Anti-PD-1 Therapy in Advanced Pediatric Malignancies in Nationwide Study: Good Outcome in Skin Melanoma and Hodgkin Lymphoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Treatment
2.3. Assessment of Therapeutic Response
2.4. Adverse Events
2.5. Statistical Analysis
3. Results
3.1. Demographics
3.2. Clinical Course
3.3. Progression-Free Survival
3.4. Overall Survival
3.5. Safety
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Butler, E.; Ludwig, K.; Pacenta, H.L.; Klesse, L.J.; Watt, T.C.; Laetsch, T.W. Recent progress in the treatment of cancer in children. CA Cancer J. Clin. 2021, 71, 315–332. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhanghuang, C.; Tan, X.; Mi, T.; Liu, J.; Jin, L.; Li, M.; Zhang, Z.; He, D. A Nomogram for Predicting Cancer-Specific Survival of Osteosarcoma and Ewing’s Sarcoma in Children: A SEER Database Analysis. Front. Public Health 2022, 10, 837506. [Google Scholar] [CrossRef]
- Sokol, E.; Desai, A.V.; Applebaum, M.A.; Valteau-Couanet, D.; Park, J.R.; Pearson, A.D.; Schleiermacher, G.; Irwin, M.S.; Hogarty, M.; Naranjo, A.; et al. Age, diagnostic category, tumor grade, and Mitosis-Karyorrhexis index are independently prognostic in neuroblastoma: An INRG project. J. Clin. Oncol. 2020, 38, 1906–1918. [Google Scholar] [CrossRef] [PubMed]
- Long, A.H.; Morgenstern, D.A.; Leruste, A.; Bourdeaut, F.; Davis, K.L. Checkpoint Immunotherapy in Pediatrics: Here, Gone, and Back Again. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 781–794. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Chen, H.; Wang, Y.; Zheng, C. Safety and efficacy of PD-1 and PD-L1 inhibitors in relapsed and refractory Hodgkin’s lymphoma: A systematic review and meta-analysis of 20 prospective studies. Hematology 2023, 28, 2181749. [Google Scholar] [CrossRef] [PubMed]
- Marjańska, A.; Drogosiewicz, M.; Dembowska-Bagińska, B.; Pawińska-Wąsikowska, K.; Balwierz, W.; Bobeff, K.; Młynarski, W.; Mizia-Malarz, A.; Raciborska, A.; Wysocki, M.; et al. Nivolumab for the Treatment of Advanced Pediatric Malignancies. Anticancer. Res. 2020, 40, 7095–7100. [Google Scholar] [CrossRef]
- Onesti, C.E.; Freres, P.; Jerusalem, G. Atypical patterns of response to immune checkpoint inhibitors: Interpreting pseudoprogression and hyperprogression in decision making for patients’ treatment. J. Thorac. Dis. 2019, 11, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.L.; Fox, E.; Merchant, M.S.; Reid, J.M.; Kudgus, R.A.; Liu, X.; Minard, C.G.; Voss, S.; Berg, S.L.; Weigel, B.J.; et al. Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): A multicentre, open-label, single-arm, phase 1–2 trial. Lancet Oncol. 2020, 21, 541–550. [Google Scholar] [CrossRef]
- Saiyed, F.K.; Hamilton, E.C.; Austin, M.T. Pediatric melanoma: Incidence, treatment, and prognosis. Pediatr. Health Med. Ther. 2017, 8, 39–45. [Google Scholar] [CrossRef]
- Geoerger, B.; Kang, H.J.; Yalon-Oren, M.; Marshall, L.V.; Vezina, C.; Pappo, A.; Laetsch, T.W.; Petrilli, A.S.; Ebinger, M.; Toporski, J.; et al. Pembrolizumab in paediatric patients with advanced melanoma or a PD-L1-positive, advanced, relapsed, or refractory solid tumour or lymphoma (KEYNOTE-051): Interim analysis of an open-label, single-arm, phase 1–2 trial. Lancet Oncol. 2020, 21, 121–133. [Google Scholar] [CrossRef]
- Que, Y.; Hu, Y.; Hong, D.; Zhang, Y. Trends in clinical development of pediatric cancer for PD-1 and PD-L1 inhibitors: An analysis of ClinicalTrials.gov. J. Immunother. Cancer 2021, 9, e002920. [Google Scholar] [CrossRef] [PubMed]
- Picardi, M.; Giordano, C.; Pugliese, N.; Esposito, M.; Fatigati, M.; Muriano, F.; Rascato, M.G.; Della Pepa, R.; D’Ambrosio, A.; Vigliar, E.; et al. Liposomal doxorubicin supercharge-containing front-line treatment in patients with advanced-stage diffuse large B-cell lymphoma or classical Hodgkin lymphoma: Preliminary results of a single-centre phase II study. Br. J. Haematol. 2022, 198, 847–860. [Google Scholar] [CrossRef] [PubMed]
- Picardi, M.; Della Pepa, R.; Giordano, C.; Pugliese, N.; Mortaruolo, C.; Trastulli, F.; Rascato, M.G.; Cappuccio, I.; Raimondo, M.; Memoli, M.; et al. Brentuximab vedotin followed by bendamustine supercharge for refractory or relapsed Hodgkin lymphoma. Blood Adv. 2019, 3, 1546–1552. [Google Scholar] [CrossRef] [PubMed]
- Harker-Murray, P.; Mauz-Korholz, C.; Leblanc, T.; Mascarin, M.; Michel, G.; Cooper, S.; Beishuizen, A.; Leger, K.J.; Amoroso, L.; Buffardi, S.; et al. Nivolumab and brentuximab vedotin with or without bendamustine for R/R Hodgkin lymphoma in children, adolescents, and young adults. Blood 2023, 141, 2075–2084. [Google Scholar] [CrossRef] [PubMed]
- Cheson, B.D.; Fisher, R.I.; Barrington, S.F.; Cavalli, F.; Schwartz, L.H.; Zucca, E.; Lister, T.A.; Alliance, A.L.; Lymphoma, G.; Eastern Cooperative Oncology Group; et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. J. Clin. Oncol. 2014, 32, 3059–3068. [Google Scholar] [CrossRef] [PubMed]
- Randall, M.P.; Spinner, M. Optimizing Treatment for Relapsed/Refractory Classic Hodgkin Lymphoma in the Era of Immunotherapy. Cancers 2023, 15, 4509. [Google Scholar] [CrossRef] [PubMed]
- Algeri, M.; Locatelli, F. Pembrolizumab (and friends) in pediatric malignancies: Should we consider Hodgkin lymphoma a world of its own? Ann. Transl. Med. 2020, 8, 1112. [Google Scholar] [CrossRef] [PubMed]
- Dondero, A.; Pastorino, F.; Chiesa, M.D.; Corrias, M.V.; Morandi, F.; Pistoia, V.; Olive, D.; Bellora, F.; Locatelli, F.; Castellano, A.; et al. PD-L1 expression in metastatic neuroblastoma as an additional mechanism for limiting immune surveillance. Oncoimmunology 2015, 15, e1064578. [Google Scholar] [CrossRef]
- Siebert, N.; Zumpe, M.; Jüttner, M.; Troschke-Meurer, S.; Lode, H.N. PD-1 blockade augments anti-neuroblastoma immune response induced by anti-GD2 antibody ch14.18/CHO. Oncoimmunology 2017, 6, e1343775. [Google Scholar] [CrossRef]
- Ehlert, K.; Hansjuergens, I.; Zinke, A.; Otto, S.; Siebert, N.; Henze, G.; Lode, H. Nivolumab and dinutuximab beta in two patients with refractory neuroblastoma. J. Immunother. Cancer 2020, 8, e000540. [Google Scholar] [CrossRef]
- Cacciotti, C.; Choi, J.; Alexandrescu, S.; Zimmerman, M.A.; Cooney, T.M.; Chordas, C.; Clymer, J.; Chi, S.; Yeo, K.K. Immune checkpoint inhibition for pediatric patients with recurrent/refractory CNS tumors: A single institution experience. J. Neuro-Oncol. 2020, 149, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Gorsi, H.S.; Malicki, D.M.; Barsan, V.; Tumblin, M.; Yeh-Nayre, L.; Milburn, M.; Elster, J.D.; Crawford, J.R. Nivolumab in the Treatment of Recurrent or Refractory Pediatric Brain Tumors: A Single Institutional Experience. J. Pediatr. Hematol. Oncol. 2019, 41, e235–e241. [Google Scholar] [CrossRef] [PubMed]
- Sterz, U.; Grube, M.; Herr, W.; Menhart, K.; Wendl, C.; Vogelhuber, M. Case Report: Dual Checkpoint Inhibition in Advanced Metastatic Osteosarcoma Results in Remission of All Tumor Manifestations-A Report of a Stunning Success in a 37-Year-Old Patient. Front. Oncol. 2021, 11, 684733. [Google Scholar] [CrossRef] [PubMed]
- Offenbacher, R.; Fabish, L.; Oliver-Krasinski, J.; Loeb, D.M.; Baker, A. Pembrolizumab as maintenance therapy for malignant rhabdoid tumor. Pediatr. Blood Cancer 2022, 69, e29660. [Google Scholar] [CrossRef] [PubMed]
- Boye, K.; Longhi, A.; Guren, T.; Lorenz, S.; Naess, S.; Pierini, M.; Taksdal, I.; Lobmaier, I.; Cesari, M.; Paioli, A.; et al. Pembrolizumab in advanced osteosarcoma: Results of a single-arm, open-label, phase 2 trial. Cancer Immunol. Immunother. 2021, 70, 2617–2624. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.L.; Yeh, Y.C.; Yu, T.Y.; Lee, C.Y.; Hung, G.Y.; Yeh, Y.T.; Liu, C.S.; Yen, H.J. Complete and durable response to immune checkpoint inhibitor in a patient with refractory and metastatic hepatoblastoma. Pediatr. Hematol. Oncol. 2021, 38, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Que, Y.; Wang, J.; Zhu, J.; Li, N.; Huang, J.; Lu, S.; Sun, F.; Zhang, L.; Zhen, Z.; Zhang, L.; et al. Combination therapy with anti-PD-1 or PD-1 antibody alone in Asian pediatric patients with relapsed or refractory cancer. Front. Immunol. 2021, 12, 647733. [Google Scholar] [CrossRef]
- Nigro, O.; Ferrari, A.; Casanova, M.; Orbach, D.; Leruste, A.; Gatz, S.A.; Frappaz, D.; Massimino, M. Controversies on the possible role of immune checkpoint inhibitors in pediatric cancers: Balancing irAEs and efficacy. Tumori 2021, 107, 276–281. [Google Scholar] [CrossRef]
- Carneiro, B.A.; Konda, B.; Costa, R.B.; Costa, R.L.B.; Sagar, V.; Gursel, D.B.; Kirschner, L.S.; Chae, S.K.; Abdulkadir, S.A.; Rademaker, A.; et al. Nivolumab in Metastatic Adrenocortical Carcinoma: Results of a Phase 2 Trial. J. Clin. Endocrinol. Metab. 2019, 104, 6193–6200. [Google Scholar] [CrossRef]
- Klein, O.; Senko, C.; Carlino, M.S.; Markman, B.; Jackett, L.; Gao, B.; Lum, C.; Kee, D.; Behren, A.; Palmer, J.; et al. Combination immunotherapy with ipilimumab and nivolumab in patients with advanced adrenocortical carcinoma: A subgroup analysis of CA209-538. Oncoimmunology 2021, 10, 1908771. [Google Scholar] [CrossRef]
- Yoshimura, K.; Yamanoi, K.; Kanai, M.; Okunomiya, A.; Sagae, Y.; Sunada, M.; Taki, M.; Ukita, M.; Chigusa, Y.; Horie, A.; et al. Nivolumab for malignant transformation of ovarian mature cystic teratoma. Gynecol. Oncol. Rep. 2022, 44, 101115. [Google Scholar] [CrossRef]
- Traylor, J.I.; Pernik, M.N.; Plitt, A.R.; Lim, M.; Garzon-Muvdi1, T. Immunotherapy for Chordoma and Chondrosarcoma: Current Evidence. Cancers 2021, 13, 2408. [Google Scholar] [CrossRef]
- Melani, C.; Major, A.; Schowinsky, J.; Roschewski, M.; Pittaluga, S.; Jaffe, E.S.; Pack, S.D.; Abdullaev, Z.; Ahlman, M.A.; Kwak, J.J. PD-1 Blockade in Mediastinal Gray-Zone Lymphoma. N. Engl. J. Med. 2017, 377, 89–91. [Google Scholar] [CrossRef]
- Johnson, D.B.; Nebhan, C.A.; Moslehi, J.J.; Balko, J.M. Immune-checkpoint inhibitors: Long-term implications of toxicity. Nat. Rev. Clin. Oncol. 2022, 19, 254–267. [Google Scholar] [CrossRef]
No | Age [Years], Sex | ECOG Status | TNM Staging | Treatment (Number of Cycles) | Previous Lines of Therapy | Effect of Treatment | Adverse Events (CTCAE Grade) |
---|---|---|---|---|---|---|---|
1 | 16.5/M | 0 | IV | NIVO (27) | 2 | CR (OS = 74.6 months) | None |
2 | 7.4/F | 0 | IV | PEMBRO (7) | 2 | CR (OS = 68.1 months) | SIRS (4); arthritis (4) * |
3 | 8.8/F | 0 | III | NIVO (12) | 0 | CR (OS = 38.1 months) | None |
4 | 15.7/F | 0 | III | NIVO (50) | 0 | CR (OS = 30.6 months) | Hypothyroidism (4); blood hypotension (3); diarrhea (2); tumor pseudoprogression |
5 | 17.8/M | 0 | III | NIVO (48) | 0 | CR (OS = 22.9 months) | None |
6 | 14.4/M | 1 | III | NIVO (27) | 0 | CR (OS = 14.9 months) | None |
7 | 16.4/M | 1 | III | NIVO (26) | 0 | CR (OS = 12.6 months) | None |
8 | 8.5/M | 0 | III | NIVO (9) + IPI (4) | 0 | PD | Hepatotoxicity (2) |
9 | 3.1/F | 1 | IV | NIVO (4) | 2 | PD | Pneumonia (3) |
CUMULATIVE | Median age: 14.4 years (M = 5; F = 4) | Good overall condition (ECOG > 2) in 9/9 patients | High stage of the cancer in 9/9 patients | Median ICIs doses: 26 | Median: 0 | CR in seven patients with median OS: 30.6 months | Good tolerance of therapy in most patients; * in 1/9 patients, side effects were unacceptable and forced the termination of therapy |
No | Age [Years], Sex | ECOG Status | Treatment (Number of Cycles) | Previous Lines of Therapy | Effect of Treatment | Adverse Events (CTCAE Grade) |
---|---|---|---|---|---|---|
1 | 15.9/M | 1 | NIVO (8) | 2 | CR (OS = 57 months) | None |
2 | 16.6/M | 2 | NIVO (26) | 3 | CR (OS = 34.8 months) | None |
3 | 16.1//M | 0 | NIVO (26) | 5 | CR (OS = 22.3 months) | Pseudoprogression |
4 | 17.2/M | 2 | NIVO (7) | 4 | CR (OS = 15.8 months) | Acute pancreatitis (2) |
5 | 17.5/M | 0 | NIVO (20) + BV (1) | 1 | SD (OS = 13.8 months) | Rash (2) |
6 | 17.1/M | 1 | NIVO (1) + BV (1) | 4 | SD (OS = 13.1 months) | None |
7 | 14.8/F | 0 | NIVO (18) | 1 | SD (OS = 10.3 months) | None |
8 | 17.2/M | 1 | NIVO (12) | 3 | SD (OS = 6.1 months) | None |
9 | 16.3/M | 1 | NIVO (11) + BV (7) | 2 | PD | None |
10 | 16.1/F | 0 | NIVO (4) | 2 | PD | Hyperthyroidism (2) |
11 | 14.3/M | 0 | NIVO (4) | 3 | PD | Acute pancreatitis (2) |
CUMULATIVE | Median age: 16.3 years (M = 9; F = 2) | Good general condition (ECOG > 2) in 9/11 patients | Median ICIs doses: 11 | Median: 3 | CR or SD in eight patients with median OS: 14.8 months | Good tolerance of therapy in most patients; no patient required termination of therapy due to side effects |
No | Age [Years], Sex | ECOG Status | Treatment (Number of Cycles) | Previous Lines of Therapy | Effect of Treatment | Adverse Events (CTCAE Grade) |
---|---|---|---|---|---|---|
1 | 12.3/F | 1 | NIVO (13) + DB | 4 | CR (OS = 18 months) | Pneumonia (2) |
2 | 10.2/M | 1 | NIVO (16) + DB | 1 | CR (OS = 7.9 months) | None |
3 | 10.5/M | 0 | NIVO (6) | 4 | PD | None |
4 | 3.2/M | 4 | NIVO (2) + DB | 2 | PD | None |
5 | 5.6/M | 4 | NIVO (3) + DB | 2 | PD | None |
6 | 7.0/M | 2 | NIVO (3) | 3 | PD | None |
7 | 3.7/M | 4 | NIVO (2) | 2 | PD | None |
8 | 3.2/F | 4 | NIVO (2) + DB | 2 | PD | None |
CUMULATIVE | Median age: 6.3 years (M = 6; F = 2) | Poor general condition (ECOG ≤ 2) in 5/8 patients | Median ICIs doses: 3 | Median: 2 | CR in two patients | Good tolerance of therapy in all patients |
No | Age [Years], Sex | ECOG Status | Diagnosis | Treatment (Number of Cycles) | Previous Lines of Therapy | Effect of Treatment | Adverse Events (CTCAE Grade) |
---|---|---|---|---|---|---|---|
1 | 12.1/M | 1 | Alveolar RMS of pancreas | NIVO (51) | 3 | CR (OS = 32.1 months) | Hyperthyroidism (3) |
2 | 17.8/M | 2 | Mediastinal gray zone lymphoma | NIVO (9) | 4 | CR (OS = 7.3 months) | None |
3 | 15.4//M | 2 | Osteosarcoma | NIVO (27) | 4 | PD | None |
4 | 16.8/M | 2 | Osteosarcoma | NIVO (6) | 2 | PD | Pseudoprogression |
5 | 16.4/F | 0 | Renal cell carcinoma | NIVO (17) | 2 | PD | Hypothyroidism (2) |
6 | 3.4/M | 0 | Hepatoblastoma | PEMBRO (10) | 9 | PD | Rash |
7 | 5.3/M | 2 | DIPG of brain | NIVO (2) | 1 | PD | Pneumonia (3) |
8 | 16.6/M | 3 | Medulloblastoma of cerebellum | NIVO (4) | 1 | PD | None |
9 | 17.9/F | 2 | Extrasceletal chondrosarcoma | NIVO (2) | 3 | PD | None |
10 | 0.7/F | 4 | Rhabdoid tumor of kidney | NIVO (2) | 1 | PD | None |
11 | 1.5/M | 4 | Rhabdoid tumor of liver | NIVO (1) | 1 | PD | None |
12 * | 18.0/M | 2 | Gastric cancer with lymphoid stroma | PEMBRO (3) | 1 | PD | None |
13 | 16.9/F | 0 | Adrenal cortex cancer | NIVO (3) | 3 | PD | None |
14 | 11.9/F | 0 | Ovarian germ cell tumor | PEMBRO (1) | 5 | PD | None |
CUMULATIVE | Median age: 15.9 years (M = 9; F = 5) | Poor general condition (ECOG ≤ 2) in 9/14 patients | Most of the above diagnoses are ultra-rare cancers for the pediatric population | Median ICIs doses: 3.5 | Median: 3 | CR in two patients | Good tolerance of therapy in most patients; no patient required termination of therapy due to side effects |
Characteristics | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|
Factor | Description | HR (95% CI) | p | HR (95% CI) | p |
Age | >14 years | 1 | 1 | ||
<14 years | 3.2 (1.2–8.1) | 0.017 | 2.0 (0.5–8.0) | 0.322 | |
ECOG score | 0–1 | 1 | 1 | ||
>1 | 3.8 (1.6–9.1) | 0.003 | 2.2 (0.6–8.5) | 0.242 | |
Previous therapy | None | 1 | |||
≥1 line | 5.5 (0.7–41) | 0.096 | |||
Diagnosis | HL or MM | 1 | 1 | ||
Other | 5.5 (1.2–25) | 0.027 | 5.5 (1.2–25) | 0.027 |
Characteristics | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|
Factor | Description | HR (95% CI) | p | HR (95% CI) | p |
Age | >14 years | 1 | 1 | ||
<14 years | 14.3 (2.0–103) | 0.009 | 11.1 (1.1–102) | 0.044 | |
ECOG score | 0–1 | 1 | 1 | ||
>1 | 5.6 (1.8–16.6) | 0.002 | 4.2 (1.1–16.4) | 0.036 | |
Previous therapy | None | 1 | |||
≥1 line | 3.8 (0.5–29.0) | 0.197 | |||
Diagnosis | HL or MM | 1 | 1 | ||
Other | 9.3 (2.1–41.8) | 0.003 | 2.3 (0.25–20) | 0.459 |
Age [Years] | CR | SD | PD |
---|---|---|---|
≥14 | 5/5 with malignant melanoma 4/11 with Hodgkin lymphoma 1/1 with mediastinal gray zone lymphoma | 4/11 with Hodgkin lymphoma | 3/11 with Hodgkin lymphoma 2/2 with osteosarcoma 1/1 with renal cell carcinoma 1/1 with medulloblastoma of cerebellum 1/1 with extraskeletal chondrosarcoma 1/1 with gastric cancer with lymphoid stroma 1/1 with adrenal cortex cancer |
TOTAL: | 58.3%% (14/24) | 41.7% (10/24) | |
<14 | 2/4 with malignant melanoma 2/8 with neuroblastoma 1/1 with alveolar RMS of pancreas | 2/4 with malignant melanoma 6/8 with neuroblastoma 1/1 with hepatoblastoma 1/1 with DIPG of brain 2/2 with rhabdoid tumor 1/1 with ovarian germ cell tumor | |
TOTAL: | 27.8% (5/18) | 72.2% (13/18) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marjańska, A.; Pawińska-Wąsikowska, K.; Wieczorek, A.; Drogosiewicz, M.; Dembowska-Bagińska, B.; Bobeff, K.; Młynarski, W.; Adamczewska-Wawrzynowicz, K.; Wachowiak, J.; Krawczyk, M.A.; et al. Anti-PD-1 Therapy in Advanced Pediatric Malignancies in Nationwide Study: Good Outcome in Skin Melanoma and Hodgkin Lymphoma. Cancers 2024, 16, 968. https://doi.org/10.3390/cancers16050968
Marjańska A, Pawińska-Wąsikowska K, Wieczorek A, Drogosiewicz M, Dembowska-Bagińska B, Bobeff K, Młynarski W, Adamczewska-Wawrzynowicz K, Wachowiak J, Krawczyk MA, et al. Anti-PD-1 Therapy in Advanced Pediatric Malignancies in Nationwide Study: Good Outcome in Skin Melanoma and Hodgkin Lymphoma. Cancers. 2024; 16(5):968. https://doi.org/10.3390/cancers16050968
Chicago/Turabian StyleMarjańska, Agata, Katarzyna Pawińska-Wąsikowska, Aleksandra Wieczorek, Monika Drogosiewicz, Bożenna Dembowska-Bagińska, Katarzyna Bobeff, Wojciech Młynarski, Katarzyna Adamczewska-Wawrzynowicz, Jacek Wachowiak, Małgorzata A. Krawczyk, and et al. 2024. "Anti-PD-1 Therapy in Advanced Pediatric Malignancies in Nationwide Study: Good Outcome in Skin Melanoma and Hodgkin Lymphoma" Cancers 16, no. 5: 968. https://doi.org/10.3390/cancers16050968
APA StyleMarjańska, A., Pawińska-Wąsikowska, K., Wieczorek, A., Drogosiewicz, M., Dembowska-Bagińska, B., Bobeff, K., Młynarski, W., Adamczewska-Wawrzynowicz, K., Wachowiak, J., Krawczyk, M. A., Irga-Jaworska, N., Węcławek-Tompol, J., Kałwak, K., Sawicka-Żukowska, M., Krawczuk-Rybak, M., Raciborska, A., Mizia-Malarz, A., Sobocińska-Mirska, A., Łaguna, P., ... Styczyński, J. (2024). Anti-PD-1 Therapy in Advanced Pediatric Malignancies in Nationwide Study: Good Outcome in Skin Melanoma and Hodgkin Lymphoma. Cancers, 16(5), 968. https://doi.org/10.3390/cancers16050968