Immunotherapy and Radiation Therapy Combinatorial Approaches in Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Overview of Current Management of HCC: Focus on ICI and Radiation Therapy
2.1. Immunotherapy in HCC
Artificial Intelligence-Based Pathology as a Biomarker for Immunotherapy in HCC
2.2. Radiation Therapy in HCC
3. Current Limitations of ICIs and Radiation Therapy in HCC
4. Combination of Radiotherapy and Immunotherapy
4.1. Rationale of Radioimmunotherapy
4.2. Optimal Timing of ICI during Radioimmunotherapy
4.3. Pathological Aspects of Hepatocellular Tumors Expressing PD-L1
4.4. Strategies for Minimizing Hepatotoxicity in Combined Immunotherapy and Radiotherapy
4.5. Abscopal Effect and Its Implications for HCC
4.6. Clinical Trials Investigating Radioimmunotherapy in Hepatocellular Carcinoma
5. Challenges and Future Directions
5.1. Balancing Efficacy and Safety: A Primary Challenge
5.2. Challenges in Current Therapeutic Approaches
5.3. Envisioning Future Directions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Deshpande, A.; Verma, B.K.; Wang, H.; Mi, H.; Yuan, L.; Ho, W.J.; Jaffee, E.M.; Zhu, Q.; Anders, R.A. Informing virtual clinical trials of hepatocellular carcinoma with spatial multi-omics analysis of a human neoadjuvant immunotherapy clinical trial. bioRxiv 2023. [Google Scholar] [CrossRef]
- Ramdhani, K.; Smits, M.L.; Lam, M.G.; Braat, A.J. Combining selective internal radiation therapy with immunotherapy in treating hepatocellular carcinoma and hepatic colorectal metastases: A systematic review. Cancer Biother. Radiopharm. 2023, 38, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Ozer, M.; Goksu, S.Y.; Akagunduz, B.; George, A.; Sahin, I. Adoptive Cell Therapy in Hepatocellular Carcinoma: A Review of Clinical Trials. Cancers 2023, 15, 1808. [Google Scholar] [CrossRef]
- Hovhannisyan, L.; Riether, C.; Aebersold, D.M.; Medová, M.; Zimmer, Y. CAR T cell-based immunotherapy and radiation therapy: Potential, promises and risks. Mol. Cancer 2023, 22, 82. [Google Scholar] [CrossRef] [PubMed]
- Tsilimigras, D.I.; Aziz, H.; Pawlik, T.M. Critical analysis of the updated Barcelona clinic liver cancer (BCLC) group guidelines. Ann. Surg. Oncol. 2022, 29, 7231–7234. [Google Scholar] [CrossRef]
- Zhong, B.-Y.; Jin, Z.-C.; Chen, J.-J.; Zhu, H.-D.; Zhu, X.-L. Role of transarterial chemoembolization in the treatment of hepatocellular carcinoma. J. Clin. Transl. Hepatol. 2023, 11, 480. [Google Scholar] [CrossRef] [PubMed]
- Golfieri, R.; Bargellini, I.; Spreafico, C.; Trevisani, F. Patients with Barcelona Clinic Liver Cancer stages B and C hepatocellular carcinoma: Time for a subclassification. Liver Cancer 2019, 8, 78–91. [Google Scholar] [CrossRef]
- Han, K.; Kim, J.H. Transarterial chemoembolization in hepatocellular carcinoma treatment: Barcelona clinic liver cancer staging system. World J. Gastroenterol. WJG 2015, 21, 10327. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef]
- Ozer, M.; George, A.; Goksu, S.Y.; George, T.J.; Sahin, I. The role of immune checkpoint blockade in the hepatocellular carcinoma: A review of clinical trials. Front. Oncol. 2021, 11, 801379. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Van Dao, T.; De Toni, E.N. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid. 2022, 1, EVIDoa2100070. [Google Scholar] [CrossRef]
- Finn, R.S.; Ryoo, B.Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef]
- Qin, S.; Chen, Z.; Fang, W.; Ren, Z.; Xu, R.; Ryoo, B.Y.; Meng, Z.; Bai, Y.; Chen, X.; Liu, X.; et al. Pembrolizumab Versus Placebo as Second-Line Therapy in Patients From Asia With Advanced Hepatocellular Carcinoma: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2023, 41, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.Y.; Choo, S.P.; Trojan, J.; Welling, T.H.R.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef]
- Zeng, Q.; Klein, C.; Caruso, S.; Maille, P.; Allende, D.S.; Mínguez, B.; Iavarone, M.; Ningarhari, M.; Casadei-Gardini, A.; Pedica, F. Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab–bevacizumab in patients with hepatocellular carcinoma: A multicentre retrospective study. Lancet Oncol. 2023, 24, 1411–1422. [Google Scholar] [CrossRef]
- Jung, J.; Kim, H.; Yoon, S.M.; Cho, B.; Kim, Y.J.; Kwak, J.; Kim, J.H. Targeting Accuracy of Image-Guided Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma in Real-Life Clinical Practice: In Vivo Assessment Using Hepatic Parenchymal Changes on Gd-EOB-DTPA–Enhanced Magnetic Resonance Images. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 867–874. [Google Scholar] [CrossRef]
- Kalogeridi, M.-A.; Zygogianni, A.; Kyrgias, G.; Kouvaris, J.; Chatziioannou, S.; Kelekis, N.; Kouloulias, V. Role of radiotherapy in the management of hepatocellular carcinoma: A systematic review. World J. Hepatol. 2015, 7, 101. [Google Scholar] [CrossRef]
- Chen, W.; Chiang, C.-L.; Dawson, L.A. Efficacy and safety of radiotherapy for primary liver cancer. Chin. Clin. Oncol. 2020, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Heckman, P.; Hao, Z.; Bernard, M.E.; Chen, Q.; Huang, B. Survival outcomes of stage I small cell lung cancer (SCLC) treated with stereotactic body radiation therapy (SBRT) versus external beam radiation therapy (EBRT): An NCDB analysis. J. Clin. Oncol. 2023, 41, e20638. [Google Scholar] [CrossRef]
- Mee, S.F.; Polan, D.F.; Dewaraja, Y.K.; Cuneo, K.C.; Gemmete, J.J.; Evans, J.R.; Lawrence, T.S.; Dow, J.S.; Mikell, J.K. Stereotactic body radiation therapy (SBRT) following Yttrium-90 (90Y) selective internal radiation therapy (SIRT): A feasibility planning study using 90Y delivered dose. Phys. Med. Biol. 2023, 68, 065003. [Google Scholar] [CrossRef] [PubMed]
- Berman, Z.T.; Newton, I. Diagnosis, staging, and patient selection for locoregional therapy to treat hepatocellular carcinoma. Semin. Interv. Radiol. 2020, 37, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Zucman-Rossi, J.; Pikarsky, E.; Sangro, B.; Schwartz, M.; Sherman, M.; Gores, G. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2016, 2, 16018. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Brú, C.; Bruix, J. Prognosis of hepatocellular carcinoma: The BCLC staging classification. Semin. Liver Dis. 1999, 19, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Cellini, F.; Arcelli, A.; Simoni, N.; Caravatta, L.; Buwenge, M.; Calabrese, A.; Brunetti, O.; Genovesi, D.; Mazzarotto, R.; Deodato, F.; et al. Basics and Frontiers on Pancreatic Cancer for Radiation Oncology: Target Delineation, SBRT, SIB Technique, MRgRT, Particle Therapy, Immunotherapy and Clinical Guidelines. Cancers 2020, 12, 1729. [Google Scholar] [CrossRef]
- Sharma, D.; Kamal, R.; Thaper, D. BCLC 2022 Update: Still a Long Way to Prove the Efficacy of External Beam Radiation Therapy. Indian J. Med. Paediatr. Oncol. 2022, 44, 440–441. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, Y.; Zhang, M.; Wu, J.; Gao, S.; Que, R.; Yu, J.; Tang, X.; Bai, X.; Liang, T. The safety and efficacy of donafenib combined with anti-PD-1 antibody as adjuvant therapy for patients (pts) with hepatocellular carcinoma (HCC): Updated results of a phase 2 study. J. Clin. Oncol. 2023, 41, e16202. [Google Scholar] [CrossRef]
- Zhu, A.X.; Abbas, A.R.; de Galarreta, M.R.; Guan, Y.; Lu, S.; Koeppen, H.; Zhang, W.; Hsu, C.H.; He, A.R.; Ryoo, B.Y.; et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat. Med. 2022, 28, 1599–1611. [Google Scholar] [CrossRef]
- Bicer, F.; Kure, C.; Ozluk, A.A.; El-Rayes, B.F.; Akce, M. Advances in Immunotherapy for Hepatocellular Carcinoma (HCC). Curr. Oncol. 2023, 30, 9789–9812. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Li, L.; Guo, B.; Liu, D.; Shi, J.; Wu, C.; Chen, J.; Zhang, X.; Wu, J. Mechanisms of resistance to chemotherapy and radiotherapy in hepatocellular carcinoma. Transl. Cancer Res. 2018, 7, 765–781. [Google Scholar] [CrossRef]
- Liu, A.; Wu, Q.; Peng, D.; Ares, I.; Anadón, A.; Lopez-Torres, B.; Martínez-Larrañaga, M.-R.; Wang, X.; Martínez, M.-A. A novel strategy for the diagnosis, prognosis, treatment, and chemoresistance of hepatocellular carcinoma: DNA methylation. Med. Res. Rev. 2020, 40, 1973–2018. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wu, J.; Xu, Y.; Li, D.; Huang, S.; Mao, Y. Efficacy and safety of regorafenib with or without PD-1 inhibitors as second-line therapy for advanced hepatocellular carcinoma in real-world clinical practice. OncoTargets Ther. 2022, 15, 1079–1094. [Google Scholar] [CrossRef] [PubMed]
- Burnette, B.; Weichselbaum, R.R. Radiation as an Immune Modulator. Semin. Radiat. Oncol. 2013, 23, 273–280. [Google Scholar] [CrossRef]
- Lee, Y.H.; Tai, D.; Yip, C.; Choo, S.P.; Chew, V. Combinational Immunotherapy for Hepatocellular Carcinoma: Radiotherapy, Immune Checkpoint Blockade and Beyond. Front. Immunol. 2020, 11, 568759. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Yee, C.; Lee, K.-M. The Effect of Radiation on the Immune Response to Cancers. Int. J. Mol. Sci. 2014, 15, 927–943. [Google Scholar] [CrossRef]
- Limbergen, E.J.V.; Ruysscher, D.K.D.; Pimentel, V.O.; Marcus, D.; Berbee, M.; Hoeben, A.; Rekers, N.; Theys, J.; Yaromina, A.; Dubois, L.J.; et al. Combining radiotherapy with immunotherapy: The past, the present and the future. Br. J. Radiol. 2017, 90, 20170157. [Google Scholar] [CrossRef]
- Gupta, A.; Probst, H.C.; Vuong, V.; Landshammer, A.; Muth, S.; Yagita, H.; Schwendener, R.; Pruschy, M.; Knuth, A.; van den Broek, M. Radiotherapy Promotes Tumor-Specific Effector CD8+ T Cells via Dendritic Cell Activation. J. Immunol. 2012, 189, 558–566. [Google Scholar] [CrossRef]
- Chan Wah Hak, C.M.L.; Rullan, A.; Patin, E.C.; Pedersen, M.; Melcher, A.A.; Harrington, K.J. Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Front. Oncol. 2022, 12, 971959. [Google Scholar] [CrossRef]
- Sharabi, A.B.; Lim, M.; DeWeese, T.L.; Drake, C.G. Radiation and checkpoint blockade immunotherapy: Radiosensitisation and potential mechanisms of synergy. Lancet Oncol. 2015, 16, e498–e509. [Google Scholar] [CrossRef]
- Germino, E.A.; Govindarajan, A.; Sedrak, M.S.; Li, D.; Amini, A. Multimodality Treatment with Radiotherapy and Immunotherapy in Older Adults: Rationale, Evolving Data, and Current Recommendations. Semin. Radiat. Oncol. 2022, 32, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-J.; Kim, J.-H.; Lee, S.J.; Lee, E.-J.; Shin, E.-C.; Seong, J. Radiation improves antitumor effect of immune checkpoint inhibitor in murine hepatocellular carcinoma model. Oncotarget 2017, 8, 41242–41255. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Wei, P.; Zhou, S.; Hu, Y.; Zhang, C.; Liang, L.; Li, B.; Gan, Z.; Xia, Y.; Jiang, H. Attenuated Salmonella carrying siRNA-PD-L1 and radiation combinatorial therapy induces tumor regression on HCC through T cell-mediated immuno-enhancement. Cell Death Discov. 2023, 9, 318. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, W.; Li, N.; Neri, S.; Sharma, A.; Jiang, W.; Lin, S.H. Combining immunotherapy and radiotherapy for cancer treatment: Current challenges and future directions. Front. Pharmacol. 2018, 9, 185. [Google Scholar] [CrossRef]
- Blethen, K.; Sprowls, S.; Arsiwala, T.; Wolford, C.; Panchal, D.; Fladeland, R.; Glass, M.; Dykstra, L.; Kielkowski, B.; Blackburn, J.; et al. BSBM-11 Combining Immunotherapy and Whole-Brain Radiation Therapy in a Novel Syngeneic Lung Cancer Brain Metastasis Preclinical Model: Does Timing of Administration Matter? Neuro-Oncol. Adv. 2023, 5, iii2–iii3. [Google Scholar] [CrossRef]
- Young, K.H.; Baird, J.R.; Savage, T.; Cottam, B.; Friedman, D.; Bambina, S.; Messenheimer, D.J.; Fox, B.; Newell, P.; Bahjat, K.S.; et al. Optimizing Timing of Immunotherapy Improves Control of Tumors by Hypofractionated Radiation Therapy. PLoS ONE 2016, 11, e0157164. [Google Scholar] [CrossRef]
- Yoshimoto, Y.; Suzuki, Y.; Mimura, K.; Ando, K.; Oike, T.; Sato, H.; Okonogi, N.; Maruyama, T.; Izawa, S.; Noda, S.E.; et al. Radiotherapy-induced anti-tumor immunity contributes to the therapeutic efficacy of irradiation and can be augmented by CTLA-4 blockade in a mouse model. PLoS ONE 2014, 9, e92572. [Google Scholar] [CrossRef]
- Dovedi, S.J.; Adlard, A.L.; Lipowska-Bhalla, G.; McKenna, C.; Jones, S.; Cheadle, E.J.; Stratford, I.J.; Poon, E.; Morrow, M.; Stewart, R.; et al. Acquired Resistance to Fractionated Radiotherapy Can Be Overcome by Concurrent PD-L1 Blockade. Cancer Res. 2014, 74, 5458–5468. [Google Scholar] [CrossRef]
- Wang, Y. Advances in hypofractionated irradiation-induced immunosuppression of tumor microenvironment. Front. Immunol. 2021, 11, 612072. [Google Scholar] [CrossRef]
- Demaria, S.; Guha, C.; Schoenfeld, J.; Morris, Z.; Monjazeb, A.; Sikora, A.; Crittenden, M.; Shiao, S.; Khleif, S.; Gupta, S. Radiation dose and fraction in immunotherapy: One-size regimen does not fit all settings, so how does one choose? J. Immunother. Cancer 2021, 9, e002038. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, H.; Hsu, J.-M.; Yang, W.-H.; Hung, M.-C. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat. Rev. Clin. Oncol. 2022, 19, 287–305. [Google Scholar] [CrossRef]
- Calderaro, J.; Rousseau, B.; Amaddeo, G.; Mercey, M.; Charpy, C.; Costentin, C.; Luciani, A.; Zafrani, E.S.; Laurent, A.; Azoulay, D.; et al. Programmed death ligand 1 expression in hepatocellular carcinoma: Relationship With clinical and pathological features. Hepatology 2016, 64, 2038–2046. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Romasanta, L.A.; González-Del Portillo, E.; Rodríguez-Gutiérrez, A.; Matías-Pérez, Á. Stereotactic radiotherapy for hepatocellular carcinoma, radiosensitization strategies and radiation-immunotherapy combination. Cancers 2021, 13, 192. [Google Scholar] [CrossRef] [PubMed]
- Steinhoff, K.G.; Petersen, T.O.; Purz, S.; Veelken, R.; Van Boemmel, F.; Denecke, T.; Berg, T.; Sabri, O. Yttrium-90 radioembolization-induced abscopal effect on hepatocellular carcinoma. J. Dig. Dis. 2022, 23, 237–239. [Google Scholar] [CrossRef]
- Chino, F.; Pollis, K.E.; Choi, S.; Salama, J.K.; Palta, M. stereotactic body radiation therapy–induced abscopal effect on hepatocellular carcinoma after treatment for lung cancer: A case report. Hepatology 2018, 68, 1653–1655. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J.; Joo, D.; Kim, D.; Seong, J. Liver-Directed Combined Radiotherapy for Downstaging of the Milan Advanced Hepatocellular Carcinoma Converting to Liver Transplantation. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, e308. [Google Scholar] [CrossRef]
- Lock, M.; Muinuddin, A.; Kocha, W.I.; Dinniwell, R.; Rodrigues, G.; D’Souza, D. Abscopal Effects: Case Report and Emerging Opportunities. Cureus 2015, 7, e344. [Google Scholar] [CrossRef]
- Yano, R.; Hirooka, M.; Morita, M.; Okazaki, Y.; Nakamura, Y.; Imai, Y.; Watanabe, T.; Koizumi, Y.; Yoshida, O.; Tokumoto, Y.; et al. Hepatocellular Carcinoma Showing Tumor Shrinkage Due to an Abscopal Effect. Intern. Med. 2024, 63, 241–246. [Google Scholar] [CrossRef]
- Gaba, R.C.; Groth, J.V.; Parvinian, A.; Guzman, G.; Casadaban, L.C. Gene expression in hepatocellular carcinoma: Pilot study of potential transarterial chemoembolization response biomarkers. J. Vasc. Interv. Radiol. 2015, 26, 723–732. [Google Scholar] [CrossRef]
- Tsuchiya, N.; Sawada, Y.; Endo, I.; Saito, K.; Uemura, Y.; Nakatsura, T. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J. Gastroenterol. WJG 2015, 21, 10573. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.-H.; Wei, W.; Krawczyk, M.; Wang, W.; Luo, H.; Flagg, K.; Yi, S.; Shi, W.; Quan, Q.; Li, K. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater. 2017, 16, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Juloori, A.; Katipally, R.R.; Lemons, J.M.; Singh, A.K.; Iyer, R.; Robbins, J.R.; George, B.; Hall, W.A.; Pitroda, S.P.; Arif, F.; et al. Phase 1 Randomized Trial of Stereotactic Body Radiation Therapy Followed by Nivolumab plus Ipilimumab or Nivolumab Alone in Advanced/Unresectable Hepatocellular Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2023, 115, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.L.; Chiu, K.W.H.; Chan, K.S.K.; Lee, F.A.S.; Li, J.C.B.; Wan, C.W.S.; Dai, W.C.; Lam, T.C.; Chen, W.; Wong, N.S.M.; et al. Sequential transarterial chemoembolisation and stereotactic body radiotherapy followed by immunotherapy as conversion therapy for patients with locally advanced, unresectable hepatocellular carcinoma (START-FIT): A single-arm, phase 2 trial. Lancet Gastroenterol. Hepatol. 2023, 8, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Tai, D.; Loke, K.; Gogna, A.; Kaya, N.A.; Tan, S.H.; Hennedige, T.; Ng, D.; Irani, F.; Lee, J.; Lim, J.Q.; et al. Radioembolisation with Y90-resin microspheres followed by nivolumab for advanced hepatocellular carcinoma (CA 209-678): A single arm, single centre, phase 2 trial. Lancet Gastroenterol. Hepatol. 2021, 6, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Liang, H.; Burnette, B.; Beckett, M.; Darga, T.; Weichselbaum, R.R.; Fu, Y.-X. Irradiation and anti–PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Investig. 2014, 124, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-L.; Chan, A.C.; Chiu, K.W.; Kong, F.-M. Combined stereotactic body radiotherapy and checkpoint inhibition in unresectable hepatocellular carcinoma: A potential synergistic treatment strategy. Front. Oncol. 2019, 9, 1157. [Google Scholar] [CrossRef]
- Buchwald, Z.S.; Wynne, J.; Nasti, T.H.; Zhu, S.; Mourad, W.F.; Yan, W.; Gupta, S.; Khleif, S.N.; Khan, M.K. Radiation, immune checkpoint blockade and the abscopal effect: A critical review on timing, dose and fractionation. Front. Oncol. 2018, 8, 612. [Google Scholar] [CrossRef]
- Bonta, I.; Isac, J.F.; Meiri, E.; Bonta, D.; Rich, P. Correlation between tumor mutation burden and response to immunotherapy. J. Clin. Oncol. 2017, 35, e14579. [Google Scholar] [CrossRef]
- Demaria, S.; Formenti, S.C. Radiation as an immunological adjuvant: Current evidence on dose and fractionation. Front. Oncol. 2012, 2, 153. [Google Scholar] [CrossRef]
- Yoo, K.H.; Park, D.J.; Choi, J.H.; Marianayagam, N.J.; Lim, M.; Meola, A.; Chang, S.D. Optimizing the synergy between stereotactic radiosurgery and immunotherapy for brain metastases. Front. Oncol. 2023, 13, 1223599. [Google Scholar] [CrossRef] [PubMed]
NCI ID (Trial) | Phase | Eligibility | Type of RT | Type of ICI | Design | Target Enrollment | Primay Endpoint | Status | Estimated Completion |
---|---|---|---|---|---|---|---|---|---|
NCT04857684 | 1 | Resectable Child–Pugh: A | SBRT | Atezo–Bev (anti-PDL1/anti-VEGF) | SBRT -> 2 cycles of Atezo–Bev -> Surgery | 20 | G3-4 TRAE rate | Recruiting | 31 December 2024 |
NCT05286320 | 1/2 | Disease with PVI Child–Pugh: A | SBRT | Pembrolizumab + Lenvatinib (antiPD1/TKI) | Pembrolizumab + Lenvatinib SBRT during C2 of pembrolizumab | 27 | Phase1: DLT Phase2: ORR | Not Yet Recruiting | 30 September 2026 |
NCT05625893 (PORTAL) | 2 | Disease with PVI Child–Pugh: A | Proton radiotherapy | Atezo–Bev (anti-PDL1/anti-VEGF) | Atezo–Bev PBT 1 wk after C2 Atezo–Bev | 63 | PFS | Recruiting | 31 December 2025 |
NCT05339581 (iPLENTY-pvtt) | N/A | Disease with PVI Child–Pugh: 7 or less | IMRT | anti-PD1 + Lenvatinib (TKI) | Anti-PD1 + Lenvatinib + IMRT (C3 of anti-PD1) or Anti-PD1 + Lenvatinib | 78 | ORR | Not Yet Recruiting | 31 May 2024 |
NCT06040177 | 2 | Unresectable with PVI BCLC: Stage C Child–Pugh: 7 or less | SBRT | Cadonilimab (anti-PD1/CTLA4) | Renvatinib SBRT -> Cadonilimab | 30 | ORR | Recruiting | 1 February 2025 |
NCT04913480 | 2 | Unresectable, non-metastatic BCLC: Stage C or earlier Child–Pugh: 7 or less | SBRT | Durvalumab (anti-PDL1) | Durvalumab SBRT 1 wk after 1st Durvalumab | 37 | PFS at 1 year | Recruiting | 31 December 2024 |
NCT03942328 | 1/2 | Unresectable, non-metastatic BCLC: Stage C or lower Child–Pugh: A | EBRT | Autologous Dendritic Cells + Atezo–Bev (anti-PDL1/anti-VEGF) | EBRT (1–3 wks) -> Autologous Dendritic Cells + Atezo–Bev | 54 | DLT PFS at 2 years | Recruiting | 31 August 2027 |
NCT04988945 | 2 | Non-metastatic Child–Pugh: 7 or less | SBRT | Durva–Treme (anti-PDL1/CTLA4) | TACE & SBRT -> Durva–Treme | 33 | Downstaging for resection rate | Recruiting | 1 December 2024 |
NCT05488522 | 1 | Non-metastatic Child–Pugh: 7 or less | SBRT | Atezo–Bev (anti-PDL1/anti-VEGF) | Atezo–Bev SBRT on wk2 | 18 | DLT | Recruiting | 31 December 2024 |
NCT06133062 (ProtonAB) | 2 | Non-metastatic BCLC: Stage B-C Child–Pugh: A | Proton radiotherapy | Atezo–Bev (anti-PDL1/anti-VEGF) | Proton radiotherapy with Atezo–Bev | 45 | PFS | Recruiting | 30 September 2028 |
NCT05992220 (ALERT-HCC) | 2,RCT | Non-metastatic with vascular invasion Child–Pugh: A | EBRT | Atezo–Bev (anti-PDL1/anti-VEGF) | Atezo–Bev + EBRT after C1D2 of Atezo–Bev vs. Atezo–Bev w/o EBRT | 138 | PFS | Recruiting | 31 March 2026 |
NCT05096715 | 1 | Non-metastatic BCLC: Stage B-C Child–Pugh: A | SBRT | Atezo–Bev (anti-PDL1/anti-VEGF) | SBRT + Atezo–Bev -> Atezo–Bev | 20 | DLT | Not Yet Recruiting | 1 January 2026 |
NCT05377034 (STRATUM) | 2, RCT | Non-metastatic Child–Pugh: A | Radioembolization (yttrium-90) | Atezo–Bev (anti-PDL1/anti-VEGF) | Radioembolization -> Atezo–Bev vs. Atezo–Bev | 176 | ORR at 1 year | Recruiting | 1 November 2025 |
NCT03316872 | 2 | Advanced/Metastatic Child–Pugh: A | SBRT | Pembrolizumab (anti-PD1) | Pembrolizumab SBRT on C1D2 of Pembrolizumab | 30 | ORR | Recruiting | N/A |
NCT04430452 | 2 | Advanced/Metastatic Child–Pugh: 8 or less Progression on anti-PD1/PDL1 | Hypofractionated radiotherapy | Durva–Treme (anti-PDL1/CTLA4) | Hypofractionated RT -> Durvalumab or Durva–Treme | 21 | ORR | Recruiting | 28 February 2027 |
NCT05396937 | 2 | Metastatic Child–Pugh: 7 or less | SBRT | Atezo–Bev (anti-PDL1/anti-VEGF) | Atezo–Bev SBRT 1–2 wks after C1 Atezo–Bev | 42 | ORR | Recruiting | N/A |
NCT05809869 | 2 | Metastatic | Radioembolization (yttrium-90) | Durva–Treme (anti-PDL1/CTLA4) | Durva–Treme Radioembolisation on wk 2 | 25 | ORR | Recruiting | 31 December 2025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tojjari, A.; Yu, J.; Saeed, A. Immunotherapy and Radiation Therapy Combinatorial Approaches in Hepatocellular Carcinoma. Cancers 2024, 16, 1058. https://doi.org/10.3390/cancers16051058
Tojjari A, Yu J, Saeed A. Immunotherapy and Radiation Therapy Combinatorial Approaches in Hepatocellular Carcinoma. Cancers. 2024; 16(5):1058. https://doi.org/10.3390/cancers16051058
Chicago/Turabian StyleTojjari, Alireza, James Yu, and Anwaar Saeed. 2024. "Immunotherapy and Radiation Therapy Combinatorial Approaches in Hepatocellular Carcinoma" Cancers 16, no. 5: 1058. https://doi.org/10.3390/cancers16051058
APA StyleTojjari, A., Yu, J., & Saeed, A. (2024). Immunotherapy and Radiation Therapy Combinatorial Approaches in Hepatocellular Carcinoma. Cancers, 16(5), 1058. https://doi.org/10.3390/cancers16051058