Current Status and Future Directions of Image-Guided Adaptive Brachytherapy for Locally Advanced Cervical Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Discussion
3.1. Historical Overview
3.2. Ongoing Areas of Investigation
3.3. Utilizing MRI to Decrease the Number of Fractions for Brachytherapy
3.4. Utilizing Trans-Rectal Ultrasound as an Alternative to MRI in Developing Countries
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lei, J.; Ploner, A.; Elfström, K.M.; Wang, J.; Roth, A.; Fang, F.; Sundström, K.; Dillner, J.; Sparén, P. HPV Vaccination and the Risk of Invasive Cervical Cancer. N. Engl. J. Med. 2020, 383, 1340–1348. [Google Scholar] [CrossRef]
- Abu-Rustum, N.R.; Yashar, C.M. Cervical Cancer. NCCN Guidel. 2023, 21. [Google Scholar] [CrossRef]
- Jamema, S.V.; Saju, S.; Mahantshetty, U.; Pallad, S.; Deshpande, D.D.; Shrivastava, S.K.; Dinshaw, K.A. Dosimetric Evaluation of Rectum and Bladder Using Image-Based CT Planning and Orthogonal Radiographs with ICRU 38 Recommendations in Intracavitary Brachytherapy. J. Med. Phys. 2008, 33, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Pareek, V.; Barthwal, M.; Giridhar, P.; Patil, P.A.; Upadhyay, A.D.; Mallick, S. A Phase III Randomised Trial of Trans-Abdominal Ultrasound in Improving Application Quality and Dosimetry of Intra-Cavitary Brachytherapy in Locally Advanced Cervical Cancer. Gynecol. Oncol. 2021, 160, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Kamrava, M. Brachytherapy in the Treatment of Cervical Cancer: A Review. Int. J. Womens. Health 2014, 6, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Williams, V.M.; Kahn, J.M.; Thaker, N.G.; Beriwal, S.; Nguyen, P.L.; Arthur, D.; Petereit, D.; Dyer, B.A. The Case for Brachytherapy: Why It Deserves a Renaissance. Adv. Radiat. Oncol. 2021, 6, 100605. [Google Scholar] [CrossRef] [PubMed]
- Castelnau-Marchand, P.; Chargari, C.; Haie-Meder, C.; Mazeron, R. Image-Guided Adaptive Brachytherapy in Locally Advanced Cervical Cancer: Recent Advances and Perspectives. Curr. Opin. Oncol. 2016, 28, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Shi, D.; Bu, M.; Lu, S.; Zhao, H. Four-Dimensional Image-Guided Adaptive Brachytherapy for Cervical Cancer: A Systematic Review and Meta-Regression Analysis. Front. Oncol. 2022, 12, 870570. [Google Scholar] [CrossRef] [PubMed]
- Sturdza, A.E.; Knoth, J. Image-Guided Brachytherapy in Cervical Cancer Including Fractionation. Int. J. Gynecol. Cancer 2022, 32, 273–280. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, J.-Y.; Kim, Y.; Lim, Y.K.; Jeong, J.; Jeong, C.; Kim, M.; Lim, M.C.; Seo, S.-S.; Park, S.-Y. Magnetic Resonance Image-Guided Brachytherapy for Cervical Cancer: Prognostic Factors for Survival. Strahlenther. Und Onkol. 2016, 192, 922–930. [Google Scholar] [CrossRef]
- Srivastava, A.; Datta, N.R. Brachytherapy in Cancer Cervix: Time to Move Ahead from Point A? World J. Clin. Oncol. 2014, 5, 764–774. [Google Scholar] [CrossRef]
- Koom, W.S.; Sohn, D.K.; Kim, J.-Y.; Kim, J.W.; Shin, K.H.; Yoon, S.M.; Kim, D.Y.; Yoon, M.; Shin, D.; Park, S.Y.; et al. Computed Tomography-Based High-Dose-Rate Intracavitary Brachytherapy for Uterine Cervical Cancer: Preliminary Demonstration of Correlation between Dose-Volume Parameters and Rectal Mucosal Changes Observed by Flexible Sigmoidoscopy. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 1446–1454. [Google Scholar] [CrossRef]
- Pötter, R.; Dimopoulos, J.; Georg, P.; Lang, S.; Waldhäusl, C.; Wachter-Gerstner, N.; Weitmann, H.; Reinthaller, A.; Knocke, T.H.; Wachter, S.; et al. Clinical Impact of MRI Assisted Dose Volume Adaptation and Dose Escalation in Brachytherapy of Locally Advanced Cervix Cancer. Radiother. Oncol. 2007, 83, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Pötter, R.; Georg, P.; Dimopoulos, J.C.A.; Grimm, M.; Berger, D.; Nesvacil, N.; Georg, D.; Schmid, M.P.; Reinthaller, A.; Sturdza, A.; et al. Clinical Outcome of Protocol Based Image (MRI) Guided Adaptive Brachytherapy Combined with 3D Conformal Radiotherapy with or without Chemotherapy in Patients with Locally Advanced Cervical Cancer. Radiother. Oncol. 2011, 100, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Haie-Meder, C.; Pötter, R.; Van Limbergen, E.; Briot, E.; De Brabandere, M.; Dimopoulos, J.; Dumas, I.; Hellebust, T.P.; Kirisits, C.; Lang, S.; et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): Concepts and Terms in 3D Image Based 3D Treatment Planning in Cervix Cancer Brachytherapy with Emphasis on MRI Assessment of GTV and CTV. Radiother. Oncol. 2005, 74, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Pötter, R.; Haie-Meder, C.; Van Limbergen, E.; Barillot, I.; De Brabandere, M.; Dimopoulos, J.; Dumas, I.; Erickson, B.; Lang, S.; Nulens, A.; et al. Recommendations from Gynaecological (GYN) GEC ESTRO Working Group (II): Concepts and Terms in 3D Image-Based Treatment Planning in Cervix Cancer Brachytherapy-3D Dose Volume Parameters and Aspects of 3D Image-Based Anatomy, Radiation Physics, Radiobiolog. Radiother. Oncol. 2006, 78, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Lindegaard, J.C.; Fokdal, L.U.; Nielsen, S.K.; Juul-Christensen, J.; Tanderup, K. MRI-Guided Adaptive Radiotherapy in Locally Advanced Cervical Cancer from a Nordic Perspective. Acta Oncol. 2013, 52, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Rijkmans, E.C.; Nout, R.A.; Rutten, I.H.H.M.; Ketelaars, M.; Neelis, K.J.; Laman, M.S.; Coen, V.L.M.A.; Gaarenstroom, K.N.; Kroep, J.R.; Creutzberg, C.L. Improved Survival of Patients with Cervical Cancer Treated with Image-Guided Brachytherapy Compared with Conventional Brachytherapy. Gynecol. Oncol. 2014, 135, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Charra-Brunaud, C.; Harter, V.; Delannes, M.; Haie-Meder, C.; Quetin, P.; Kerr, C.; Castelain, B.; Thomas, L.; Peiffert, D. Impact of 3D Image-Based PDR Brachytherapy on Outcome of Patients Treated for Cervix Carcinoma in France: Results of the French STIC Prospective Study. Radiother. Oncol. 2012, 103, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Pötter, R.; Tanderup, K.; Schmid, M.P.; Jürgenliemk-Schulz, I.; Haie-Meder, C.; Fokdal, L.U.; Sturdza, A.E.; Hoskin, P.; Mahantshetty, U.; Segedin, B.; et al. MRI-Guided Adaptive Brachytherapy in Locally Advanced Cervical Cancer (EMBRACE-I): A Multicentre Prospective Cohort Study. Lancet. Oncol. 2021, 22, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Sturdza, A.; Pötter, R.; Fokdal, L.U.; Haie-Meder, C.; Tan, L.T.; Mazeron, R.; Petric, P.; Šegedin, B.; Jurgenliemk-Schulz, I.M.; Nomden, C.; et al. Image Guided Brachytherapy in Locally Advanced Cervical Cancer: Improved Pelvic Control and Survival in RetroEMBRACE, a Multicenter Cohort Study. Radiother. Oncol. 2016, 120, 428–433. [Google Scholar] [CrossRef]
- Dappa, E.; Elger, T.; Hasenburg, A.; Düber, C.; Battista, M.J.; Hötker, A.M. The Value of Advanced MRI Techniques in the Assessment of Cervical Cancer: A Review. Insights Imaging 2017, 8, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Van Timmeren, J.E.; Cester, D.; Tanadini-lang, S.; Alkadhi, H.; Baessler, B. Radiomics in Medical Imaging —“ How-to ” Guide and Critical Reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Mayr, N.A.; Huang, Z.; Wang, J.Z.; Lo, S.S.; Fan, J.M.; Grecula, J.C.; Sammet, S.; Sammet, C.L.; Jia, G.; Zhang, J.; et al. Characterizing Tumor Heterogeneity with Functional Imaging and Quantifying High-Risk Tumor Volume for Early Prediction of Treatment Outcome: Cervical Cancer as a Model. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.K.; Siegel, B.A.; Dehdashti, F.; Grigsby, P.W. Metabolic Response on Post-Therapy FDG-PET Predicts Patterns of Failure after Radiotherapy for Cervical Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Thomas, M.A.; Dehdashti, F.; Grigsby, P.W. Temporal Analysis of Intratumoral Metabolic Heterogeneity Characterized by Textural Features in Cervical Cancer. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Lima, G.M.; Matti, A.; Vara, G.; Dondi, G.; Naselli, N.; De Crescenzo, E.M.; Morganti, A.G.; Perrone, A.M.; De Iaco, P.; Nanni, C.; et al. Prognostic Value of Posttreatment (18)F-FDG PET/CT and Predictors of Metabolic Response to Therapy in Patients with Locally Advanced Cervical Cancer Treated with Concomitant Chemoradiation Therapy: An Analysis of Intensity- and Volume-Based PET Parameter. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2139–2146. [Google Scholar] [CrossRef] [PubMed]
- Bowen, S.R.; Yuh, W.T.C.; Hippe, D.S.; Wu, W.; Partridge, S.C.; Elias, S.; Jia, G.; Huang, Z.; Sandison, G.A.; Nelson, D.; et al. Tumor Radiomic Heterogeneity: Multiparametric Functional Imaging to Characterize Variability and Predict Response Following Cervical Cancer Radiation Therapy. J. Magn. Reson. Imaging 2018, 47, 1388–1396. [Google Scholar] [CrossRef]
- Autorino, R.; Gui, B.; Panza, G.; Boldrini, L.; Cusumano, D.; Russo, L.; Nardangeli, A.; Persiani, S.; Campitelli, M.; Ferrandina, G.; et al. Radiomics-Based Prediction of Two-Year Clinical Outcome in Locally Advanced Cervical Cancer Patients Undergoing Neoadjuvant Chemoradiotherapy. Radiol. Med. 2022, 127, 498–506. [Google Scholar] [CrossRef]
- Xiao, M.L.; Wei, Y.; Zhang, J.; Jian, J.M.; Song, Y.; Lin, Z.J.; Qian, L.; Zhang, G.F.; Qiang, J.W. MRI Texture Analysis for Preoperative Prediction of Lymph Node Metastasis in Patients with Nonsquamous Cell Cervical Carcinoma. Acad. Radiol. 2022, 29, 1661–1671. [Google Scholar] [CrossRef]
- Lindegaard, J.C. Quantitative MR Imaging in Locally Advanced Cervical Cancer (IQ-EMBRACE). Clinicaltrials.gov NCT03210428. Available online: https://clinicaltrials.gov/study/NCT03210428 (accessed on 10 October 2023).
- Tsang, Y.M. An Exploratory Study of Using Magnetic Resonance Prognostic Imaging Markers for Radiotherapy In Patients With Cervix Cancer (EMPIRIC Study) (EMPIRIC). Clinicaltrials.gov NCT05532930. Available online: https://clinicaltrials.gov/study/NCT05532930 (accessed on 10 October 2023).
- Fisher, B.M. Radiation Therapy Planning by Multi-Parametric PET/MRI Imaging in Patients With Cervical Cancer (RaPiCCa). Clinicaltrials.gov NCT03655977. Available online: https://www.clinicaltrials.gov/study/NCT03655977 (accessed on 10 October 2023).
- Bouleftour, W.; Rowinski, E.; Louati, S.; Sotton, S.; Wozny, A.-S.; Moreno-Acosta, P.; Mery, B.; Rodriguez-Lafrasse, C.; Magne, N. A Review of the Role of Hypoxia in Radioresistance in Cancer Therapy. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2021, 27, e934116. [Google Scholar] [CrossRef]
- McVeigh, P.Z.; Syed, A.M.; Milosevic, M.; Fyles, A.; Haider, M.A. Diffusion-Weighted MRI in Cervical Cancer. Eur. Radiol. 2008, 18, 1058–1064. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bai, R.; Sun, H.; Liu, H.; Wang, D. Diffusion-Weighted Magnetic Resonance Imaging of Uterine Cervical Cancer. J. Comput. Assist. Tomogr. 2009, 33, 858–862. [Google Scholar] [CrossRef] [PubMed]
- Gladwish, A.; Milosevic, M.; Fyles, A.; Xie, J.; Halankar, J.; Metser, U.; Jiang, H.; Becker, N.; Levin, W.; Manchul, L.; et al. Association of Apparent Diffusion Coefficient with Disease Recurrence in Patients with Locally Advanced Cervical Cancer Treated with Radical Chemotherapy and Radiation Therapy. Radiology 2016, 279, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Mayr, N.A.; Wang, J.Z.; Zhang, D.; Grecula, J.C.; Lo, S.S.; Jaroura, D.; Montebello, J.; Zhang, H.; Li, K.; Lu, L.; et al. Longitudinal Changes in Tumor Perfusion Pattern during the Radiation Therapy Course and Its Clinical Impact in Cervical Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Andersen, E.K.F.; Hole, K.H.; Lund, K.V.; Sundfør, K.; Kristensen, G.B.; Lyng, H.; Malinen, E. Dynamic Contrast-Enhanced MRI of Cervical Cancers: Temporal Percentile Screening of Contrast Enhancement Identifies Parameters for Prediction of Chemoradioresistance. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, e485–e492. [Google Scholar] [CrossRef] [PubMed]
- Takayama, Y.; Ohno, T.; Kishimoto, R.; Kato, S.; Yoneyama, R.; Kandatsu, S.; Tsujii, H.; Obata, T. Prediction of Early Response to Radiotherapy of Uterine Carcinoma with Dynamic Contrast-Enhanced MR Imaging Using Pixel Analysis of MR Perfusion Imaging. Magn. Reson. Imaging 2009, 27, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Semple, S.I.K.; Harry, V.N.; Parkin, D.E.; Gilbert, F.J. A Combined Pharmacokinetic and Radiologic Assessment of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Predicts Response to Chemoradiation in Locally Advanced Cervical Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 611–617. [Google Scholar] [CrossRef]
- Mannelli, L.; Patterson, A.J.; Zahra, M.; Priest, A.N.; Graves, M.J.; Lomas, D.J.; Tan, L.T.; Crawford, R.; Brenton, J.; Sala, E. Evaluation of Nonenhancing Tumor Fraction Assessed by Dynamic Contrast-Enhanced MRI Subtraction as a Predictor of Decrease in Tumor Volume in Response to Chemoradiotherapy in Advanced Cervical Cancer. AJR. Am. J. Roentgenol. 2010, 195, 524–527. [Google Scholar] [CrossRef]
- Hong, J.C.; Foote, J.; Broadwater, G.; Sosa, J.A.; Gaillard, S.; Havrilesky, L.J.; Chino, J.P. Data-Derived Treatment Duration Goal for Cervical Cancer: Should 8 Weeks Remain the Target in the Era of Concurrent Chemoradiation? JCO Clin. Cancer Inform. 2017, 1, 1–15. [Google Scholar] [CrossRef]
- Souhami, L.; Corns, R.; Duclos, M.; Portelance, L.; Bahoric, B.; Stanimir, G. Long-Term Results of High-Dose Rate Brachytherapy in Cervix Cancer Using a Small Number of Fractions. Gynecol. Oncol. 2005, 97, 508–513. [Google Scholar] [CrossRef]
- Patel, F.D.; Kumar, P.; Karunanidhi, G.; Sharma, S.C.; Kapoor, R. Optimization of High–Dose-Rate Intracavitary Brachytherapy Schedule in the Treatment of Carcinoma of the Cervix. Brachytherapy 2011, 10, 147–153. [Google Scholar] [CrossRef]
- Ali, N.; Qureshi, B.M.; Abbasi, A.N.; Hafiz, A.; Khan, B.M.; Jangda, A.Q. Acute Toxicity and Local Response Using Three Fractions of High Dose Rate (HDR) Brachytherapy for Curative Treatment of Carcinoma Cervix. J. Coll. Physicians Surg. Pak. 2020, 30, 974–979. [Google Scholar] [CrossRef]
- Khan, M.; Hussain, M.A.B.; Siddiqui, S.A.; Akram, M. Five-Year Survival Outcomes with Two Different High Dose Rate Brachytherapy Schedules Used in the Treatment of Cervical Carcinoma. Ther. Radiol. Oncol. 2022, 6, 2–9. [Google Scholar] [CrossRef]
- le Guyader, M.; Lam Cham Kee, D.; Thamphya, B.; Schiappa, R.; Gautier, M.; Chand-Fouche, M.-E.; Hannoun-Levi, J.-M. High-Dose-Rate Brachytherapy Boost for Locally Advanced Cervical Cancer: Oncological Outcome and Toxicity Analysis of 4 Fractionation Schemes. Clin. Transl. Radiat. Oncol. 2022, 32, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.A.; Weersink, M.; Liu, Z.A.; Milosevic, M.; Croke, J.; Fyles, A.; Lukovic, J.; Rink, A.; Beiki-Ardakani, A.; Borg, J.; et al. Comparing Dosimetry of Locally Advanced Cervical Cancer Patients Treated with 3 versus 4 Fractions of MRI-Guided Brachytherapy. Brachytherapy 2023, 22, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Williamson, C.W.; Kotha, N.V.; Zou, J.; Brown, D.; Scanderbeg, D.; Rash, D.; Einck, J.; Yashar, C.; Mell, L.K.; Mayadev, J. Outcomes from a 3-Fraction High-Dose-Rate Brachytherapy Regimen for Patients with Cervical Cancer. Brachytherapy 2023, 22, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, A.N.; Dimopoulos, J.; Kirisits, C.; Berger, D.; Pötter, R. Computed Tomography versus Magnetic Resonance Imaging-Based Contouring in Cervical Cancer Brachytherapy: Results of a Prospective Trial and Preliminary Guidelines for Standardized Contours. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Khadanga, C.; Mahantshetty, U.; Engineer, S.; Chopra, S. Critical Evaluation and Comparison of CT vs MR Based HRCTV and OAR Contouring during IGBT for Cervical Cancer. Radiother. Oncol. 2015, 115, S141–S142. [Google Scholar] [CrossRef]
- Schmid, M.P.; Nesvacil, N.; Pötter, R.; Kronreif, G.; Kirisits, C. Transrectal Ultrasound for Image-Guided Adaptive Brachytherapy in Cervix Cancer—An Alternative to MRI for Target Definition? Radiother. Oncol. 2016, 120, 467–472. [Google Scholar] [CrossRef]
- Nesvacil, N.; Schmid, M.P.; Pötter, R.; Kronreif, G.; Kirisits, C. Combining Transrectal Ultrasound and CT for Image-Guided Adaptive Brachytherapy of Cervical Cancer: Proof of Concept. Brachytherapy 2016, 15, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Nishikawa, R.; Miyawaki, D.; Ebina, Y.; Sasaki, R. Image-Guided Adaptive Brachytherapy for Cervical Cancer Using Magnetic Resonance Imaging: Overview and Experience; Onal, C., Ed.; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef]
- Kumar, A.; Chopra, S.; Gupta, S. Contribution of Tata Memorial Centre, India, to Cervical Cancer Care: Journey of Two Decades. Indian J. Med. Res. 2021, 154, 319–328. [Google Scholar] [PubMed]
Study | Patients | Imaging | Outcomes |
---|---|---|---|
IQ-EMBRACE [31] | N = 320 Cervical cancer patients eligible for EMBRACE-II | MRI T1, T2, DWI, DCE | Disease control, radiomics |
EMPIRIC [32] | N = 40 FIGO stage IB-IVA cervical cancer | MRI DWI, DCE, BOLD | PFS, OS, radiomics |
RaPiCCa [33] | N = 25 Cervical cancer with tumor >1 cm | MRI DWI, DCE “RGD” (68Ga-NODAGA-E[c(RGDyK)]2) PET | Feasibility of PET/MRI in workflow, radiomics of novel radiotracer, change in PTV between conventional MRI and PET/MRI |
Study | Patients | Dose | Outcomes |
---|---|---|---|
Guyader et al. [48] | N = 191 Cervical cancer | 7 Gy + 4 × 3.5 Gy (group 1) vs. 7 Gy + 4 × 4.5 Gy (group 2) vs. 3 × 7 Gy (group 3) vs. 3 × 8 Gy (group 4) | Five-year PFS and OS similar between arms Toxicity similar between arms |
Scott et al. [49] | N = 224 FIGO stage IB-IVA cervical cancer | 3 × 8 Gy (n = 133) vs. 4 × 7 Gy (n = 91) | Target coverage and dose to OARs similar between arms |
Williamson et al. [50] | N = 150 Cervical cancer | 3 × 8 Gy (n = 32) vs. 4 × 7 Gy or 5 × 6 Gy (n = 118) | LC, toxicity, and hospitalizations similar between arms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eustace, N.; Liu, J.; Ladbury, C.; Tam, A.; Glaser, S.; Liu, A.; Chen, Y.-J. Current Status and Future Directions of Image-Guided Adaptive Brachytherapy for Locally Advanced Cervical Cancer. Cancers 2024, 16, 1031. https://doi.org/10.3390/cancers16051031
Eustace N, Liu J, Ladbury C, Tam A, Glaser S, Liu A, Chen Y-J. Current Status and Future Directions of Image-Guided Adaptive Brachytherapy for Locally Advanced Cervical Cancer. Cancers. 2024; 16(5):1031. https://doi.org/10.3390/cancers16051031
Chicago/Turabian StyleEustace, Nicholas, Jason Liu, Colton Ladbury, Andrew Tam, Scott Glaser, An Liu, and Yi-Jen Chen. 2024. "Current Status and Future Directions of Image-Guided Adaptive Brachytherapy for Locally Advanced Cervical Cancer" Cancers 16, no. 5: 1031. https://doi.org/10.3390/cancers16051031
APA StyleEustace, N., Liu, J., Ladbury, C., Tam, A., Glaser, S., Liu, A., & Chen, Y. -J. (2024). Current Status and Future Directions of Image-Guided Adaptive Brachytherapy for Locally Advanced Cervical Cancer. Cancers, 16(5), 1031. https://doi.org/10.3390/cancers16051031