Risk Factors and Innovations in Risk Assessment for Melanoma, Basal Cell Carcinoma, and Squamous Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Risk Factors for Melanoma
2.1. Extrinsic Risk Factors for Melanoma
Extrinsic Risk Factors for Melanoma | ||
---|---|---|
Solar UV radiation | [8,11,12] | |
● Intermittent sun exposure | RR: 1.61 (95% CI: 1.31–1.99) | [9,14] |
● Sunburn (especially in childhood) | RR 2.03 (95% CI: 1.73–2.37) | [9,15,16,17] |
● Sunbathing (‘ever’ intentional sun exposure) | RR 1.44 (95% CI: 1.18–1.76) | [11,19] |
Artificial UV radiation | ||
● ‘ever’ sunbed use use <35 years old | RR: 1.2 (95% CI: 1.08–1.34) RR: 1.59 (95% CI: 1.36–1.85) | [17,19,20,21] |
Lifestyle factors | ||
● High lifetime intake of spirits | HR: 1.47 (95% CI = 1.08–1.99) | [24,25] |
Immunosuppression | ||
● HIV in Caucasians | IR > 10 fold increased | [26] |
● (renal) Transplant recipients | RR: 3.6 (95% CI: 3.1–4.1) | [27,28,29,30] |
● Non-Hodgkin’s lymphoma | RR: 2.4 (95% CI: 1.8–3.2) | [31] |
● Chronic lymphocytic leukemia | RR: 3.1 (95% CI: 2.1–4.4) | [31] |
2.2. Intrinsic Risk Factors for Melanoma
Intrinsic Risk Factors for Melanoma | ||
---|---|---|
Phenotype | ||
● Fitzpatrick phototype: | [33] | |
III vs. IV | RR: 1.77 (95% CI: 1.23–2.56) | |
II vs. IV | RR: 1.84 (95% CI: 1.43–2.36) | |
I vs. IV | RR: 2.09 (95% CI: 1.67–2.58 | |
● Light eye color: | [33] | |
blue vs. dark | RR: 1.47 (95% CI: 1.28–1.69) | |
green vs. dark | RR: 1.61 (95% CI: 1.06–2.45) | |
● Light hair color: | [33] | |
red vs. dark | RR: 3.64 (95% CI: 2.56–5.37) | |
blond vs. dark | RR: 1.96 (95% CI: 1.41–2.74) | |
light brown vs. dark | RR: 1.62 (95% CI: 1.11–2.34) | |
● Freckles | RR: 2.10 (95% CI: 1.80–2.45) | [34] |
● High nevi count (>100) | RR: 6.89 (95% CI: 4.63–10.25) | [35] |
● Presence of atypical nevi | RR: 6.36 (95% CI: 3.80–10.33) | [35] |
Sex | ||
● Male sex | IR per 100,000: male vs. female 29.3 vs. 18.0 | [40,41] |
Medical history | ||
● Personal history of | ||
melanoma | O:E: 8.61 (95% CI: 8.31–8.92) | [46,47] |
BCC (yes vs. no) | 2.46% vs. 0.37% | [46] |
● Family history of melanoma | RR: 1.74 (95% CI: 1.41–2.14) | [34,48,50] |
● Preceding malignancy: | [65,66] | |
Breast cancer | SIR: 5.13 (95% CI: 3.91–6.73) | |
Thyroid cancer | SIR: 16.2 (95% CI: 5.22–50.2) | |
Head and neck cancer | SIR: 5.62 (95% CI: 1.41–22.50) | |
Soft tissue cancer | SIR: 8.68 (95% CI: 2.17–34.70) | |
Cervical cancer | SIR: 12.5 (95% CI: 3.14–50.20) | |
Kidney/urinary tract cancer | SIR: 3.19 (95% CI: 1.52–6.68) | |
Prostate cancer | SIR: 4.36 (95% CI: 2.63–7.24) | |
Acute myeloid leukemia | SIR: 6.44 (95% CI: 2.42–17.20) | |
Chronic lymphatic leukemia | SIR: 2.74 (95% CI, 2.43–3.08) | [67] |
Genetic conditions and susceptibility genes | ||
● Familial melanoma | [52,53,54] | |
● CDKN2A, CDK4, BAP1, MITF, TERT, ACD, TERF2IP, POT1 mutation | [56,57,59,60] | |
● MC1R | ||
one variant: | OR: 1.41 (95% CI: 1.07–1.87) | |
≥two variants | OR: 2.51 (95% CI: 1.83–3.44) | |
Mixed cancer syndromes | ||
● PTEN, BRCA1, BRCA2, RB1, BAP1, TP53 mutation | [56,61,62,63] |
3. Risk Factors for Basal Cell Carcinoma
3.1. Extrinsic Risk Factors for BCC
Extrinsic Risk Factors for BCC | ||
---|---|---|
Solar UV radiation | [12] | |
● Intermittent exposure | OR: 2.1 (95% CI: 1.09–3.95) | [71] |
● Chronic exposure/ outdoor workers | OR: 2.08 (95% CI: 1.24–3.50) | [73] |
● Sunburn | OR: 1.40 (95% CI: 1.02–1.45) | [72] |
during childhood | OR: 1.43 (95% CI: 1.19–1.72) | |
Artificial UV radiation | ||
● Sunbed | [76,77] | |
‘ever’ use | RR: 1.29 (95% CI: 1.08–1.53) | |
use <25 years old | RR: 1.40 (95% CI: 1.29–1.52) | |
● Medical radiation | [80,81,82,83] | |
radiotherapy during childhood | RR: 6.3 (95% CI: 3.5–11.3) | |
medical technicians | ||
start of work in 1950s | RR: 1.42 (95% CI: 1.12–1.80) | |
start of work in 1940s | RR: 2.04 (95% CI: 1.44–2.88) | |
start of work <1940 | RR: 2.16 (95% CI: 1.14–4.09) | |
Lifestyle factors | ||
● Baseline alcohol consumption > 15 vs. 0.1–4.9 g/day | HR: 1.12 (95% CI = 1.01–1.23) | [25,84,85] |
Immunosuppression | ||
● Organ transplant recipients | SIR: 6.1 (95% CI: 5.4–6.9) | [92,93] |
● Autoimmune diseases | [92] | |
Rheumatoid arthritis | OR 1.20 (1.11–1.29) | |
● Methotrexate | OR 1.29 (95% CI: 1.20–1.38) | [94] |
3.2. Intrinsic Risk Factors for BCC
Intrinsic Risk Factors for BCC | ||
---|---|---|
Phenotype | ||
● Fitzpatrick phototype | [95] | |
I vs. IV–VI | OR 17.5 (95% CI: 3.29–113.7) | |
II vs. IV–VI | OR 15.6 (95% CI: 7.5–34.3) | |
III vs. IV–VI | OR 10.4 (95% CI: 5.1–22.4) | |
● Light hair color | [71] | |
blonde | OR: 2.2 (95% CI: 1.27–3.91) | |
Light blonde to red | OR: 2.3 (95% CI: 1.15–4.49) | |
● Light eye color | [71] | |
Light blue | OR: 1.8 (95% CI: 0.94–3.66) | |
green | OR: 3.4 (95% CI: 1.92–6.22) | |
● Freckles in childhood | OR: 1.57 (95% CI: 1.29–1.92) | [96,97] |
Medical history | ||
● Previous NMSC | 3-year risk: 44% (33–70%) | [102] |
Genetic conditions & susceptibility genes | ||
● PTCH1, PTCH2, SUFU, SMO | [100,101] | |
one MC1R variant | OR: 1.48 (95% CI: 1.24–1.76) | |
≥two MC1R variants | OR: 1.70 (95% CI: 1.36–2.12) | |
Sex | ||
● Male sex | RR: 1.27 (95% CI: 1.25–1.29) | [92,103,104] |
Age | [92] |
4. Risk Factors for Cutaneous Squamous Cell Carcinoma
4.1. Extrinsic Risk Factors for SCC
Extrinsic Risk Factors for SCC | ||
---|---|---|
Solar UV radiation | ||
● Chronic exposure/ outdoor workers | OR: 2.2 (95% CI: 1.13–4.08) | [71,105,108] |
● Sunburn | OR: 2.02 (95% CI: 1.22–3.33) | [114] |
Artificial UV radiation | ||
● Sunbed use | [115,116] | |
‘ever’ | RR: 1.48 (95% CI: 1.20–1.83) | |
use <20 years old | RR: 1.89 (95% CI: 0.90–3.98) | |
excessive use (>240 sessions) | RR: 1.83, 95% CI: 1.38–2.42 | |
Immunosuppression | ||
● Organ transplant recipients | [119] | |
● Azathioprine treatment in OTR | RR: 1.56 (95% CI: 1.11–2.18) | [124,125] |
● HIV | SIR: 5.40 (95% CI: 3.07–9.52) | [118] |
● Chronic lymphocytic leukemia | SIR: 4.82 (95% CI: 4.57–5.07) | [67] |
Viral infections | ||
● HPV DNA in cSCC | OR: 2.13 (95% CI: 1.13–4.03) | [126,127] |
Lifestyle factors | ||
● Baseline alcohol consumption > 15 vs. 0.1–4.9 g/day | HR: 1.44 (95% CI: 1.17–1.77) | [25] |
Chronic skin lesions | ||
● Burns/scars | [130] |
4.2. Intrinsic Risk Factors for SCC
Intrinsic Risk Factors for SCC | ||
---|---|---|
Phenotype | ||
● Eye color | [131] | |
Light/blue vs. dark | RR: 1.19 (95% CI: 1.01–1.41) | |
Hazel/green/medium vs. dark | RR: 1.24 (95% CI: 1.06–1.45) | |
● Blonde hair | OR: 2.4 (95% CI: 1.26–4.64) | [71] |
● Inability to tan | OR: 2.7 (95% CI: 1.67–4.27) | [71] |
Medical history & conditions | ||
● Previous SCC | 3-year risk: 18% (9–23%) | [102] |
● Previous BCC | 3-year risk: 6% (1–19%) | |
● Presence of actinic keratosis | [137,138] | |
Genetic conditions & susceptibility genes | ||
● ATM, DSTYK, GPR98, SOX6 | [99,132] | |
one MC1R variant | OR: 1.61 (95% CI: 1.35–1.91) | |
≥two MC1R variants | OR: 2.10 (95% CI: 1.60–2.76) | |
Sex | ||
● Male sex | IR: 207.5 (95% CI: 193.9–221.1) per 100,000 persons vs. 128.8 (95% CI: 119.4–138.2) in females | [133,134,136] |
Age | [139,140] |
5. Risk Assessment Innovations and Personalized Medicine in Skin Cancer
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cancer Today. Available online: https://gco.iarc.fr/today/online-analysis-treemap?v=2020&mode=cancer&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer=1&include_nmsc=0&include_nmsc_other=1&reloaded (accessed on 30 January 2024).
- Armstrong, B.K.; Kricker, A. How much melanoma is caused by sun exposure? Melanoma Res. 1993, 3, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Leiter, U.; Keim, U.; Garbe, C. Epidemiology of Skin Cancer: Update 2019. Adv. Exp. Med. Biol. 2020, 1268, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Wolff, T.; Tai, E.; Miller, T. Screening for skin cancer: An update of the evidence for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2009, 150, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Loomans-Kropp, H.A.; Umar, A. Cancer prevention and screening: The next step in the era of precision medicine. NPJ Precis. Oncol. 2019, 3, 3. [Google Scholar] [CrossRef] [PubMed]
- Losina, E.; Walensky, R.P.; Geller, A.; Beddingfield, F.C.; Wolf, L.L.; Gilchrest, B.A.; Freedberg, K.A. Visual Screening for Malignant Melanoma: A Cost-effectiveness Analysis. Arch. Dermatol. 2007, 143, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Usher-Smith, J.A.; Emery, J.; Kassianos, A.P.; Walter, F.M. Risk prediction models for melanoma: A systematic review. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1450–1463. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer. Solar and Ultraviolet Radiation; World Health Organization IARC: Lyon, France; Geneva, Switzerland, 1992; ISBN 978-92-832-1255-3. [Google Scholar]
- Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Picconi, O.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur. J. Cancer 2005, 41, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-m.; Barrett, J.H.; Bishop, D.T.; Armstrong, B.K.; Bataille, V.; Bergman, W.; Berwick, M.; Bracci, P.M.; Elwood, J.M.; Ernstoff, M.S.; et al. Sun exposure and melanoma risk at different latitudes: A pooled analysis of 5700 cases and 7216 controls. Int. J. Epidemiol. 2009, 38, 814–830. [Google Scholar] [CrossRef]
- O’Sullivan, D.E.; Brenner, D.R.; Villeneuve, P.J.; Walter, S.D.; Demers, P.A.; Friedenreich, C.M.; King, W.D. Estimates of the current and future burden of melanoma attributable to ultraviolet radiation in Canada. Prev. Med. 2019, 122, 81–90. [Google Scholar] [CrossRef]
- Olsen, C.M.; Wilson, L.F.; Green, A.C.; Bain, C.J.; Fritschi, L.; Neale, R.E.; Whiteman, D.C. Cancers in Australia attributable to exposure to solar ultraviolet radiation and prevented by regular sunscreen use. Aust. N. Z. J. Public Health 2015, 39, 471–476. [Google Scholar] [CrossRef]
- Scott, T.L.; Christian, P.A.; Kesler, M.V.; Donohue, K.M.; Shelton, B.; Wakamatsu, K.; Ito, S.; D’Orazio, J. Pigment-independent cAMP-mediated epidermal thickening protects against cutaneous UV injury by keratinocyte proliferation. Exp. Dermatol. 2012, 21, 771–777. [Google Scholar] [CrossRef]
- van Schanke, A.; Jongsma, M.J.; Bisschop, R.; van Venrooij, G.M.C.A.L.; Rebel, H.; de Gruijl, F.R. Single UVB overexposure stimulates melanocyte proliferation in murine skin, in contrast to fractionated or UVA-1 exposure. J. Investig. Dermatol. 2005, 124, 241–247. [Google Scholar] [CrossRef]
- Whiteman, D.C.; Whiteman, C.A.; Green, A.C. Childhood sun exposure as a risk factor for melanoma: A systematic review of epidemiologic studies. Cancer Causes Control 2001, 12, 69–82. [Google Scholar] [CrossRef]
- Noonan, F.P.; Recio, J.A.; Takayama, H.; Duray, P.; Anver, M.R.; Rush, W.L.; de Fabo, E.C.; Merlino, G. Neonatal sunburn and melanoma in mice. Nature 2001, 413, 271–272. [Google Scholar] [CrossRef]
- Boniol, M.; Autier, P.; Boyle, P.; Gandini, S. Cutaneous melanoma attributable to sunbed use: Systematic review and meta-analysis. BMJ 2012, 345, e4757. [Google Scholar] [CrossRef]
- Bränström, R.; Chang, Y.-m.; Kasparian, N.; Affleck, P.; Tibben, A.; Aspinwall, L.G.; Azizi, E.; Baron-Epel, O.; Battistuzzi, L.; Bruno, W.; et al. Melanoma Risk Factors, Perceived threat and Intentional Tanning: An Online Survey. Eur. J. Cancer Prev. 2010, 19, 216–226. [Google Scholar] [CrossRef]
- Gandini, S.; Stanganelli, I.; Magi, S.; Mazzoni, L.; Medri, M.; Agnoletti, V.; Lombi, L.; Falcini, F. Melanoma attributable to sunbed use and tan seeking behaviours: An Italian survey. Eur. J. Dermatol. 2014, 24, 35–40. [Google Scholar] [CrossRef]
- Arnold, M.; Kvaskoff, M.; Thuret, A.; Guénel, P.; Bray, F.; Soerjomataram, I. Cutaneous melanoma in France in 2015 attributable to solar ultraviolet radiation and the use of sunbeds. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1681–1686. [Google Scholar] [CrossRef]
- Gredner, T.; Behrens, G.; Stock, C.; Brenner, H.; Mons, U. Cancers Due to Infection and Selected Environmental Factors: Estimation of the Attributable Cancer Burden in Germany. Dtsch. Arztebl. Int. 2018, 115, 586–593. [Google Scholar] [CrossRef]
- Suppa, M.; Gandini, S.; Njimi, H.; Bulliard, J.L.; Correia, O.; Duarte, A.F.; Peris, K.; Stratigos, A.J.; Nagore, E.; Longo, M.I.; et al. Association of sunbed use with skin cancer risk factors in Europe: An investigation within the Euromelanoma skin cancer prevention campaign. J. Eur. Acad. Dermatol. Venereol. 2019, 33 (Suppl. 2), 76–88. [Google Scholar] [CrossRef]
- Suppa, M.; Gandini, S. Sunbeds and melanoma risk: Time to close the debate. Curr. Opin. Oncol. 2019, 31, 65–71. [Google Scholar] [CrossRef]
- Rivera, A.; Nan, H.; Li, T.; Qureshi, A.; Cho, E. Alcohol Intake and Risk of Incident Melanoma: A Pooled Analysis of Three Prospective Studies in the U.S. Cancer Epidemiol. Biomark. Prev. 2016, 25, 1550–1558. [Google Scholar] [CrossRef]
- Mahamat-Saleh, Y.; Al-Rahmoun, M.; Severi, G.; Ghiasvand, R.; Veierod, M.B.; Caini, S.; Palli, D.; Botteri, E.; Sacerdote, C.; Ricceri, F.; et al. Baseline and lifetime alcohol consumption and risk of skin cancer in the European Prospective Investigation into Cancer and Nutrition cohort (EPIC). Int. J. Cancer 2023, 152, 348–362. [Google Scholar] [CrossRef]
- Burgi, A.; Brodine, S.; Wegner, S.; Milazzo, M.; Wallace, M.R.; Spooner, K.; Blazes, D.L.; Agan, B.K.; Armstrong, A.; Fraser, S.; et al. Incidence and risk factors for the occurrence of non-AIDS-defining cancers among human immunodeficiency virus-infected individuals. Cancer 2005, 104, 1505–1511. [Google Scholar] [CrossRef]
- Hollenbeak, C.S.; Todd, M.M.; Billingsley, E.M.; Harper, G.; Dyer, A.-M.; Lengerich, E.J. Increased incidence of melanoma in renal transplantation recipients. Cancer 2005, 104, 1962–1967. [Google Scholar] [CrossRef]
- Ascha, M.; Ascha, M.S.; Tanenbaum, J.; Bordeaux, J.S. Risk Factors for Melanoma in Renal Transplant Recipients. JAMA Dermatol. 2017, 153, 1130–1136. [Google Scholar] [CrossRef]
- Hao, X.; Lai, W.; Xia, X.; Xu, J.; Wu, Y.; Lv, C.; Meng, Q.; Lv, K.; Huang, S.; Luo, Z.; et al. Skin cancer outcomes and risk factors in renal transplant recipients: Analysis of organ procurement and transplantation network data from 2000 to 2021. Front. Oncol. 2022, 12, 1017498. [Google Scholar] [CrossRef]
- Jensen, P.; Hansen, S.; Møller, B.; Leivestad, T.; Pfeffer, P.; Geiran, O.; Fauchald, P.; Simonsen, S. Skin cancer in kidney and heart transplant recipients and different long-term immunosuppressive therapy regimens. J. Am. Acad. Dermatol. 1999, 40, 177–186. [Google Scholar] [CrossRef]
- Adami, J.; Frisch, M.; Yuen, J.; Glimelius, B.; Melbye, M. Evidence of an association between non-Hodgkin’s lymphoma and skin cancer. BMJ 1995, 310, 1491–1495. [Google Scholar] [CrossRef]
- Shekar, S.N.; Duffy, D.L.; Youl, P.; Baxter, A.J.; Kvaskoff, M.; Whiteman, D.C.; Green, A.C.; Hughes, M.C.; Hayward, N.K.; Coates, M.; et al. A population-based study of Australian twins with melanoma suggests a strong genetic contribution to liability. J. Investig. Dermatol. 2009, 129, 2211–2219. [Google Scholar] [CrossRef]
- Raimondi, S.; Suppa, M.; Gandini, S. Melanoma Epidemiology and Sun Exposure. Acta Derm. Venereol. 2020, 100, adv00136. [Google Scholar] [CrossRef] [PubMed]
- Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Zanetti, R.; Masini, C.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur. J. Cancer 2005, 41, 2040–2059. [Google Scholar] [CrossRef]
- Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Abeni, D.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur. J. Cancer 2005, 41, 28–44. [Google Scholar] [CrossRef]
- Caini, S.; Gandini, S.; Sera, F.; Raimondi, S.; Fargnoli, M.C.; Boniol, M.; Armstrong, B.K. Meta-analysis of risk factors for cutaneous melanoma according to anatomical site and clinico-pathological variant. Eur. J. Cancer 2009, 45, 3054–3063. [Google Scholar] [CrossRef]
- Bevona, C.; Goggins, W.; Quinn, T.; Fullerton, J.; Tsao, H. Cutaneous melanomas associated with nevi. Arch. Dermatol. 2003, 139, 1620–1624; discussion 1624. [Google Scholar] [CrossRef]
- Lin, W.M.; Luo, S.; Muzikansky, A.; Lobo, A.Z.C.; Tanabe, K.K.; Sober, A.J.; Cosimi, A.B.; Tsao, H.; Duncan, L.M. Outcome of patients with de novo versus nevus-associated melanoma. J. Am. Acad. Dermatol. 2015, 72, 54–58. [Google Scholar] [CrossRef]
- Damsky, W.E.; Bosenberg, M. Melanocytic nevi and melanoma: Unraveling a complex relationship. Oncogene 2017, 36, 5771–5792. [Google Scholar] [CrossRef]
- Watson, M.; Geller, A.C.; Tucker, M.A.; Guy, G.P.; Weinstock, M.A. Melanoma burden and recent trends among non-Hispanic whites aged 15-49years, United States. Prev. Med. 2016, 91, 294–298. [Google Scholar] [CrossRef]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Bishop, K.; Altekruse, S.F.; Kosary, C.L.; Yu, M.; Ruhl, J.; Tatalovich, Z.; et al. SEER Cancer Statistics Review, 1975–2013; National Cancer Institute: Bethesda, MD, USA, 2016. Available online: https://seer.cancer.gov/archive/csr/1975_2013/ (accessed on 29 January 2024).
- Joosse, A.; Collette, S.; Suciu, S.; Nijsten, T.; Lejeune, F.; Kleeberg, U.R.; Coebergh, J.W.W.; Eggermont, A.M.M.; de Vries, E. Superior outcome of women with stage I/II cutaneous melanoma: Pooled analysis of four European Organisation for Research and Treatment of Cancer phase III trials. J. Clin. Oncol. 2012, 30, 2240–2247. [Google Scholar] [CrossRef]
- Katalinic, A.; Kunze, U.; Schäfer, T. Epidemiology of cutaneous melanoma and non-melanoma skin cancer in Schleswig-Holstein, Germany: Incidence, clinical subtypes, tumour stages and localization (epidemiology of skin cancer). Br. J. Dermatol. 2003, 149, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Stanienda-Sokół, K.; Salwowska, N.; Sławińska, M.; Wicherska-Pawłowska, K.; Lorenc, A.; Wcisło-Dziadecka, D.; Wydmański, J.; Majewski, W. Primary Locations of Malignant Melanoma Lesions Depending on Patients’ Gender and Age. Asian Pac. J. Cancer Prev. 2017, 18, 3081–3086. [Google Scholar] [CrossRef] [PubMed]
- Gordon, D.; Gillgren, P.; Eloranta, S.; Olsson, H.; Gordon, M.; Hansson, J.; Smedby, K.E. Time trends in incidence of cutaneous melanoma by detailed anatomical location and patterns of ultraviolet radiation exposure: A retrospective population-based study. Melanoma Res. 2015, 25, 348–356. [Google Scholar] [CrossRef]
- Kushnir-Grinbaum, D.; Krausz, J.; Rahal, N.; Apel-Sarid, L.; Ziv, M. Risk of Melanoma in Patients with Basal Cell Carcinoma: A Population-based Cohort Study. Acta Derm. Venereol. 2023, 103, adv00841. [Google Scholar] [CrossRef] [PubMed]
- Bradford, P.T.; Freedman, D.M.; Goldstein, A.M.; Tucker, M.A. Increased risk of second primary cancers after a diagnosis of melanoma. Arch. Dermatol. 2010, 146, 265–272. [Google Scholar] [CrossRef]
- Gallagher, R.P. (Ed.) Epidemiology of Malignant Melanoma, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1986; ISBN 978-3-642-82643-6. [Google Scholar]
- Begg, C.B.; Hummer, A.; Mujumdar, U.; Armstrong, B.K.; Kricker, A.; Marrett, L.D.; Millikan, R.C.; Gruber, S.B.; Anton-Culver, H.; Klotz, J.B.; et al. Familial aggregation of melanoma risks in a large population-based sample of melanoma cases. Cancer Causes Control 2004, 15, 957–965. [Google Scholar] [CrossRef]
- Goldstein, A.M.; Tucker, M.A. Genetic epidemiology of cutaneous melanoma: A global perspective. Arch. Dermatol. 2001, 137, 1493–1496. [Google Scholar] [CrossRef] [PubMed]
- Soura, E.; Eliades, P.; Shannon, K.; Stratigos, A.; Tsao, H. Hereditary Melanoma: Update on Syndromes and Management—Genetics of familial atypical multiple mole melanoma syndrome. J. Am. Acad. Dermatol. 2016, 74, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Hussussian, C.J.; Struewing, J.P.; Goldstein, A.M.; Higgins, P.A.; Ally, D.S.; Sheahan, M.D.; Clark, W.H.; Tucker, M.A.; Dracopoli, N.C. Germline p16 mutations in familial melanoma. Nat. Genet. 1994, 8, 15–21. [Google Scholar] [CrossRef]
- Goldstein, A.M.; Chan, M.; Harland, M.; Gillanders, E.M.; Hayward, N.K.; Avril, M.-F.; Azizi, E.; Bianchi-Scarra, G.; Bishop, D.T.; Bressac-de Paillerets, B.; et al. High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res. 2006, 66, 9818–9828. [Google Scholar] [CrossRef]
- Helgadottir, H.; Höiom, V.; Tuominen, R.; Nielsen, K.; Jönsson, G.; Olsson, H.; Hansson, J. Germline CDKN2A Mutation Status and Survival in Familial Melanoma Cases. J. Natl. Cancer Inst. 2016, 108, djw135. [Google Scholar] [CrossRef]
- Puig, S.; Malvehy, J.; Badenas, C.; Ruiz, A.; Jimenez, D.; Cuellar, F.; Azon, A.; Gonzàlez, U.; Castel, T.; Campoy, A.; et al. Role of the CDKN2A locus in patients with multiple primary melanomas. J. Clin. Oncol. 2005, 23, 3043–3051. [Google Scholar] [CrossRef] [PubMed]
- Toussi, A.; Mans, N.; Welborn, J.; Kiuru, M. Germline mutations predisposing to melanoma. J. Cutan. Pathol. 2020, 47, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Zocchi, L.; Lontano, A.; Merli, M.; Dika, E.; Nagore, E.; Quaglino, P.; Puig, S.; Ribero, S. Familial Melanoma and Susceptibility Genes: A Review of the Most Common Clinical and Dermoscopic Phenotypic Aspect, Associated Malignancies and Practical Tips for Management. J. Clin. Med. 2021, 10, 3760. [Google Scholar] [CrossRef] [PubMed]
- Burchill, S.A.; Ito, S.; Thody, A.J. Effects of melanocyte-stimulating hormone on tyrosinase expression and melanin synthesis in hair follicular melanocytes of the mouse. J. Endocrinol. 1993, 137, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Schiöth, H.B.; Phillips, S.R.; Rudzish, R.; Birch-Machin, M.A.; Wikberg, J.E.; Rees, J.L. Loss of function mutations of the human melanocortin 1 receptor are common and are associated with red hair. Biochem. Biophys. Res. Commun. 1999, 260, 488–491. [Google Scholar] [CrossRef]
- Pasquali, E.; García-Borrón, J.C.; Fargnoli, M.C.; Gandini, S.; Maisonneuve, P.; Bagnardi, V.; Specchia, C.; Liu, F.; Kayser, M.; Nijsten, T.; et al. MC1R variants increased the risk of sporadic cutaneous melanoma in darker-pigmented Caucasians: A pooled-analysis from the M-SKIP project. Int. J. Cancer 2015, 136, 618–631. [Google Scholar] [CrossRef]
- Wiesner, T.; Obenauf, A.C.; Murali, R.; Fried, I.; Griewank, K.G.; Ulz, P.; Windpassinger, C.; Wackernagel, W.; Loy, S.; Wolf, I.; et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat. Genet. 2011, 43, 1018–1021. [Google Scholar] [CrossRef]
- Popova, T.; Hebert, L.; Jacquemin, V.; Gad, S.; Caux-Moncoutier, V.; Dubois-d’Enghien, C.; Richaudeau, B.; Renaudin, X.; Sellers, J.; Nicolas, A.; et al. Germline BAP1 Mutations Predispose to Renal Cell Carcinomas. Am. J. Hum. Genet. 2013, 92, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Walpole, S.; Pritchard, A.L.; Cebulla, C.M.; Pilarski, R.; Stautberg, M.; Davidorf, F.H.; de La Fouchardière, A.; Cabaret, O.; Golmard, L.; Stoppa-Lyonnet, D.; et al. Comprehensive Study of the Clinical Phenotype of Germline BAP1 Variant-Carrying Families Worldwide. J. Natl. Cancer Inst. 2018, 110, 1328–1341. [Google Scholar] [CrossRef] [PubMed]
- Silva-Clavería, F.; Álvarez-Muñoz, A.; Ferrándiz, L.; Fernández-Orland, A.; Conde-Martin, A.F.; Moreno-Ramírez, D.; Ríos-Martín, J.J. Difficult to Diagnose Cutaneous Melanoma in a Patient with BAP1 Tumor Predisposition Syndrome. Int. J. Surg. Pathol. 2023, 31, 1398–1402. [Google Scholar] [CrossRef] [PubMed]
- Caini, S.; Radice, D.; Tosti, G.; Spadola, G.; Cocorocchio, E.; Ferrucci, P.F.; Testori, A.; Pennacchioli, E.; Fargnoli, M.C.; Palli, D.; et al. Risk of second primary malignancies among 1537 melanoma patients and risk of second primary melanoma among 52 354 cancer patients in Northern Italy. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1491–1496. [Google Scholar] [CrossRef]
- Caini, S.; Boniol, M.; Botteri, E.; Tosti, G.; Bazolli, B.; Russell-Edu, W.; Giusti, F.; Testori, A.; Gandini, S. The risk of developing a second primary cancer in melanoma patients: A comprehensive review of the literature and meta-analysis. J. Dermatol. Sci. 2014, 75, 3–9. [Google Scholar] [CrossRef]
- van der Straten, L.; Levin, M.-D.; Dinnessen, M.A.W.; Visser, O.; Posthuma, E.F.M.; Doorduijn, J.K.; Langerak, A.W.; Kater, A.P.; Dinmohamed, A.G. Risk of second primary malignancies in patients with chronic lymphocytic leukemia: A population-based study in the Netherlands, 1989–2019. Blood Cancer J. 2023, 13, 15. [Google Scholar] [CrossRef]
- DePinho, R.A. The age of cancer. Nature 2000, 408, 248–254. [Google Scholar] [CrossRef]
- Ciążyńska, M.; Kamińska-Winciorek, G.; Lange, D.; Lewandowski, B.; Reich, A.; Sławińska, M.; Pabianek, M.; Szczepaniak, K.; Hankiewicz, A.; Ułańska, M.; et al. The incidence and clinical analysis of non-melanoma skin cancer. Sci. Rep. 2021, 11, 4337. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, W.; Jiang, A.; He, Z.; Shen, X.; Dong, X.; Feng, J.; Lu, H. Global, regional and national incidence, mortality and disability-adjusted life-years of skin cancers and trend analysis from 1990 to 2019: An analysis of the Global Burden of Disease Study 2019. Cancer Med. 2021, 10, 4905–4922. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, R.; Rosso, S.; Martinez, C.; Nieto, A.; Miranda, A.; Mercier, M.; Loria, D.I.; Østerlind, A.; Greinert, R.; Navarro, C.; et al. Comparison of risk patterns in carcinoma and melanoma of the skin in men: A multi-centre case-case-control study. Br. J. Cancer 2006, 94, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Lashway, S.G.; Worthen, A.D.M.; Abuasbeh, J.N.; Harris, R.B.; Farland, L.V.; O’Rourke, M.K.; Dennis, L.K. A meta-analysis of sunburn and basal cell carcinoma risk. Cancer Epidemiol. 2023, 85, 102379. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.; Haufe, E.; Heinrich, L.; Seidler, A.; Schulze, H.J.; Elsner, P.; Drexler, H.; Letzel, S.; John, S.M.; Fartasch, M.; et al. Basal cell carcinoma risk and solar UV exposure in occupationally relevant anatomic sites: Do histological subtype, tumor localization and Fitzpatrick phototype play a role? A population-based case-control study. J. Occup. Med. Toxicol. 2020, 15, 28. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, L.; Pellegrini, C.; Di Stefani, A.; Ricci, F.; Fossati, B.; Del Regno, L.; Carbone, C.; Piro, G.; Corbo, V.; Delfino, P.; et al. Molecular alterations in basal cell carcinoma subtypes. Sci. Rep. 2021, 11, 13206. [Google Scholar] [CrossRef] [PubMed]
- Bansaccal, N.; Vieugue, P.; Sarate, R.; Song, Y.; Minguijon, E.; Miroshnikova, Y.A.; Zeuschner, D.; Collin, A.; Allard, J.; Engelman, D.; et al. The extracellular matrix dictates regional competence for tumour initiation. Nature 2023, 623, 828–835. [Google Scholar] [CrossRef]
- Wehner, M.R.; Shive, M.L.; Chren, M.-M.; Han, J.; Qureshi, A.A.; Linos, E. Indoor tanning and non-melanoma skin cancer: Systematic review and meta-analysis. BMJ 2012, 345, e5909. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.M.; Cartmel, B.; Molinaro, A.M.; Leffell, D.J.; Bale, A.E.; Mayne, S.T. Indoor tanning and risk of early-onset basal cell carcinoma. J. Am. Acad. Dermatol. 2011, 67, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Suppa, M.; Gandini, S.; Njimi, H.; Bulliard, J.L.; Correia, O.; Duarte, A.F.; Peris, K.; Stratigos, A.J.; Nagore, E.; Longo, M.I.; et al. Prevalence and determinants of sunbed use in thirty European countries: Data from the Euromelanoma skin cancer prevention campaign. J. Eur. Acad. Dermatol. Venereol. 2019, 33 (Suppl. 2), 13–27. [Google Scholar] [CrossRef] [PubMed]
- Suppa, M.; Gandini, S.; Bulliard, J.L.; Daxhelet, M.; Zamagni, M.; Forsea, A.M.; Longo, M.I.; Del Marmol, V. Who, why, where: An overview of determinants of sunbed use in Europe. J. Eur. Acad. Dermatol. Venereol. 2019, 33 (Suppl. 2), 6–12. [Google Scholar] [CrossRef] [PubMed]
- Watt, T.C.; Inskip, P.D.; Stratton, K.; Smith, S.A.; Kry, S.F.; Sigurdson, A.J.; Stovall, M.; Leisenring, W.; Robison, L.L.; Mertens, A.C. Radiation-Related Risk of Basal Cell Carcinoma: A Report from the Childhood Cancer Survivor Study. J. Natl. Cancer Inst. 2012, 104, 1240–1250. [Google Scholar] [CrossRef] [PubMed]
- Perkins, J.L.; Liu, Y.; Mitby, P.A.; Neglia, J.P.; Hammond, S.; Stovall, M.; Meadows, A.T.; Hutchinson, R.; Dreyer, Z.E.; Robison, L.L.; et al. Nonmelanoma skin cancer in survivors of childhood and adolescent cancer: A report from the childhood cancer survivor study. J. Clin. Oncol. 2005, 23, 3733–3741. [Google Scholar] [CrossRef] [PubMed]
- Karagas, M.R.; McDonald, J.A.; Greenberg, E.R.; Stukel, T.A.; Weiss, J.E.; Baron, J.A.; Stevens, M.M.; For the Skin Cancer Prevention Study Group. Risk of basal cell and squamous cell skin cancers after ionizing radiation therapy. J. Natl. Cancer Inst. 1996, 88, 1848–1853. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, S.; Hauptmann, M.; Sigurdson, A.J.; Doody, M.M.; Freedman, D.M.; Alexander, B.H.; Linet, M.S.; Ron, E.; Mabuchi, K. Nonmelanoma skin cancer in relation to ionizing radiation exposure among U.S. radiologic technologists. Int. J. Cancer 2005, 115, 828–834. [Google Scholar] [CrossRef]
- Fung, T.T.; Hunter, D.J.; Spiegelman, D.; Colditz, G.A.; Rimm, E.B.; Willett, W.C. Intake of alcohol and alcoholic beverages and the risk of basal cell carcinoma of the skin. Cancer Epidemiol. Biomark. Prev. 2002, 11, 1119–1122. [Google Scholar]
- Wu, S.; Li, W.-Q.; Qureshi, A.A.; Cho, E. Alcohol consumption and risk of cutaneous basal cell carcinoma in women and men: 3 prospective cohort studies. Am. J. Clin. Nutr. 2015, 102, 1158–1166. [Google Scholar] [CrossRef]
- Warthan, M.M.; Sewell, D.S.; Marlow, R.A.; Warthan, M.L.; Wagner, R.F. The economic impact of acute sunburn. Arch. Dermatol. 2003, 139, 1003–1006. [Google Scholar] [CrossRef] [PubMed]
- Mukamal, K.J. Alcohol consumption and self-reported sunburn: A cross-sectional, population-based survey. J. Am. Acad. Dermatol. 2006, 55, 584–589. [Google Scholar] [CrossRef]
- Saladi, R.N.; Nektalova, T.; Fox, J.L. Induction of skin carcinogenicity by alcohol and ultraviolet light. Clin. Exp. Dermatol. 2010, 35, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Fontanillas, P.; Alipanahi, B.; Furlotte, N.A.; Johnson, M.; Wilson, C.H.; Pitts, S.J.; Gentleman, R.; Auton, A. Disease risk scores for skin cancers. Nat. Commun. 2021, 12, 160. [Google Scholar] [CrossRef]
- Zhang, Y.; Cartmel, B.; Choy, C.C.; Molinaro, A.M.; Leffell, D.J.; Bale, A.E.; Mayne, S.T.; Ferrucci, L.M. Body Mass Index, Height and Early-Onset Basal Cell Carcinoma in a Case-Control Study. Cancer Epidemiol. 2016, 46, 66–72. [Google Scholar] [CrossRef]
- Demko, C.A.; Borawski, E.A.; Debanne, S.M.; Cooper, K.D.; Stange, K.C. Use of indoor tanning facilities by white adolescents in the United States. Arch. Pediatr. Adolesc. Med. 2003, 157, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Reinau, D.; Surber, C.; Jick, S.S.; Meier, C.R. Epidemiology of basal cell carcinoma in the United Kingdom: Incidence, lifestyle factors, and comorbidities. Br. J. Cancer 2014, 111, 203–206. [Google Scholar] [CrossRef]
- Krynitz, B.; Olsson, H.; Lundh Rozell, B.; Lindelöf, B.; Edgren, G.; Smedby, K.E. Risk of basal cell carcinoma in Swedish organ transplant recipients: A population-based study. Br. J. Dermatol. 2016, 174, 95–103. [Google Scholar] [CrossRef]
- Polesie, S.; Gillstedt, M.; Schmidt, S.A.J.; Egeberg, A.; Pottegård, A.; Kristensen, K. Use of methotrexate and risk of skin cancer: A nationwide case-control study. Br. J. Cancer 2023, 128, 1311–1319. [Google Scholar] [CrossRef]
- Sánchez, G.; Nova, J.; de La Hoz, F. Risk Factors for Basal Cell Carcinoma: A Study From the National Dermatology Center of Colombia. Actas Dermo-Sifiliográficas (Engl. Ed.) 2012, 103, 294–300. [Google Scholar] [CrossRef]
- Khalesi, M.; Whiteman, D.C.; Tran, B.; Kimlin, M.G.; Olsen, C.M.; Neale, R.E. A meta-analysis of pigmentary characteristics, sun sensitivity, freckling and melanocytic nevi and risk of basal cell carcinoma of the skin. Cancer Epidemiol. 2013, 37, 534–543. [Google Scholar] [CrossRef]
- Hogan, D.J.; To, T.; Gran, L.; Wong, D.; Lane, P.R. Risk factors for basal cell carcinoma. Int. J. Dermatol. 1989, 28, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Chahal, H.S.; Wu, W.; Ransohoff, K.J.; Yang, L.; Hedlin, H.; Desai, M.; Lin, Y.; Dai, H.-J.; Qureshi, A.A.; Li, W.-Q.; et al. Genome-wide association study identifies 14 novel risk alleles associated with basal cell carcinoma. Nat. Commun. 2016, 7, 12510. [Google Scholar] [CrossRef]
- Tagliabue, E.; Fargnoli, M.C.; Gandini, S.; Maisonneuve, P.; Liu, F.; Kayser, M.; Nijsten, T.; Han, J.; Kumar, R.; Gruis, N.A.; et al. MC1R gene variants and non-melanoma skin cancer: A pooled-analysis from the M-SKIP project. Br. J. Cancer 2015, 113, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Farndon, P.A.; Del Mastro, R.G.; Evans, D.G.; Kilpatrick, M.W. Location of gene for Gorlin syndrome. Lancet 1992, 339, 581–582. [Google Scholar] [CrossRef]
- Solis, D.C.; Kwon, G.P.; Ransohoff, K.J.; Li, S.; Chahal, H.S.; Ally, M.S.; Peters, M.A.D.; Schmitt-Burr, K.; Lindgren, J.; Bailey-Healy, I.; et al. Risk Factors for Basal Cell Carcinoma Among Patients with Basal Cell Nevus Syndrome: Development of a Basal Cell Nevus Syndrome Patient Registry. JAMA Dermatol. 2017, 153, 189–192. [Google Scholar] [CrossRef]
- Marcil, I.; Stern, R.S. Risk of developing a subsequent nonmelanoma skin cancer in patients with a history of nonmelanoma skin cancer: A critical review of the literature and meta-analysis. Arch. Dermatol. 2000, 136, 1524–1530. [Google Scholar] [CrossRef] [PubMed]
- Bassukas, I.D.; Tatsioni, A. Male Sex is an Inherent Risk Factor for Basal Cell Carcinoma. J. Skin Cancer 2019, 2019, 8304271. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.; Jovic, M.; Ali, S.; Williams, N.; Gibson, J.A.G.; Griffiths, R.; Dobbs, T.D.; Akbari, A.; Lyons, R.A.; Hutchings, H.A.; et al. The epidemiology, healthcare and societal burden of basal cell carcinoma in Wales 2000-2018: A retrospective nationwide analysis. Br. J. Dermatol. 2023, 188, 380–389. [Google Scholar] [CrossRef]
- Artosi, F.; Costanza, G.; Di Prete, M.; Garofalo, V.; Lozzi, F.; Dika, E.; Cosio, T.; Diluvio, L.; Shumak, R.G.; Lambiase, S.; et al. Epidemiological and clinical analysis of exposure-related factors in non-melanoma skin cancer: A retrospective cohort study. Environ. Res. 2024, 247, 118117. [Google Scholar] [CrossRef]
- Xiang, F.; Lucas, R.; Hales, S.; Neale, R. Incidence of nonmelanoma skin cancer in relation to ambient UV radiation in white populations, 1978-2012: Empirical relationships. JAMA Dermatol. 2014, 150, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, D.E.; Brenner, D.R.; Villeneuve, P.J.; Walter, S.D.; Demers, P.A.; Friedenreich, C.M.; King, W.D. The current burden of non-melanoma skin cancer attributable to ultraviolet radiation and related risk behaviours in Canada. Cancer Causes Control 2021, 32, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, J.; Haufe, E.; Trautmann, F.; Schulze, H.-J.; Elsner, P.; Drexler, H.; Bauer, A.; Letzel, S.; John, S.M.; Fartasch, M.; et al. Is ultraviolet exposure acquired at work the most important risk factor for cutaneous squamous cell carcinoma? Results of the population-based case-control study FB-181. Br. J. Dermatol. 2018, 178, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Rocholl, M.; Ludewig, M.; Skudlik, C.; Wilke, A. Beruflicher Hautkrebs: Prävention und UV-Schutzempfehlungen im berufsgenossenschaftlichen Heilverfahren. Hautarzt 2018, 69, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, C.; Salavastru, C.; Agner, T.; Bauer, A.; Brans, R.; Crepy, M.N.; Ettler, K.; Gobba, F.; Goncalo, M.; Imko-Walczuk, B.; et al. The European Status Quo in legal recognition and patient-care services of occupational skin cancer. J. Eur. Acad. Dermatol. Venereol. 2016, 30 (Suppl. 3), 46–51. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.R.; Zhou, J.H.; Lee, J.J.; Drummond, J.A.; Peng, S.A.; Saade, R.E.; Tsai, K.Y.; Curry, J.L.; Tetzlaff, M.T.; Lai, S.Y.; et al. Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin. Cancer Res. 2014, 20, 6582–6592. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Hanna, G.J.; Laga, A.C.; Haddad, R.I.; Lorch, J.H.; Hammerman, P.S. Genomic analysis of metastatic cutaneous squamous cell carcinoma. Clin. Cancer Res. 2015, 21, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, A.; Jonason, A.S.; Leffell, D.J.; Simon, J.A.; Sharma, H.W.; Kimmelman, J.; Remington, L.; Jacks, T.; Brash, D.E. Sunburn and p53 in the onset of skin cancer. Nature 1994, 372, 773–776. [Google Scholar] [CrossRef]
- Iannacone, M.R.; Wang, W.; Stockwell, H.G.; O’Rourke, K.; Giuliano, A.R.; Sondak, V.K.; Messina, J.L.; Roetzheim, R.G.; Cherpelis, B.S.; Fenske, N.A.; et al. Patterns and timing of sunlight exposure and risk of basal cell and squamous cell carcinomas of the skin—A case–control study. BMC Cancer 2012, 12, 417. [Google Scholar] [CrossRef]
- An, S.; Kim, K.; Moon, S.; Ko, K.-P.; Kim, I.; Lee, J.E.; Park, S.K. Indoor Tanning and the Risk of Overall and Early-Onset Melanoma and Non-Melanoma Skin Cancer: Systematic Review and Meta-Analysis. Cancers 2021, 13, 5940. [Google Scholar] [CrossRef] [PubMed]
- Lergenmuller, S.; Ghiasvand, R.; Robsahm, T.E.; Green, A.C.; Lund, E.; Rueegg, C.S.; Veierød, M.B. Association of Lifetime Indoor Tanning and Subsequent Risk of Cutaneous Squamous Cell Carcinoma. JAMA Dermatol. 2019, 155, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Zavdy, O.; Coreanu, T.; Bar-On, D.Y.; Ritter, A.; Bachar, G.; Shpitzer, T.; Kurman, N.; Mansour, M.; Ad-El, D.; Rozovski, U.; et al. Cutaneous Squamous Cell Carcinoma in Immunocompromised Patients-A Comparison between Different Immunomodulating Conditions. Cancers 2023, 15, 1764. [Google Scholar] [CrossRef] [PubMed]
- Omland, S.H.; Ahlström, M.G.; Gerstoft, J.; Pedersen, G.; Mohey, R.; Pedersen, C.; Kronborg, G.; Larsen, C.S.; Kvinesdal, B.; Gniadecki, R.; et al. Risk of skin cancer in patients with HIV: A Danish nationwide cohort study. J. Am. Acad. Dermatol. 2018, 79, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Lindelöf, B.; Sigurgeirsson, B.; Gäbel, H.; Stern, R.S. Incidence of skin cancer in 5356 patients following organ transplantation. Br. J. Dermatol. 2000, 143, 513–519. [Google Scholar]
- Zhang, S.; Fujita, H.; Mitsui, H.; Yanofsky, V.R.; Fuentes-Duculan, J.; Pettersen, J.S.; Suárez-Fariñas, M.; Gonzalez, J.; Wang, C.Q.F.; Krueger, J.G.; et al. Increased Tc22 and Treg/CD8 Ratio Contribute to Aggressive Growth of Transplant Associated Squamous Cell Carcinoma. PLoS ONE 2013, 8, e62154. [Google Scholar] [CrossRef]
- Allison, S.J. Transplantation: T(REG) cells predict risk of cutaneous squamous cell cancer after transplantation. Nat. Rev. Nephrol. 2010, 6, 249. [Google Scholar] [CrossRef]
- Garrett, G.L.; Blanc, P.D.; Boscardin, J.; Lloyd, A.A.; Ahmed, R.L.; Anthony, T.; Bibee, K.; Breithaupt, A.; Cannon, J.; Chen, A.; et al. Incidence of and Risk Factors for Skin Cancer in Organ Transplant Recipients in the United States. JAMA Dermatol. 2017, 153, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Gogia, R.; Binstock, M.; Hirose, R.; Boscardin, W.J.; Chren, M.-M.; Arron, S.T. Fitzpatrick skin phototype is an independent predictor of squamous cell carcinoma risk after solid organ transplantation. J. Am. Acad. Dermatol. 2013, 68, 585–591. [Google Scholar] [CrossRef]
- O’Donovan, P.; Perrett, C.M.; Zhang, X.; Montaner, B.; Xu, Y.-Z.; Harwood, C.A.; McGregor, J.M.; Walker, S.L.; Hanaoka, F.; Karran, P. Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science 2005, 309, 1871–1874. [Google Scholar] [CrossRef]
- Jiyad, Z.; Olsen, C.M.; Burke, M.T.; Isbel, N.M.; Green, A.C. Azathioprine and Risk of Skin Cancer in Organ Transplant Recipients: Systematic Review and Meta-Analysis. Am. J. Transpl. 2016, 16, 3490–3503. [Google Scholar] [CrossRef]
- Wang, J.; Aldabagh, B.; Yu, J.; Arron, S.T. Role of human papillomavirus in cutaneous squamous cell carcinoma: A Meta-analysis. J. Am. Acad. Dermatol. 2014, 70, 621–629. [Google Scholar] [CrossRef]
- Forslund, O.; Iftner, T.; Andersson, K.; Lindelöf, B.; Hradil, E.; Nordin, P.; Stenquist, B.; Kirnbauer, R.; Dillner, J.; de Villiers, E.-M. Cutaneous Human Papillomaviruses Found in Sun-Exposed Skin: Beta-papillomavirus Species 2 Predominates in Squamous Cell Carcinoma. J. Infect. Dis. 2007, 196, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.A.; Young, A.R.; McGregor, J.M.; Seed, P.T.; Potten, C.S.; Walker, S.L. Sensitivity to Sunburn Is Associated with Susceptibility to Ultraviolet Radiation–Induced Suppression of Cutaneous Cell–Mediated Immunity. J. Exp. Med. 2000, 191, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Wu, J.; Luo, G. Body mass index and risk of non-melanoma skin cancer: Cumulative evidence from prospective studies. Sci. Rep. 2016, 6, 37691. [Google Scholar] [CrossRef] [PubMed]
- Kowal-Vern, A.; Criswell, B.K. Burn scar neoplasms: A literature review and statistical analysis. Burns 2005, 31, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, W.-Q.; Li, T.; Qureshi, A.A.; Cho, E. Eye color and the risk of skin cancer. Cancer Causes Control 2022, 33, 109–116. [Google Scholar] [CrossRef]
- Seviiri, M.; Law, M.H.; Ong, J.-S.; Gharahkhani, P.; Fontanillas, P.; Olsen, C.M.; Whiteman, D.C.; MacGregor, S. A multi-phenotype analysis reveals 19 susceptibility loci for basal cell carcinoma and 15 for squamous cell carcinoma. Nat. Commun. 2022, 13, 7650. [Google Scholar] [CrossRef] [PubMed]
- Muzic, J.G.; Schmitt, A.R.; Wright, A.C.; Alniemi, D.T.; Zubair, A.S.; Olazagasti Lourido, J.M.; Sosa Seda, I.M.; Weaver, A.L.; Baum, C.L. Incidence and Trends of Basal Cell Carcinoma and Cutaneous Squamous Cell Carcinoma: A Population-Based Study in Olmsted County, Minnesota, 2000 to 2010. Mayo Clin. Proc. 2017, 92, 890–898. [Google Scholar] [CrossRef]
- Venables, Z.C.; Autier, P.; Nijsten, T.; Wong, K.F.; Langan, S.M.; Rous, B.; Broggio, J.; Harwood, C.; Henson, K.; Proby, C.M.; et al. Nationwide Incidence of Metastatic Cutaneous Squamous Cell Carcinoma in England. JAMA Dermatol. 2019, 155, 298–306. [Google Scholar] [CrossRef]
- Tan, B.; Seth, I.; Fischer, O.; Hewitt, L.; Melville, G.; Bulloch, G.; Ashford, B. Sex Disparity for Patients with Cutaneous Squamous Cell Carcinoma of the Head and Neck: A Systematic Review. Cancers 2022, 14, 5830. [Google Scholar] [CrossRef] [PubMed]
- Tokez, S.; Wakkee, M.; Kan, W.; Venables, Z.C.; Mooyaart, A.L.; Louwman, M.; Nijsten, T.; Hollestein, L.M. Cumulative incidence and disease-specific survival of metastatic cutaneous squamous cell carcinoma: A nationwide cancer registry study. J. Am. Acad. Dermatol. 2022, 86, 331–338. [Google Scholar] [CrossRef]
- Glogau, R.G. The risk of progression to invasive disease. J. Am. Acad. Dermatol. 2000, 42, 23–24. [Google Scholar] [CrossRef]
- Fuchs, A.; Marmur, E. The kinetics of skin cancer: Progression of actinic keratosis to squamous cell carcinoma. Dermatol. Surg. 2007, 33, 1099–1101. [Google Scholar] [CrossRef] [PubMed]
- Sarin, K.Y.; Lin, Y.; Daneshjou, R.; Ziyatdinov, A.; Thorleifsson, G.; Rubin, A.; Pardo, L.M.; Wu, W.; Khavari, P.A.; Uitterlinden, A.; et al. Genome-wide meta-analysis identifies eight new susceptibility loci for cutaneous squamous cell carcinoma. Nat. Commun. 2020, 11, 820. [Google Scholar] [CrossRef] [PubMed]
- Stang, A.; Khil, L.; Kajüter, H.; Pandeya, N.; Schmults, C.D.; Ruiz, E.S.; Karia, P.S.; Green, A.C. Incidence and mortality for cutaneous squamous cell carcinoma: Comparison across three continents. J. Eur. Acad. Dermatol. Venereol. 2019, 33 (Suppl. 8), 6–10. [Google Scholar] [CrossRef]
- Keim, U.; Katalinic, A.; Holleczek, B.; Wakkee, M.; Garbe, C.; Leiter, U. Incidence, mortality and trends of cutaneous squamous cell carcinoma in Germany, the Netherlands, and Scotland. Eur. J. Cancer 2023, 183, 60–68. [Google Scholar] [CrossRef]
- Navarrete-Dechent, C.; Lallas, A. Overdiagnosis of Melanoma: Is It a Real Problem? Dermatol. Pract. Concept. 2023, 13, e2023246. [Google Scholar] [CrossRef]
- Friman, T.K.; Jäämaa-Holmberg, S.; Åberg, F.; Helanterä, I.; Halme, M.; Pentikäinen, M.O.; Nordin, A.; Lemström, K.B.; Jahnukainen, T.; Räty, R.; et al. Cancer risk and mortality after solid organ transplantation: A population-based 30-year cohort study in Finland. Int. J. Cancer 2022, 150, 1779–1791. [Google Scholar] [CrossRef]
- Garrett, G.L.; Lowenstein, S.E.; Singer, J.P.; He, S.Y.; Arron, S.T. Trends of skin cancer mortality after transplantation in the United States: 1987 to 2013. J. Am. Acad. Dermatol. 2016, 75, 106–112. [Google Scholar] [CrossRef]
- Jambusaria-Pahlajani, A.; Crow, L.D.; Lowenstein, S.; Garrett, G.L.; Melcher, M.L.; Chan, A.-W.; Boscardin, J.; Arron, S.T. Predicting skin cancer in organ transplant recipients: Development of the SUNTRAC screening tool using data from a multicenter cohort study. Transpl. Int. 2019, 32, 1259–1267. [Google Scholar] [CrossRef]
- Yoo, L.J.H.; Bowe, S.; Quigley, C.; Victory, L.; Devenney, C.; Lenane, P. Assessing the Skin and UV Neoplasia Transplant Risk Assessment Calculator in an Irish cohort of thoracic organ transplant recipients. Clin. Exp. Dermatol. 2023, 49, 68–70. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Tomás, Á.; Bouwes Bavinck, J.N.; Genders, R.; González-Cruz, C.; de Jong, E.; Arron, S.; García-Patos, V.; Ferrándiz-Pulido, C. External Validation of the Skin and UV Neoplasia Transplant Risk Assessment Calculator (SUNTRAC) in a Large European Solid Organ Transplant Recipient Cohort. JAMA Dermatol. 2023, 159, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Del Marmol, V. Prevention and screening of melanoma in Europe: 20 years of the Euromelanoma campaign. J. Eur. Acad. Dermatol. Venereol. 2022, 36 (Suppl. 6), 5–11. [Google Scholar] [CrossRef]
- Kaushik, S.B.; Kaushik, N. Non-coding RNAs in skin cancers: An update. Non-coding RNA Res. 2016, 1, 83–86. [Google Scholar] [CrossRef]
- Durante, G.; Comito, F.; Lambertini, M.; Broseghini, E.; Dika, E.; Ferracin, M. Non-coding RNA dysregulation in skin cancers. Essays Biochem. 2021, 65, 641–655. [Google Scholar] [CrossRef] [PubMed]
- Piergentili, R.; Basile, G.; Nocella, C.; Carnevale, R.; Marinelli, E.; Patrone, R.; Zaami, S. Using ncRNAs as Tools in Cancer Diagnosis and Treatment—The Way towards Personalized Medicine to Improve Patients’ Health. Int. J. Mol. Sci. 2022, 23, 9353. [Google Scholar] [CrossRef]
- Hasan, M.N.; Rahman, M.M.; Husna, A.A.; Kato, D.; Nakagawa, T.; Arif, M.; Miura, N. Hypoxia-related Y RNA fragments as a novel potential biomarker for distinguishing metastatic oral melanoma from non-metastatic oral melanoma in dogs. Vet. Q. 2024, 44, 1–8. [Google Scholar] [CrossRef]
- Masrour, M.; Khanmohammadi, S.; Fallahtafti, P.; Hashemi, S.M.; Rezaei, N. Long non-coding RNA as a potential diagnostic and prognostic biomarker in melanoma: A systematic review and meta-analysis. J. Cell. Mol. Med. 2024, 28, e18109. [Google Scholar] [CrossRef]
- Love-Koh, J.; Peel, A.; Rejon-Parrilla, J.C.; Ennis, K.; Lovett, R.; Manca, A.; Chalkidou, A.; Wood, H.; Taylor, M. The Future of Precision Medicine: Potential Impacts for Health Technology Assessment. Pharmacoeconomics 2018, 36, 1439–1451. [Google Scholar] [CrossRef]
- Salari, P.; Larijani, B. Ethical Issues Surrounding Personalized Medicine: A Literature Review. Acta Med. Iran. 2017, 55, 209–217. [Google Scholar] [PubMed]
- Klasco, R.S.; Glinert, L.H. Language for Actionable Recommendations in Clinical Guidelines: Avoiding Hedging and Equivocation. JAMA 2017, 317, 583–584. [Google Scholar] [CrossRef] [PubMed]
- Kels, C.G.; Kels, L.H. Legal Ramifications of Ambiguous Clinical Guidelines. JAMA 2017, 317, 2020. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wunderlich, K.; Suppa, M.; Gandini, S.; Lipski, J.; White, J.M.; Del Marmol, V. Risk Factors and Innovations in Risk Assessment for Melanoma, Basal Cell Carcinoma, and Squamous Cell Carcinoma. Cancers 2024, 16, 1016. https://doi.org/10.3390/cancers16051016
Wunderlich K, Suppa M, Gandini S, Lipski J, White JM, Del Marmol V. Risk Factors and Innovations in Risk Assessment for Melanoma, Basal Cell Carcinoma, and Squamous Cell Carcinoma. Cancers. 2024; 16(5):1016. https://doi.org/10.3390/cancers16051016
Chicago/Turabian StyleWunderlich, K., M. Suppa, S. Gandini, J. Lipski, J. M. White, and V. Del Marmol. 2024. "Risk Factors and Innovations in Risk Assessment for Melanoma, Basal Cell Carcinoma, and Squamous Cell Carcinoma" Cancers 16, no. 5: 1016. https://doi.org/10.3390/cancers16051016
APA StyleWunderlich, K., Suppa, M., Gandini, S., Lipski, J., White, J. M., & Del Marmol, V. (2024). Risk Factors and Innovations in Risk Assessment for Melanoma, Basal Cell Carcinoma, and Squamous Cell Carcinoma. Cancers, 16(5), 1016. https://doi.org/10.3390/cancers16051016