ipilimumab vs. Chemotherapy as First-Line Therapy in Advanced Non-Small Cell Lung Cancer. Front. Oncol. 2020, 10, 1649. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, Z.; Luo, X.; Yi, L.; Peng, L.; Wan, X.; Tan, C.; Zeng, X. First-Line ICI Monotherapies for Advanced Non-small-cell Lung Cancer Patients With PD-L1 of at Least 50%: A Cost-Effectiveness Analysis. Front. Pharmacol. 2021, 12, 788569. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, B.; Kiff, C.; Ling, C.; Brodtkorb, T.H. Cost Effectiveness of Nivolumab in Patients with Advanced, Previously Treated Squamous and Non-squamous Non-small-cell Lung Cancer in England. PharmacoEconomics–Open 2021, 5, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Pei, R.; Li, J.; Li, B.; Tang, L.; Yin, T.; Liu, S. Atezolizumab compared to chemotherapy for first-line treatment in non-small cell lung cancer with high PD-L1 expression: A cost-effectiveness analysis from US and Chinese perspectives. Ann. Transl. Med. 2021, 9, 1481. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Kang, S.; Wang, X.; Shang, F. Cost-Effectiveness Analysis of Atezolizumab Versus Chemotherapy as First-Line Treatment for Metastatic Non-Small-Cell Lung Cancer With Different PD-L1 Expression Status. Front. Oncol. 2021, 11, 669195. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Hui, W.; Zhu, M.; Zhang, M.; Gao, Z.; Wu, H. Cost-Effectiveness Analysis of Pembrolizumab Plus Pemetrexed and Platinum Versus Chemotherapy Alone as First-Line Treatment in Metastatic Non-Squamous Non-Small Cell Lung Cancer: A Reconstruction of Partitioned Survival Model Based on Time Dependent Pricing Mechanism of Patient Assistance Program. Front. Oncol. 2021, 11, 768035. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.C.; Kunst, N.; Gross, C.P.; Wang, J.D.; Su, W.C.; Wang, S.Y. Cost-Effectiveness of Nivolumab Plus Ipilimumab With and Without Chemotherapy for Advanced Non-Small Cell Lung Cancer. Front. Oncol. 2021, 11, 760686. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zeng, X.; Peng, L.; Liu, Q.; Yi, L.; Luo, X.; Li, S.; Wang, L.; Qin, S.; Wan, X.; et al. First-Line Atezolizumab for Metastatic NSCLC with High PD-L1 Expression: A United States-Based Cost-Effectiveness Analysis. Adv. Ther. 2021, 38, 2447–2457. [Google Scholar] [CrossRef] [PubMed]
- Panje, C.M.; Lupatsch, J.E.; Barbier, M.; Pardo, E.; Lorez, M.; Dedes, K.J.; Aebersold, D.M.; Plasswilm, L.; Gautschi, O.; Schwenkglenks, M.; et al. A cost-effectiveness analysis of consolidation immunotherapy with durvalumab in stage III NSCLC responding to definitive radiochemotherapy in Switzerland. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020, 31, 501–506. [Google Scholar] [CrossRef]
- Weng, X.; Luo, S.; Lin, S.; Zhong, L.; Li, M.; Xin, R.; Huang, P.; Xu, X. Cost-Utility Analysis of Pembrolizumab Versus Chemotherapy as First-Line Treatment for Metastatic Non-Small Cell Lung Cancer With Different PD-L1 Expression Levels. Oncol. Res. 2020, 28, 117–125. [Google Scholar] [CrossRef]
- Li, J.; Zhang, T.; Xu, Y.; Lu, P.; Zhu, J.; Liang, W.; Jiang, J. Cost-effectiveness analysis of nivolumab plus ipilimumab versus chemotherapy as first-line treatment in advanced NSCLC. Immunotherapy 2020, 12, 1067–1075. [Google Scholar] [CrossRef]
- Wu, B.; Lu, S. The effect of PD-L1 categories-directed pembrolizumab plus chemotherapy for newly diagnosed metastatic non-small-cell lung cancer: A cost-effectiveness analysis. Transl. Lung Cancer Res. 2020, 9, 1770–1784. [Google Scholar] [CrossRef] [PubMed]
- Loong, H.H.; Wong, C.K.H.; Leung, L.K.S.; Dhankhar, P.; Insinga, R.P.; Chandwani, S.; Hsu, D.C.; Lee, M.Y.K.; Huang, M.; Pellissier, J.; et al. Cost Effectiveness of PD-L1-Based Test-and-Treat Strategy with Pembrolizumab as the First-Line Treatment for Metastatic NSCLC in Hong Kong. PharmacoEconomics-Open 2020, 4, 235–247. [Google Scholar] [CrossRef]
- Wan, N.; Zhang, T.T.; Hua, S.H.; Lu, Z.L.; Ji, B.; Li, L.X.; Lu, L.Q.; Huang, W.J.; Jiang, J.; Li, J. Cost-effectiveness analysis of pembrolizumab plus chemotherapy with PD-L1 test for the first-line treatment of NSCLC. Cancer Med. 2020, 9, 1683–1693. [Google Scholar] [CrossRef] [PubMed]
- Criss, S.D.; Palazzo, L.; Watson, T.R.; Paquette, A.M.; Sigel, K.; Wisnivesky, J.; Kong, C.Y. Cost-effectiveness of pembrolizumab for advanced non-small cell lung cancer patients with varying comorbidity burden. PLoS ONE 2020, 15, e0228288. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Luo, X.; Peng, L.; Yi, L.; Wan, X.; Zeng, X.; Tan, C. Nivolumab Versus Docetaxel for Previously Treated Advanced Non-Small Cell Lung Cancer in China: A Cost-Effectiveness Analysis. Clin. Drug Investig. 2020, 40, 129–137. [Google Scholar] [CrossRef]
- Aziz, M.I.A.; Tan, L.E.; Tan, W.H.G.; Toh, C.K.; Loke, L.P.Y.; Pearce, F.; Ng, K. Cost-effectiveness analysis of pembrolizumab monotherapy versus chemotherapy for previously untreated advanced non-small cell lung cancer. J. Med. Econ. 2020, 23, 952–960. [Google Scholar] [CrossRef] [PubMed]
- She, L.; Hu, H.; Liao, M.; Xia, X.; Shi, Y.; Yao, L.; Ding, D.; Zhu, Y.; Zeng, S.; Shen, L.; et al. Cost-effectiveness analysis of pembrolizumab versus chemotherapy as first-line treatment in locally advanced or metastatic non-small cell lung cancer with PD-L1 tumor proportion score 1% or greater. Lung Cancer 2019, 138, 88–94. [Google Scholar] [CrossRef]
- Bhadhuri, A.; Insinga, R.; Guggisberg, P.; Panje, C.; Schwenkglenks, M. Cost effectiveness of pembrolizumab vs chemotherapy as first-line treatment for metastatic NSCLC that expresses high levels of PD-L1 in Switzerland. Swiss Med. Wkly. 2019, 149, w20170. [Google Scholar] [CrossRef]
- Chouaid, C.; Bensimon, L.; Clay, E.; Millier, A.; Levy-Bachelot, L.; Huang, M.; Levy, P. Cost-effectiveness analysis of pembrolizumab versus standard-of-care chemotherapy for first-line treatment of PD-L1 positive (>50%) metastatic squamous and non-squamous non-small cell lung cancer in France. Lung Cancer 2019, 127, 44–52. [Google Scholar] [CrossRef]
- Huang, M.; Lopes, G.L.; Insinga, R.P.; Burke, T.; Ejzykowicz, F.; Zhang, Y.; Feliciano, J.L. Cost-effectiveness of pembrolizumab versus chemotherapy as first-line treatment in PD-L1-positive advanced non-small-cell lung cancer in the USA. Immunotherapy 2019, 11, 1463–1478. [Google Scholar] [CrossRef]
- Wan, X.; Luo, X.; Tan, C.; Zeng, X.; Zhang, Y.; Peng, L. First-line atezolizumab in addition to bevacizumab plus chemotherapy for metastatic, nonsquamous non-small cell lung cancer: A United States-based cost-effectiveness analysis. Cancer 2019, 125, 3526–3534. [Google Scholar] [CrossRef] [PubMed]
- Insinga, R.P.; Vanness, D.J.; Feliciano, J.L.; Vandormael, K.; Traore, S.; Ejzykowicz, F.; Burke, T. Cost-effectiveness of pembrolizumab in combination with chemotherapy versus chemotherapy and pembrolizumab monotherapy in the first-line treatment of squamous non-small-cell lung cancer in the US. Curr. Med. Res. Opin. 2019, 35, 1241–1256. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Jiang, C.; Li, Q. Cost-effectiveness analysis of pembrolizumab monotherapy and chemotherapy in the non-small-cell lung cancer with different PD-L1 tumor proportion scores. Lung Cancer 2019, 136, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Huang, J.; Hutton, D.; Li, Q. Cost-effectiveness analysis of first-line pembrolizumab treatment for PD-L1 positive, non-small cell lung cancer in China. J. Med. Econ. 2019, 22, 344–349. [Google Scholar] [CrossRef]
- Insinga, R.P.; Vanness, D.J.; Feliciano, J.L.; Vandormael, K.; Traore, S.; Burke, T. Cost-effectiveness of pembrolizumab in combination with chemotherapy in the 1st line treatment of non-squamous NSCLC in the US. J. Med. Econ. 2018, 21, 1191–1205. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, M.; da Silveira Nogueira Lima, J.P.; Aguiar, P., Jr.; de Lima Lopes, G., Jr.; Haaland, B. Cost-effectiveness of pembrolizumab as first-line therapy for advanced non-small cell lung cancer. Lung Cancer 2018, 124, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, P.N., Jr.; Perry, L.A.; Penny-Dimri, J.; Babiker, H.; Tadokoro, H.; de Mello, R.A.; Lopes, G.L., Jr. The effect of PD-L1 testing on the cost-effectiveness and economic impact of immune checkpoint inhibitors for the second-line treatment of NSCLC. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, 2256–2263. [Google Scholar] [CrossRef]
- Hu, X.; Hay, J.W. First-line pembrolizumab in PD-L1 positive non-small-cell lung cancer: A cost-effectiveness analysis from the UK health care perspective. Lung Cancer 2018, 123, 166–171. [Google Scholar] [CrossRef]
- Aguiar, P., Jr.; Giglio, A.D.; Perry, L.A.; Penny-Dimri, J.; Babiker, H.; Tadokoro, H.; Lopes, G., Jr.; De Mello, R.A. Cost-effectiveness and budget impact of lung cancer immunotherapy in South America: Strategies to improve access. Immunotherapy 2018, 10, 887–897. [Google Scholar] [CrossRef]
- Huang, M.; Lou, Y.; Pellissier, J.; Burke, T.; Liu, F.X.; Xu, R.; Velcheti, V. Cost Effectiveness of Pembrolizumab vs. Standard-of-Care Chemotherapy as First-Line Treatment for Metastatic NSCLC that Expresses High Levels of PD-L1 in the United States. PharmacoEconomics 2017, 35, 831–844. [Google Scholar] [CrossRef]
- Matter-Walstra, K.; Schwenkglenks, M.; Aebi, S.; Dedes, K.; Diebold, J.; Pietrini, M.; Klingbiel, D.; von Moos, R.; Gautschi, O.; Swiss Group for Clinical Cancer Research. A Cost-Effectiveness Analysis of Nivolumab versus Docetaxel for Advanced Nonsquamous NSCLC Including PD-L1 Testing. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2016, 11, 1846–1855. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Yi, L.; Li, S.; Tan, C.; Zeng, X.; Wang, L.; Peng, Y.; Wan, X. Cost-Effectiveness of Atezolizumab Plus Chemotherapy as First-Line Therapy for Metastatic Urothelial Cancer. Adv. Ther. 2021, 38, 3399–3408. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; She, Z.; Peng, L.; Liu, Q.; Yi, L.; Luo, X.; Li, S.; Wang, L.; Qin, S.; Wan, X.; et al. Cost-Effectiveness of Avelumab Maintenance Therapy for Advanced or Metastatic Urothelial Carcinoma in the United States. Adv. Ther. 2021, 38, 5710–5720. [Google Scholar] [CrossRef] [PubMed]
- Hale, O.; Patterson, K.; Lai, Y.; Meng, Y.; Li, H.; Godwin, J.L.; Homet Moreno, B.; Mamtani, R. Cost-effectiveness of Pembrolizumab versus Carboplatin-based Chemotherapy as First-line Treatment of PD-L1-positive Locally Advanced or Metastatic Urothelial Carcinoma Ineligible for Cisplatin-based Therapy in the United States. Clin. Genitourin. Cancer 2021, 19, e17–e30. [Google Scholar] [CrossRef]
- Patterson, K.; Prabhu, V.; Xu, R.; Li, H.; Meng, Y.; Zarabi, N.; Zhong, Y.; Batteson, R.; Pellissier, J.; Keefe, S.; et al. Cost-effectiveness of Pembrolizumab for Patients with Advanced, Unresectable, or Metastatic Urothelial Cancer Ineligible for Cisplatin-based Therapy. Eur. Urol. Oncol. 2019, 2, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Reinhorn, D.; Sarfaty, M.; Leshno, M.; Moore, A.; Neiman, V.; Rosenbaum, E.; Goldstein, D.A. A Cost-Effectiveness Analysis of Nivolumab and Ipilimumab Versus Sunitinib in First-Line Intermediate- to Poor-Risk Advanced Renal Cell Carcinoma. Oncol. 2019, 24, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Criss, S.D.; Weaver, D.T.; Sheehan, D.F.; Lee, R.J.; Pandharipande, P.V.; Kong, C.Y. Effect of PD-L1 testing on the cost-effectiveness and budget impact of pembrolizumab for advanced urothelial carcinoma of the bladder in the United States. Urol. Oncol. 2019, 37, 180.e11–180.e18. [Google Scholar] [CrossRef]
- Sarfaty, M.; Leshno, M.; Gordon, N.; Moore, A.; Neiman, V.; Rosenbaum, E.; Goldstein, D.A. Cost Effectiveness of Nivolumab in Advanced Renal Cell Carcinoma. Eur. Urol. 2018, 73, 628–634. [Google Scholar] [CrossRef]
- Parmar, A.; Richardson, M.; Coyte, P.C.; Cheng, S.; Sander, B.; Chan, K.K.W. A cost-utility analysis of atezolizumab in the second-line treatment of patients with metastatic bladder cancer. Curr. Oncol. 2020, 27, e386–e394. [Google Scholar] [CrossRef]
- Sarfaty, M.; Hall, P.S.; Chan, K.K.W.; Virik, K.; Leshno, M.; Gordon, N.; Moore, A.; Neiman, V.; Rosenbaum, E.; Goldstein, D.A. Cost-effectiveness of Pembrolizumab in Second-line Advanced Bladder Cancer. Eur. Urol. 2018, 74, 57–62. [Google Scholar] [CrossRef]
- Wurcel, V.; Chirovsky, D.; Borse, R.; Altuna, J.I.; Carabajal, F.; Gandhi, J. Cost-Effectiveness of Pembrolizumab Regimens for the First-Line Treatment of Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma in Argentina. Adv. Ther. 2021, 38, 2613–2630. [Google Scholar] [CrossRef]
- Zhou, K.; Li, Y.; Liao, W.; Zhang, M.; Bai, L.; Li, Q. Pembrolizumab alone or with chemotherapy for squamous cell carcinoma of the head and neck: A cost-effectiveness analysis from Chinese perspective. Oral Oncol. 2020, 107, 104754. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Han, S.; Zheng, B.; Cai, H.; Yang, J.; Zhuang, Q.; Li, N. Cost-Effectiveness Analysis Of Pembrolizumab In The Treatment Of Advanced Recurrent Metastatic Head And Neck Squamous Cell Carcinoma In China And The United States. Cancer Manag. Res. 2019, 11, 9483–9493. [Google Scholar] [CrossRef]
- Zargar, M.; McFarlane, T.; Chan, K.K.W.; Wong, W.W.L. Cost-Effectiveness of Nivolumab in Recurrent Metastatic Head and Neck Squamous Cell Carcinoma. Oncologist 2018, 23, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Hirschmann, A.; Lupatsch, J.E.; Schwenkglenks, M.; Panje, C.M.; Matter-Walstra, K.; Espeli, V.; Dedes, K.J.; Siano, M.; Swiss Group of Clinical Cancer Research (SAKK). Cost-effectiveness of nivolumab in the treatment of head and neck cancer. Oral Oncol. 2018, 87, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.C.; Shah, C.; Adelstein, D.J.; Geiger, J.L.; Miller, J.A.; Koyfman, S.A.; Singer, M.E. Cost-effectiveness of nivolumab for recurrent or metastatic head and neck cancer. Oral Oncol. 2017, 74, 49–55. [Google Scholar] [CrossRef]
- Liu, X.; Lang, Y.; Liao, Y.; Zhu, Y. Atezolizumab Plus Chemotherapy vs. Chemotherapy in Advanced or Metastatic Triple-Negative Breast Cancer: A Cost-Effectiveness Analysis. Front. Public Health 2021, 9, 756899. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; Huang, X.; Li, H.; Lin, S.; Rao, X.; Guo, X.; Huang, P. First-Line Treatment With Atezolizumab Plus Nab-Paclitaxel for Advanced Triple-Negative Breast Cancer: A Cost-Effectiveness Analysis. Am. J. Clin. Oncol. 2020, 43, 340–348. [Google Scholar] [CrossRef]
- Wu, B.; Ma, F. Cost-effectiveness of adding atezolizumab to first-line chemotherapy in patients with advanced triple-negative breast cancer. Ther. Adv. Med. Oncol. 2020, 12, 1758835920916000. [Google Scholar] [CrossRef]
- Meng, Y.; Hertel, N.; Ellis, J.; Morais, E.; Johnson, H.; Philips, Z.; Roskell, N.; Walker, A.; Lee, D. The cost-effectiveness of nivolumab monotherapy for the treatment of advanced melanoma patients in England. Eur. J. Health Econ. HEPAC Health Econ. Prev. Care 2018, 19, 1163–1172. [Google Scholar] [CrossRef]
- Tarhini, A.; Benedict, A.; McDermott, D.; Rao, S.; Ambavane, A.; Gupte-Singh, K.; Sabater, J.; Ritchings, C.; Aponte-Ribero, V.; Regan, M.M.; et al. Sequential treatment approaches in the management of BRAF wild-type advanced melanoma: A cost-effectiveness analysis. Immunotherapy 2018, 10, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.C.; Lin, A.Y.; Hsu, J.C.; Wu, C.E.; Goh, C.; Chou, P.; Kuo, K.; Chang, A.; Palencia, R. A cost-utility analysis of avelumab for metastatic Merkel cell carcinoma in Taiwan. Cancer Rep. 2021, 4, e1399. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, J.; Shi, B.; Liu, A. Cost-effectiveness analysis of pembrolizumab for treatment of US patients with persistent, recurrent, or metastatic cervical cancer. Gynecol. Oncol. 2022, 164, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Lauren, B.; Ostvar, S.; Silver, E.; Ingram, M.; Oh, A.; Kumble, L.; Laszkowska, M.; Chu, J.N.; Hershman, D.L.; Manji, G.; et al. Cost-Effectiveness Analysis of Biomarker-Guided Treatment for Metastatic Gastric Cancer in the Second-Line Setting. J. Oncol. 2020, 2020, 2198960. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Bardhan, K.; Boussiotis, V.A.; Patsoukis, N. The PD-1 Interactome. Adv. Biol. 2021, 5, e2100758. [Google Scholar] [CrossRef]
- Paver, E.C.; Cooper, W.A.; Colebatch, A.J.; Ferguson, P.M.; Hill, S.K.; Lum, T.; Shin, J.S.; O’Toole, S.; Anderson, L.; Scolyer, R.A.; et al. Programmed death ligand-1 (PD-L1) as a predictive marker for immunotherapy in solid tumours: A guide to immunohistochemistry implementation and interpretation. Pathology 2021, 53, 141–156. [Google Scholar] [CrossRef] [PubMed]
- Vesely, M.D.; Zhang, T.; Chen, L. Resistance Mechanisms to Anti-PD Cancer Immunotherapy. Annu. Rev. Immunol. 2022, 40, 45–74. [Google Scholar] [CrossRef]
- Kerr, K.M.; Bibeau, F.; Thunnissen, E.; Botling, J.; Ryška, A.; Wolf, J.; Öhrling, K.; Burdon, P.; Malapelle, U.; Büttner, R. The evolving landscape of biomarker testing for non-small cell lung cancer in Europe. Lung Cancer 2021, 154, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018, 29 (Suppl. S4), iv192–iv237. [Google Scholar] [CrossRef]
- Kalemkerian, G.P.; Narula, N.; Kennedy, E.B.; Biermann, W.A.; Donington, J.; Leighl, N.B.; Lew, M.; Pantelas, J.; Ramalingam, S.S.; Reck, M.; et al. Molecular Testing Guideline for the Selection of Patients With Lung Cancer for Treatment With Targeted Tyrosine Kinase Inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Clinical Practice Guideline Update. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 911–919. [Google Scholar] [CrossRef]
- Lindeman, N.I.; Cagle, P.T.; Aisner, D.L.; Arcila, M.E.; Beasley, M.B.; Bernicker, E.H.; Colasacco, C.; Dacic, S.; Hirsch, F.R.; Kerr, K.; et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch. Pathol. Lab. Med. 2018, 142, 321–346. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Planchard, D.; Lu, S.; Sun, H.; Yamamoto, N.; Kim, D.W.; Tan, D.S.W.; Yang, J.C.; Azrif, M.; Mitsudomi, T.; et al. Pan-Asian adapted Clinical Practice Guidelines for the management of patients with metastatic non-small-cell lung cancer: A CSCO-ESMO initiative endorsed by JSMO, KSMO, MOS, SSO and TOS. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 171–210. [Google Scholar] [CrossRef]
- Incorvaia, L.; Fanale, D.; Badalamenti, G.; Barraco, N.; Bono, M.; Corsini, L.R.; Galvano, A.; Gristina, V.; Listì, A.; Vieni, S.; et al. Programmed Death Ligand 1 (PD-L1) as a Predictive Biomarker for Pembrolizumab Therapy in Patients with Advanced Non-Small-Cell Lung Cancer (NSCLC). Adv. Ther. 2019, 36, 2600–2617. [Google Scholar] [CrossRef] [PubMed]
- Del Re, M.; van Schaik, R.H.N.; Fogli, S.; Mathijssen, R.H.J.; Cucchiara, F.; Capuano, A.; Scavone, C.; Jenster, G.W.; Danesi, R. Blood-based PD-L1 analysis in tumor-derived extracellular vesicles: Applications for optimal use of anti-PD-1/PD-L1 axis inhibitors. Biochim. Et Biophys. Acta. Rev. Cancer 2021, 1875, 188463. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.P.; Kurzrock, R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol. Cancer Ther. 2015, 14, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Ancevski Hunter, K.; Socinski, M.A.; Villaruz, L.C. PD-L1 Testing in Guiding Patient Selection for PD-1/PD-L1 Inhibitor Therapy in Lung Cancer. Mol. Diagn. Ther. 2018, 22, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tartari, F.; Santoni, M.; Burattini, L.; Mazzanti, P.; Onofri, A.; Berardi, R. Economic sustainability of anti-PD-1 agents nivolumab and pembrolizumab in cancer patients: Recent insights and future challenges. Cancer Treat. Rev. 2016, 48, 20–24. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). FDA Approves Pembrolizumab for Advanced Cervical Cancer with Disease Progression during or After Chemotherapy|FDA. 2018. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-advanced-cervical-cancer-disease-progression-during-or-after-chemotherapy (accessed on 24 May 2023).
- Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Hoyos Usta, E.; Yañez, E.; et al. KEYNOTE-826 Investigators. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N. Engl. J. Med. 2021, 385, 1856–1867. [Google Scholar] [CrossRef]
- Tewari, K.S.; Monk, B.J.; Vergote, I.; Miller, A.; de Melo, A.C.; Kim, H.S.; Kim, Y.M.; Lisyanskaya, A.; Samouëlian, V.; Lorusso, D.; et al. Investigators for GOG Protocol 3016 and ENGOT Protocol En-Cx9 Survival with Cemiplimab in Recurrent Cervical Cancer. N. Engl. J. Med. 2022, 386, 544–555. [Google Scholar] [CrossRef]
- Berberabe, A. Is PD-L1 an Appropriate Biomarker in Cervical Cancer? Target Ther. Oncol. 2022, 11, 73. [Google Scholar]
- Valiullina, A.K.; Zmievskaya, E.A.; Ganeeva, I.A.; Zhuravleva, M.N.; Garanina, E.E.; Rizvanov, A.A.; Petukhov, A.V.; Bulatov, E.R. Evaluation of CAR-T Cells’ Cytotoxicity against Modified Solid Tumor Cell Lines. Biomedicines 2023, 11, 626. [Google Scholar] [CrossRef]
Study, Country, Year | ICI and Treatment Line | Comparators | Biomarker Test | Threshold (WTP) | Results | Cost-Effective |
---|---|---|---|---|---|---|
PD-1 Target Therapy | ||||||
Barbier MC et al. Switzerland 2021 [9] | Pembrolizumab 1L/2L | Pembrolizumab + SoC (chemotherapy) | PD-1 | CHF 100,000/QALY | Pembrolizumab plus SoC vs. pembrolizumab alone: ICER CHF 475,299/QALY. Pembrolizumab vs. SoC: ICER of CHF 68,580/QALY. | yes |
Qiao L et al. China 2021 [10] | Pembrolizumab 1L | SoC (chemotherapy) | PD-1 | $150,000/QALY | Pembrolizumab plus pemetrexed and platinum: ICER $65,563/QALY. | yes |
PD-L1 Target Therapy | ||||||
Insinga RP et al. US 2021 [11] | Pembrolizumab 1L | SoC (chemotherapy) | PD-L1, ALK, EGFR | $195,000/QALY | Pembrolizumab plus SoC vs. SoC alone: (a) Overall population, ICER $158,030/QALY; (b) Non-squamous and squamous patients, ICER $178,387/QALY. | yes |
Hu H et al. China 2021 [12] | Nivolumab plus ipilimumab 1L | SoC (chemotherapy) | PD-L1 | $100,000–$150,000/QALY | Nivolumab plus ipilimumab: (a) PD-L1 TPS ≥ 50%, ICER $107,403.72/QALY; (b) PD-L1 TPS ≥ 1%, $133,732.20/QALY; (c) PD-L1 TPS < 1%, $172,589.15/QALY. | yes |
Liu Q et al. US 2021 [13] | Cemiplimab; Pembrolizumab 1L | SoC (chemotherapy) | PD-L1, ALK, EGFR | $100,000/QALY | Cemiplimab vs. pembrolizumab: ICER $52,998/QALY. Cemiplimab vs. atezolizumab: Gain of 0.13 QALYs and a decreased cost of $104,642, resulting in its dominance of atezolizumab. Pembrolizumab plus chemotherapy vs. (a) Cemiplimab: ICER $393,359/QALY; (b) Pembrolizumab: ICER $190,994/QALY; (c) Atezolizumab: ICER $33,230/QALY. | yes |
Rothwell B et al. England 2021 [14] | Nivolumab NS | SoC (chemotherapy) | PD-L1 | £50,000/QALY | Nivolumab vs. docetaxel: (a) Squamous NSCLC: ICER £35,657/QALY; (b) Non-squamous NSCLC: ICER £38,703/QALY. Analysis were conducted with a confidential NHS England (NHSE) PAS (Patient access scheme) discount specific to the CDF (Cancer Drugs Fund): (a) Squamous NSCLC, £68,576/QALY; (b) Non-squamous NSCLC, £73,189/QALY. | yes |
Cheng S et al. US and China 2021 [15] | Atezolizumab 1L | SoC (chemotherapy) | PD-L1 | US: $100,000–$150,000/QALY China: $33,210/QALY | US, atezolizumab vs. SoC: ICER $123,424/QALY. China, atezolizumab vs. SoC: ICER $78,936/QALY. | US, yes; China, no |
Liu G et al. China 2021 [16] | Atezolizumab 1L | SoC (chemotherapy) | PD-L1 | $30,828/QALY | Atezolizumab vs. SoC: (a) High PD-L1, ICER $123,778.60/QALY; (b) High or intermediate PD-L1 TPS, $142,827.19/QALY; (c) Any PD-L1 TPS, $168,902.66/QALY. | no |
Cai Y et al. China 2021 [17] | Pembrolizumab 1L | SoC (chemotherapy) | PD-L1 | $33,581.22/QALY | Pembrolizumab vs. SoC: ICER $65,272/QALY | no |
Yang SC et al. US 2021 [18] | Nivolumab plus ipilimumab 1L | Nivolumab plus ipilimumab + SoC (chemotherapy) | PD-L1 | $150,000/QALY | Nivolumab plus ipilimumab vs. chemotherapy: ICER $239,072/QALY. Nivolumab plus ipilimumab plus SoC vs. Nivolumab plus ipilimumab: ICER $838,198/QALY. | no |
Peng Y et al. US 2021 [19] | Atezolizumab 1L | SoC (chemotherapy) | PD-L1 | $100,000–$150,000/QALY | Atezolizumab vs. SoC: ICER $170,730/QALY and ICER $108,205/LY | no |
Panje CM et al. Switzerland 2020 [20] | Durvalumab 1L/2L | Placebo | PD-L1 | CHF 100,000/QALY | Durvalumab: (a) Unselected PD-L1 TPS, ICER CHF 88,703/QALY; (b) PD-L1 TPS ≥ 1%, ICER CHF 66,131/QALY. | yes |
Weng X et al. US 2020 [21] | Pembrolizumab 1L | SoC (chemotherapy) | PD-L1 | $180,000/QALY | Pembrolizumab vs. SoC: (a) PD-L1 TPS of ≥50%, ICER $47,596/QALY; (b) PD-L1 TPS ≥ 20%, $47,184/QALY; (c) PD-L1 TPS ≥ 1%, and $68,061/QALY. | yes |
Li J et al. China 2020 [22] | Nivolumab 1L | SoC (chemotherapy) | PD-L1 | $150,000/QALY | Nivolumab vs. SoC: ICER $180,307/QALY and $115,528/LY. | yes |
Wu B et al. US and China 2020 [23] | Pembrolizumab 1L | SoC (chemotherapy) | -PD-L1 TPS ≥ 50% and >1% -Without EGFR, ALK mutations | US: $150,000/QALY China: $29,196/QALY | US: Pembrolizumab plus chemotherapy vs. SoC, (a) Non-squamous NSCLC, ICER $122,248; (b) Squamous NSCLC, ICER $121,375/QALY. Adding TPS50 or TPS1 pembrolizumab treatment in patients with PD-L1 TPS test: (a) Non-squamous disease, PD-L1 TPS ≥ 50%, ICER $143,282/QALY; PD-L1 TPS ≥ 1%, ICER $127,661/QALY. (b) Squamous NSCLC, PD-L1 TPS ≥ 50%, ICER $131,495/QALY; PD-L1 TPS ≥ 1%, ICER $121,554/QALY. China: Adding pembrolizumab: ICER $40,000/QALY. | US, yes; China, no |
Loong HH et al. Hong Kong (China) 2020 [24] | Pembrolizumab 1L | SoC (chemotherapy) | PD-L1 TPS ≥ 50% | HKD 1017,819/QALY ($130,490) | Pembrolizumab with TPS ≥ 50% vs. platinum doublet chemotherapy: ICER HKD 865,189 ($110,922)/QALY and HKD 697,462 ($89,419)/LY. | yes |
Wan N et al. US and China 2020 [25] | Pembolizumab 1L | SoC (chemotherapy) | PD-L1 | US: $100,000/QALY China: $27,351/QALY | Pembolizumab vs. SoC: (a) US, ICER $132 392/QALY (b) China, $92,533/QALY. PD-L1 ≥ 1% base case: (a) US, ICER $77,754/QALY; (b) China, ICER $56,768/QALY. PD-L1 ≥ 50% base case: (a) US, ICER $44,731/QALY; (b) China, ICER $34,388/QALY. | no |
Criss SD et al. US 2020 [26] | Pembrolizumab 1L | SoC (chemotherapy) | PD-L1 | $100,000/QALY | Pembrolizumab combination therapy vs SoC: (a) Base case model Charlson 0 *, ICER $173,919/QALY; (b) Base case model Charlson 1 *, ICER $175,165/QALY; (c) Base case model Charlson 2+ *, ICER $181,777/QALY (d) PD-L1-high model Charlson 0 *, ICER $147,406/QALY; (e) PD-L1-high model Charlson 1 *, $149,026/QALY; (f) PD-L1-high model Charlson 2+ *, $154,521/QALY. | no |
Liu Q et al. China 2020 [27] | Nivolumab 2L | SoC (chemotherapy) | PD-L1 | $63,564/QALY | Base case analysis, nivolumab: ICER $74,126/LY and ICUR $93,307/QALY Subgroup analyses, nivolumab: (a) Patients ≥ 65 years $85,171/QALY; (b) Female patients $85,273/QALY; (c) Patients with PD-L1 TPS at least 1% $90,309/QALY. | no |
Aziz MIA et al. Singapore (Asia) 2020 [28] | Pembrolizumab 1L | SoC (chemotherapy) | PD-L1 | SGD100,000/QALY | Pembrolizumab vs. SoC: ICER SGD167,692/QALY. | no |
She L et al. US 2019 [29] | Pembrolizumab 1L | SoC (chemotherapy) | -PD-L1 TPS ≥ 50%, ≥20% and ≥1% -Without EGFR, ALK mutations | $150,000/QALY | Pembrolizumab vs. SoC: (a) PD-L1 TPS ≥ 50%, ICER $136,228.82/QALY; (b) PD-L1 TPS ≥ 20%, ICER $160,625.98 /QALY; (c) PD-L1 TPS ≥ 1%, ICER $179,530.17/QALY. | yes |
Bhadhuri A et al. Switzerland 2019 [30] | Pembrolizumab 1L | SoC (chemotherapy) | PD-L1 TPS ≥ 50% | CHF 100,000/QALY | Pembrolizumab vs. SoC: CHF 57,402/QALY and CHF 45,531/LY. | yes |
Chouaid C et al. US 2019 [31] | Pembrolizumab 1L | SoC (chemotherapy) | PD-L1 TPS ≥ 50% | € 100,000€/QALY | Pembrolizumab vs. SoC: Squamous NSCLC, ICER €84,097/QALY and €66,825/LY. Pembrolizumab vs. platinum-based chemotherapy (paclitaxel plus bevacizumab): Non-squamous NSCLC, ICER €78,729/QALY and €62,846/LY. | yes |
Huang M et al. US 2019 [32] | Pembrolizumab 1L | SoC (chemotherapy) | PD-L1 TPS ≥ 1% | $100,000–$150,000/QALY | Pembrolizumab vs. SoC: ICER $130,155/QALY and $106,617/LY. | yes |
Wan X et al. US 2019 [33] | Atezolizumab, bevacizumab, carboplatin, and paclitaxel 1L | ICIs + SoC (bevacizumab, carboplatin, and paclitaxel (BCP)) and SoC (chemotherapy) | PD-L1 | $100,000/QALY | Atezolizumab, bevacizumab, carboplatin, and paclitaxel (ABCP) vs. bevacizumab, carboplatin, and paclitaxel (BCP): Non-squamous NSCLC: ICER $568,967/QALY. ABCP vs. carboplatin and paclitaxel (CP): non-squamous NSCLC: ICER $516,114/QALY. | no |
Insinga RP et al. US 2019 [34] | Pembrolizumab 1L | SoC (chemotherapy) | PD-L1 TPS ≥ 50% and 1–49% | $100,000/QALY | Pembrolizumab plus SoC (carboplatin and paclitaxel or nab-paclitaxel) vs. SoC: (a) All patients, ICER $86,293/QALY and $72,725/LY (b) PD-L1 TPS ≥ 50%, $99,777/QALY; (c) PD-L1 TPS 1–49%, $85,986/QALY; (d) PD-L1 TPS < 1, $87,507/QALY. | yes |
Zhou K et al. China 2019 [35] | Pembrolizumab 1L | SoC (chemotherapy) | PD-L1 TPS ≥ 50%, ≥20% and ≥1% | $26,508/QALY (product per capita of China in 2018) | Pembrolizumab monotherapy vs. SoC: (a) PD-L1 TPS ≥ 50%: ICER $36,493/QALY; (b) PD-L1 TPS ≥ 20%: ICER $42,311/QALY; (c) PD-L1 TPS ≥ 1%: ICER $39,404/QALY. | no |
Liao W et al. China 2019 [36] | Pembrolizumab 1L | SoC (chemotherapy) | PD-L1 | $100,000/QALY | Pembrolizumab vs. chemotherapy: ICER $103,128/QALY | no |
Insinga RP et al. US 2018 [37] | Pembrolizumab 1L | SoC (chemotherapy) | PD-L1 TPS ≥ 50% | $180,000/QALY | Pembrolizumab plus SoC vs. SoC alone: (a) All patients, ICER $104,823/QALY and $87,242/LY; (b) PD-L1 TPS ≥ 50%, ICER/QALY $103,402; (c) PD-L1 TPS 1–49%, ICER $66,837; (d) PD-L1 TPS < 1%, ICER $183,529. Pembrolizumab plus SoC vs. pembrolizumab alone: ICER $147,365/QALY. | yes |
Georgieva M et al. US, UK 2018 [38] | Pembrolizumab 1L | SoC (chemotherapy) | PD-L1 TPS ≥ 50% | UK: $42,048/QALY US: $100,000/QALY | Pembrolizumab vs. SoC: (a) UK, ICER $81,000/QALY; (b) US, ICER $74,000/QALY. | US, yes; UK, no |
Aguiar PN Jr et al. US 2018 [39] | Nivolumab; Atezolizumab; Pembrolizumab 2L | SoC (chemotherapy) | PD-L1 | $100,000/QALY | Nivolumab vs. docetaxel: (a) Squamous tumours, ICER $155,605 and $91,034/LY; (b) Non-squamous tumours, ICER $187,685/QALY and $102,8965/LY. Atezolizumab vs. docetaxel: All histologies, ICER $215,802/QALY and $103,095/LY. Pembrolizumab vs. docetaxel: PD-L1 TPS ≥ 1, ICER $98,421/QALY and $49,007/LY. | yes |
Hu X et al., UK 2018 [40] | Pembrolizumab 1L | SoC (chemotherapy) | PD-L1 | £50,000/QALY | Pembrolizumab vs. SoC in PD-L1 positive patients: ICER £86,913/QALY. | no |
Aguiar P et al. Argentina, Brazil, Peru 2018 [41] | Pembrolizumab 1L/2L | SoC (chemotherapy) | PD-L1 | Three-times the GDP per capita of each country, according to the World Health Organisation’s cost-effective definition | First-line treatment with pembrolizumab vs. SoC: (a) Brazil, ICER $63,424/QALY; (b) Argentina, ICER $139,351/QALY; (c) Peru, ICER $45,866/QALY. Second-line treatment with pembrolizumab vs. SoC: (a) Brazil, ICER $168,115/QALY; (b) Argentina, ICER $223,971/QALY; (c) Peru, ICER $170,383/QALY. | no |
Huang M et al. US 2017 [42] | Pembrolizumab 1L | SoC (chemotherapy) | PD-L1 TPS ≥ 50% | $100,000/QALY | Pembrolizumab vs. SoC: ICER $114,194/QALY and $91,658/LY. | yes |
Matter-Walstra K et al. Switzerland 2016 [43] | Nivolumab 1L | SoC (chemotherapy) | PD-L1 | CHF 100,000/QALY | Nivolumab vs. SoC in all treated patients: ICER CHF 177,478/QALY. Nivolumab vs. SoC in patients with PD-L1–positive tumours: ICER CHF 124,891/QALY. | no |
Study, Country, Year | ICI and Treatment Line | Comparators | Biomarker Test | Threshold (WTP) | Results | Cost-Effective |
---|---|---|---|---|---|---|
Urothelial, bladder cancer, and renal cell carcinoma (RCC) | ||||||
Qin S et al. US 2021 [44] | Atezolizumab (urothelial cancer) 1L | Placebo, SoC (gemcitabine and cisplatin or carboplatin) | PD-L1 | $150,000/QALY | Atezolizumab vs. placebo: ICER $434,31/QALY and $325,352/LY PD-L1 TPS at least 5% on immune cells: ICER $325,236/QALY | no |
Peng Y et al. US 2021 [45] | Avelumab (urothelial cancer) 1L | BSC alone | PD-L1 | $150,000/QALY | Avelumab vs. BSC alone: (a) All patients (with unknown PD-L1 status), ICER $102,365/QALY; (b) PD-L1-guided strategy, ICER $106,253/QALY. PD-L1-guided strategy vs. BSC: ICER $105,360/QALY PD-L1-guided strategy vs. avelumab: ICER $122,653/QALY | yes |
Hale O et al. US 2021 [46] | Pembrolizumab (Urothelial Carcer) 1L | SoC (chemotherapy) | PD-L1 | $100,000/QALY | Pembrolizumab vs. carboplatin plus gemcitabine: ICER $78,925/QALY | yes |
Patterson K et al. Sweden 2019 [47] | Pembrolizumab (Urothelial Cancer) 1L | SoC (Carboplatin + gemcitabine and gemcitabine monotherapy) | PD-L1 | €100,000/QALY | Pembrolizumab vs. gemcitabine plus carboplatin: ICER €53,055/QALY and 42,967.32/LY Pembrolizumab vs. gemcitabine monotherapy: ICER €54,415/QALY and 44,025.65/LY | yes |
Reinhorn D et al. US 2019 [48] | Nivolumab plus ipilimumab (RCC) 1L | SoC (chemotherapy) | PD-L1 | $150,000/QALY | Nivolumab and ipilimumab vs. sunitinib: ICER $125,739/QALY | yes |
Criss SD et al. US 2019 [49] | Pembrolizumab (Urothelial cancer) 2L | SoC (chemotherapy) | PD-L1 | $150,000/QALY | Pembrolizumab with PD-L1 positive tumours at a ≥1% expression threshold vs. SoC: ICER $122,933/QALY Pembrolizumab vs. Pembrolizumab with PD-L1 TPS ≥ 1%: ICER $197,383/QALY | no |
Sarfaty M et al. US 2018 [50] | Nivolumab (RCC) 2L | SoC (chemotherapy) | PD-L1 | $100,000–$150,000/QALY | Nivolumab vs. everolimus: ICER $146 532/QALY Nivolumab vs. placebo: ICER $226,197/QALY | yes |
Parmar A et al. Canada 2020 [51] | Atezolizumab (Bladder cancer) 2L | SoC (chemotherapy) | PD-L1 | $100,000/QALY | Atezolizumab vs. chemotherapy: ICER CAD 430,652/QALY and CAD 292,228/LY Scenario analysis, patients with PD-L1 expression levels of 5% or greater: lower ICER CAD 334,387/QALY Scenario analysis of observed compared with expected benefits demonstrated a higher icer, with a shorter time horizon: CAD 928,950/QALY | no |
Sarfaty M et al. US, UK, Canada, and Australia 2018 [52] | Pembrolizumab (Bladder Cancer) 2L | SoC (chemotherapy) | PD-L1 | US: $100,000–150,000/QALY UK: $25,000–65,000/QALY Canada: $16,000–80,000/QALY Australia: $32,000–60,000/QALY | Pembrolizumab vs. chemotherapy: (a) US, $122,557/QALY; (b) UK, $91,995/QALY; (c) Canada, $90,099/QALY; (d) Australia, $99,966/QALY. | US yes; UK, Canada; Australia, no |
Head and neck cancer squamous cell carcinoma (HNSCC) | ||||||
Wurcel V et al. Argentina 2021 [53] | Pembrolizumab 1L | Cetuximab + SoC (platinum + 5-fluorouracil) | PD-L1 | $1,676,122/QALY | Pembrolizumab monotherapy, vs. TT (cetuximab) + SoC (platinum + 5-fluorouracil): ICER AR $135,801/LY and AR $170,985/QALY | yes |
Zhou K et al. China 2020 [54] | Pembrolizumab 1L | SoC (chemotherapy) | PD-L1 | $100,000/QALY | Pembrolizumab monotherapy vs. cetuximab plus chemotherapy: (a) Overall population, ICER $14,995/QALY; (b) CPS ≥ 1, $22,779/QALY; (c) CPS ≥ 20, ICER $39,535/QALY. Pembrolizumab plus chemotherapy vs. standard therapy: (a) Overall population, ICER $43,230/QALY; (b) CPS ≥ 1 $36,157/QALY; (c) CPS ≥ 20, ICER $55,679/QALY. | yes |
Liu M et al. US and China 2019 [55] | Pembrolizumab 2L | SoC (chemotherapy) | PD-L1 | US: $100,000/QALY China: $63,564/QALY | Pembrolizumab group vs. PD-L1 CPS treatment: (a) China, $7892/QALY; (b) US, $11,900/QALY. | yes |
Zargar M et al. Canada 2018 [56] | Nivolumab NS | SoC (chemotherapy) | PD-L1 | $100,000/QALY | Nivolumab vs. docetaxel: ICER $144,744/QALY | no |
Hirschmann A et al. Switzerland 2018 [57] | Nivolumab 2L | SoC (chemotherapy) | PD-L1 | CHF 100,000/QALY | Nivolumab vs. SoC: ICER CHF 102,957/QALY | yes |
Ward MC et al. US 2017 [58] | Nivolumab NS | SoC (chemotherapy) | PD-L1 | $100,000/QALY | Nivolumab vs. SoC: ICER $140,672/QALY | no |
Triple-negative breast cancer (TNBC) | ||||||
Liu X et al. China 2021 [59] | Atezolizumab NS | SoC (chemotherapy) | PD-L1 | $31,316/QALY | Atezolizumab plus nab-paclitaxel versus nab-paclitaxel: (a) ITT, ICER $176,056/QALY; (b) PD-L1(+), ICER $118,146/QALY; (c) PD-L1(–), ICER $323,077/QALY. | no |
Weng X et al. US and China 2020 [60] | Atezolizumab 1L | SoC (chemotherapy) | PD-L1 | US: $150,000/QALY China: $29,383/QALY | Atezolizumab in combination with nab-paclitaxel (AnP) vs. nab-paclitaxel alone: (a) US ITT population, ICER $331,996.89/QALY and $242,461.27/LY; (b) US PD-L1-positive patients, $229,359.88/QALY and $169,847.95/LY; (c) China ITT population, ICER $106,339.26/QALY and 77,660.83/LY; (d) China PD-L1-positive patients, $72,971.88/QALY and $54,037.89/LY. | no |
Wu B et al. US 2020 [61] | Atezolizumab 1L | SoC (chemotherapy) | PD-L1 | $200,000/QALY | Atezolizumab plus nab-paclitaxel vs. nab-paclitaxel: (a) Overall population, ICER $281,448/QALY; (b) Patients with CPS ≥ 1, ICER $196,073/QALY gained. Atezolizumab plus nab-paclitaxel guiding by PD-L1 expression testing: ICER $183,508/QALY. | (a) no (b) yes |
Melanoma | ||||||
Meng Y et al. UK 2018 [62] | Nivolumab; Ipilimumab NS | Ipilimumab, dabrafenib, vemurafenib + SoC (dacarbazine) | PD-L1, BRAF | £50,000/QALY | BRAF mutation-negative patients: (a) Nivolumab vs. ipilimumab: ICER £24,483/QALY; (b) Ipilimumab vs. dacarbazine: ICER £22,589/QALY. BRAF mutation-positive patients: (a) Nivolumab vs. ipilimumab (the only non-dominated comparator), ICER £17,362/QALY. | yes |
Tarhini A et al. US 2018 [63] | All 1L | TT (anti-PD-1 initiating sequences) | PD-L1, CTLA-4 | $150,000/QALY | Anti PD-1 + anti-CTLA-4 followed by chemotherapy vs. anti-PD-1 initiating sequences: ICER $30,955/QALY. | yes |
Chang WC et al. Taiwan 2021 [64] | Avelumab NS | SoC (chemotherapy) | PD-L1 | $53,333.33/QALY | Avelumab vs. BSC: ICER USD 44 885.06/QALY. Avelumab vs. SoC: ICER USD 42 993.06/ QALY. | yes |
Cervical cancer | ||||||
Shi Y et al. US 2021 [65] | Pembrolizumab NS | Placebo | PD-L1 | $150,000/QALY | Pembrolizumab versus placebo: (a) ITT patients, ICER $247,663/QALY; (b) PD-L1 CPS ≥ 1, ICER $253,322/QALY; (c) PD-L1 CPS ≥ 10, ICER $214,212/QALY. | no |
Gastric cancer | ||||||
Lauren B et al. US 2020 [66] | Pembrolizumab 2L | No second-line treatment | PD-L1 | $100,000/QALY | Pembrolizumab for MSI-H patients and ramucirumab/paclitaxel for all other patients vs. paclitaxel: ICER $1,074,620/QALY. Paclitaxel monotherapy for all patients: ICER $53,705/QALY. | no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mucherino, S.; Lorenzoni, V.; Triulzi, I.; Del Re, M.; Orlando, V.; Capuano, A.; Danesi, R.; Turchetti, G.; Menditto, E. Cost-Effectiveness of Treatment Optimisation with Biomarkers for Immunotherapy in Solid Tumours: A Systematic Review. Cancers 2024, 16, 995. https://doi.org/10.3390/cancers16050995
Mucherino S, Lorenzoni V, Triulzi I, Del Re M, Orlando V, Capuano A, Danesi R, Turchetti G, Menditto E. Cost-Effectiveness of Treatment Optimisation with Biomarkers for Immunotherapy in Solid Tumours: A Systematic Review. Cancers. 2024; 16(5):995. https://doi.org/10.3390/cancers16050995
Chicago/Turabian StyleMucherino, Sara, Valentina Lorenzoni, Isotta Triulzi, Marzia Del Re, Valentina Orlando, Annalisa Capuano, Romano Danesi, Giuseppe Turchetti, and Enrica Menditto. 2024. "Cost-Effectiveness of Treatment Optimisation with Biomarkers for Immunotherapy in Solid Tumours: A Systematic Review" Cancers 16, no. 5: 995. https://doi.org/10.3390/cancers16050995
APA StyleMucherino, S., Lorenzoni, V., Triulzi, I., Del Re, M., Orlando, V., Capuano, A., Danesi, R., Turchetti, G., & Menditto, E. (2024). Cost-Effectiveness of Treatment Optimisation with Biomarkers for Immunotherapy in Solid Tumours: A Systematic Review. Cancers, 16(5), 995. https://doi.org/10.3390/cancers16050995