The Effect of Melatonin Supplementation on Cancer-Related Fatigue during Chemotherapy Treatment of Breast Cancer Patients: A Double-Blind, Randomized Controlled Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics and Participants
- (a)
- Adult women (≥18 years of age) with a BC diagnosis who underwent chemotherapy at the time of invitation;
- (b)
- Women receiving pharmacological treatment not interacting with melatonin;
- (c)
- Women receiving standard pharmacological treatment for at least last two months prior to the study initiation;
- (d)
- Patients with good performance status, as indicated by scoring “0 or 1” on the Eastern Cooperative Oncology Performance Status (ECOG PS) questionnaire [26];
- (e)
- Patients not needing a transfusion, as indicated by hemoglobin ≥9 g/dL;
- (f)
- Patients having the ability to understand and give a written statement of consent.
- (g)
- Fatigue was attributed to conditions other than cancer, e.g., uncontrolled hypothyroidism, hypercalcemia, congestive heart failure, chronic obstructive pulmonary disease;
- (h)
- Using pharmacological agents for CRF or sleeping disorders prior to the study;
- (i)
- Pharmacological treatment that was modified during the study or that could interact with melatonin;
- (j)
- Diagnosed with gastrointestinal diseases that could affect the absorption of nutrients such as inflammatory bowel disease infections;
- (k)
- Diagnosed with psychiatric disorders such as depression, psychosis, and bipolar disorder and receiving equivalent medication;
- (l)
- Excessive alcohol consumption;
- (m)
- A lifestyle that can affect sleep patterns (e.g., night shifts);
- (n)
- Patients with a poor clinical state as indicated by laboratory markers: creatinine clearance <30 mL/min; aspartate aminotransferase (AST) > 3 × upper limit of normal (ULN); alanine aminotransferase (ALT) > 3 × ULN; bilirubin > 1 × ULN.
2.2. Study Design and Methods
2.3. Statistical Analysis
3. Results
3.1. Participants and Baseline Characteristics
3.2. Intra-Group and Inter-Group Comparisons
3.3. Linear Regression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Berger, A.M.; Mooney, K.; Alvarez-Perez, A.; Breitbart, W.S.; Carpenter, K.M.; Cella, D.; Cleeland, C.; Dotan, E.; Eisenberger, M.A.; Escalante, C.P.; et al. Cancer-related fatigue, version 2.2015. J. Natl. Compr. Cancer Netw. 2015, 13, 1012–1039. [Google Scholar] [CrossRef] [PubMed]
- Bardwell, W.A.; Ancoli-Israel, S. Breast cancer and fatigue. Sleep Med. Clin. 2008, 3, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Hofman, M.; Ryan, J.L.; Figueroa-Moseley, C.D.; Jean-Pierre, P.; Morrow, G.R. Cancer-related fatigue: The scale of the problem. Oncologist 2007, 12, 4–10. [Google Scholar] [CrossRef]
- Hofman, M.; Morrow, G.R.; Roscoe, J.A.; Hickok, J.T.; Mustian, K.M.; Moore, D.F.; Wade, J.L.; Fitch, T.R. Cancer Patients’ Expectations of Experiencing Treatment-Related Side Effects: A University of Rochester Cancer Center-Community Clinical Oncology Program Study of 938 Patients from Community Practices. Cancer 2004, 101, 851–857. [Google Scholar] [CrossRef]
- Mohandas, H.; Jaganathan, S.K.; Mani, M.P.; Ayyar, M.; Rohini Thevi, G.V. Cancer-related fatigue treatment: An overview. J. Cancer Res. Ther. 2017, 13, 916–929. [Google Scholar] [CrossRef]
- Neefjes, E.C.W.; van der Vorst, M.J.D.L.; Blauwhoff-Buskermolen, S.; Verheul, H.M.W. Aiming for a better understanding and management of cancer-related fatigue. Oncologist 2013, 18, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.A. Cancer-related fatigue: State of the science. J. Inj. Funct. Rehabil. 2010, 2, 364–383. [Google Scholar] [CrossRef]
- Zee, P.C.; Ancoli-Israel, S. Does effective management of sleep disorders reduce cancer-related fatigue? Drugs 2009, 69, 29–41. [Google Scholar] [CrossRef]
- Dy, S.M.; Apostol, C.C. Evidence-based approaches to other symptoms in advanced cancer. Cancer J. 2010, 16, 507–513. [Google Scholar] [CrossRef]
- Clark, J.; Cunningham, M.; McMillan, S.; Vena, C.; Parker, K. Sleep-wake disturbances in people with cancer part II: Evaluating the evidence for clinical decision making. Oncol. Nurs. Forum 2004, 31, 747–771. [Google Scholar] [CrossRef]
- Atkin, T.; Comai, S.; Gobbi, G. Drugs for insomnia beyond benzodiazepines: Pharmacology, clinical applications, and discovery. Pharmacol. Rev. 2018, 70, 197–245. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Chen, F.; Li, W.A.; Geng, X.; Li, C.; Meng, X.; Feng, Y.; Liu, W.; Yu, F. A review of sleep disorders and melatonin. Neurol. Res. 2017, 39, 559–565. [Google Scholar] [CrossRef]
- Srinivasan, V.; Pandi-Perumal, S.R.; Trahkt, I.; Spence, D.W.; Poeggeler, B.; Hardeland, R.; Cardinali, D.P. Melatonin and melatonergic drugs on sleep: Possible mechanisms of action. Int. J. Neurosci. 2009, 119, 821–846. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.J.; Biggs, S.N.; Armstrong, S.M. Circadian rhythm disorders among adolescents: Assessment and treatment options. Med. J. Aust. 2013, 199, 16–20. [Google Scholar] [CrossRef]
- Bassetti, C.L.; Bargiotas, P. REM sleep behavior disorder. Front. Neurol. Neurosci. 2018, 41, 104–116. [Google Scholar] [CrossRef] [PubMed]
- McGrane, I.R.; Leung, J.G.; St. Louis, E.K.; Boeve, B.F. Melatonin therapy for REM sleep behavior disorder: A critical review of evidence. Sleep Med. 2015, 16, 19–26. [Google Scholar] [CrossRef]
- Fatemeh, G.; Sajjad, M.; Niloufar, R.; Neda, S.; Leila, S.; Khadijeh, M. Effect of melatonin supplementation on sleep quality: A systematic review and meta-analysis of randomized controlled trials. J. Neurol. 2022, 269, 205–216. [Google Scholar] [CrossRef]
- Lim, S.; Park, S.; Koyanagi, A.; Yang, J.W.; Jacob, L.; Yon, D.K.; Lee, S.W.; Kim, M.S.; II Shin, J.; Smith, L. Effects of exogenous melatonin supplementation on health outcomes: An umbrella review of meta-analyses based on randomized controlled trials. Pharmacol. Res. 2022, 176, 106052. [Google Scholar] [CrossRef]
- Wang, Y.M.; Jin, B.Z.; Ai, F.; Duan, C.H.; Lu, Y.Z.; Dong, T.F.; Fu, Q.L. The efficacy and safety of melatonin in concurrent chemotherapy or radiotherapy for solid tumors: A meta-analysis of randomized controlled trials. Cancer Chemother. Pharmacol. 2012, 69, 1213–1220. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Bamia, C.; Lagiou, P.; Trichopoulos, D. Conformity to traditional Mediterranean diet and breast cancer risk in the Greek EPIC (European Prospective Investigation into Cancer and Nutrition) cohort. Am. J. Clin. Nutr. 2010, 92, 620–625. [Google Scholar] [CrossRef]
- Toledo, E.; Salas-Salvadó, J.; Donat-Vargas, C.; Buil-Cosiales, P.; Estruch, R.; Ros, E.; Corella, D.; Fitó, M.; Hu, F.B.; Arós, F.; et al. Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the PREDIMED trial: A randomized clinical trial. JAMA Intern. Med. 2015, 175, 1752–1760. [Google Scholar] [CrossRef]
- Papandreou, P.; Gioxari, A.; Nimee, F.; Skouroliakou, M. Application of clinical decision support system to assist breast cancer patients with lifestyle modifications during the COVID-19 pandemic: A randomised controlled trial. Nutrients 2021, 13, 2115. [Google Scholar] [CrossRef]
- Skouroliakou, M.; Grosomanidis, D.; Massara, P.; Kostara, C.; Papandreou, P.; Ntountaniotis, D.; Xepapadakis, G. Serum antioxidant capacity, biochemical profile and body composition of breast cancer survivors in a randomized Mediterranean dietary intervention study. Eur. J. Nutr. 2018, 57, 2133–2145. [Google Scholar] [CrossRef]
- Mentella, M.C.; Scaldaferri, F.; Ricci, C.; Gasbarrini, A.; Miggiano, G.A.D. Cancer and Mediterranean diet: A review. Nutrients 2019, 11, 2059. [Google Scholar] [CrossRef]
- Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. 1982, 5, 649–655. [Google Scholar] [CrossRef]
- Pereira, G.A.; Gomes Domingos, A.L.; Aguiar, A.S. Relationship between food consumption and improvements in circulating melatonin in humans: An integrative review. Crit. Rev. Food Sci. Nutr. 2022, 62, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Nimee, F.; Steier, J.; Papandreou, G.; Skouroliakou, M. A comprehensive medication review of a polypharmacy patient population: A cross-sectional observational study. Exp. Res. Clin. Social. Pharm. 2022, 6, 100144. [Google Scholar] [CrossRef]
- Minton, O.; Stone, P. A systematic review of the scales used for the measurement of cancer-related fatigue (CRF). Ann. Oncol. 2009, 20, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Vogelzang, N.J.; Breitbart, W.; Cella, D.; Curt, G.A.; Groopman, J.E.; Horning, S.J.; Itri, L.M.; Johnson, D.H.; Scherr, S.L.; Portenoy, R.K. Patient, caregiver, and oncologist perceptions of cancer-related fatigue: Results of a tripart assessment survey. The Fatigue Coalition. Semin. Hematol. 1997, 34 (Suppl. 2), 4–12. [Google Scholar] [PubMed]
- Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Orsini, N.; Saji, S.; Key, T.J.; Wolk, A. Body weight and incidence of breast cancer defined by estrogen and progesterone receptor status—A meta-analysis. Int. J. Cancer 2009, 124, 698–712. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhu, Y.; Qian, Q.; Tang, L. Body mass index and prognosis of breast cancer: An analysis by menstruation status when breast cancer diagnosis. Medicine 2018, 97, e11220. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.S.; Vieira, A.R.; Aune, D.; Bandera, E.V.; Greenwood, D.C.; McTiernan, A.; Navarro Rosenblatt, D.; Thune, I.; Vieira, R.; Norat, T. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann. Oncol. 2014, 25, 1901–1914. [Google Scholar] [CrossRef] [PubMed]
- Ewertz, M.; Jensen, M.-B.; Gunnarsdóttir, K.Á.; Højris, I.; Jakobsen, E.H.; Nielsen, D.; Stenbygaard, L.E.; Tange, U.B.; Cold, S. Effect of obesity on prognosis after early-stage breast cancer. J. Clin. Oncol. 2011, 29, 25–31. [Google Scholar] [CrossRef]
- Shaikh, H.; Bradhurst, P.; Ma, L.X.; Tan, S.Y.C.; Egger, S.J.; Vardy, J.L. Body weight management in overweight and obese breast cancer survivors. Cochrane Database Syst. Rev. 2020, 12, CD012110. [Google Scholar] [CrossRef]
- Di Maso, M.; Dal Maso, L.; Augustin, L.S.A.; Puppo, A.; Falcini, F.; Stocco, C.; Mattioli, V.; Serraino, D.; Polesel, J. Adherence to the Mediterranean diet and mortality after breast cancer. Nutrients 2020, 12, 3649. [Google Scholar] [CrossRef] [PubMed]
- Pannu, M.K.; Constantinou, C. Inflammation, nutrition, and clinical outcomes in breast cancer survivors: A narrative review. Curr. Nutr. Rep. 2023, in press. [Google Scholar] [CrossRef]
- Jayedi, A.; Emadi, A.; Khan, T.A.; Abdolshahi, A.; Shab-Bidar, S. Dietary fiber and survival in women with breast cancer: A dose-response meta-analysis of prospective cohort studies. Nutr. Cancer 2021, 73, 1570–1580. [Google Scholar] [CrossRef]
- Kleckner, A.S.; Reschke, J.E.; Kleckner, I.R.; Magnuson, A.; Amitrano, A.M.; Culakova, E.; Shayne, M.; Netherby-Winslow, C.S.; Czap, S.; Janelsins, M.C.; et al. The Effects of a Mediterranean diet intervention on cancer-related fatigue for patients undergoing chemotherapy: A pilot randomized controlled trial. Cancers 2022, 14, 4202. [Google Scholar] [CrossRef]
- Inglis, J.E.; Kleckner, A.S.; Lin, P.J.; Gilmore, N.J.; Culakova, E.; VanderWoude, A.C.; Mustian, K.M.; Fernandez, I.D.; Dunne, R.F.; Deutsch, J.; et al. Excess Body weight and cancer-related fatigue, systemic inflammation, and serum lipids in breast cancer survivors. Nutr. Cancer 2021, 73, 1676–1686. [Google Scholar] [CrossRef]
- Rock, C.L.; Flatt, S.W.; Byers, T.E.; Colditz, G.A.; Demark-Wahnefried, W.; Ganz, P.A.; Wolin, K.Y.; Elias, A.; Krontiras, H.; Liu, J.; et al. Results of the Exercise and Nutrition to Enhance Recovery and Good Health for You (ENERGY) Trial: A Behavioral Weight Loss Intervention in Overweight or Obese Breast Cancer Survivors. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 3169–3176. [Google Scholar] [CrossRef]
- Ligibel, J.A.; Barry, W.T.; Alfano, C.; Hershman, D.L.; Irwin, M.; Neuhouser, M.; Thomson, C.A.; Delahanty, L.; Frank, E.; Spears, P.; et al. Randomized phase III trial evaluating the role of weight loss in adjuvant treatment of overweight and obese women with early breast cancer (Alliance A011401): Study design. NPJ Breast Cancer 2017, 3, 37. [Google Scholar] [CrossRef]
- Innominato, P.F.; Lim, A.S.; Palesh, O.; Clemons, M.; Trudeau, M.; Eisen, A.; Wang, C.; Kiss, A.; Pritchard, K.I.; Bjarnason, G.A. The effect of melatonin on sleep and quality of life in patients with advanced breast cancer. Support. Care Cancer 2016, 24, 1097–1105. [Google Scholar] [CrossRef]
- Sedighi Pashaki, A.; Mohammadian, K.; Afshar, S.; Gholami, M.H.; Moradi, A.; Javadinia, S.A.; Keshtpour Amlashi, Z. A Randomized, controlled, parallel-group, trial on the effects of melatonin on fatigue associated with breast cancer and its adjuvant treatments. Integr. Cancer Ther. 2021, 20, 1534735420988343. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.V.; Madsen, M.T.; Hageman, I.; Rasmussen, L.S.; Bokmand, S.; Rosenberg, J.; Gögenur, I. The effect of MELatOnin on Depression, anxietY, cognitive function and sleep disturbances in patients with breast cancer. The MELODY trial: Protocol for a randomised, placebo-controlled, double-blinded trial. BMJ Open 2012, 2, e000647. [Google Scholar] [CrossRef]
- Hansen, M.V.; Madsen, M.T.; Andersen, L.T.; Hageman, I.; Rasmussen, L.S.; Bokmand, S.; Rosenberg, J.; Gögenur, I. Effect of melatonin on cognitive function and sleep in relation to breast cancer surgery: A randomized, double-blind, placebo-controlled trial. Int. J. Breast Cancer 2014, 2014, 416531. [Google Scholar] [CrossRef]
- Hansen, M.V. Chronobiology, cognitive function and depressive symptoms in surgical patients. Dan. Med. J. 2014, 61, B4914. [Google Scholar] [PubMed]
- Chen, W.Y.; Giobbie-Hurder, A.; Gantman, K.; Savoie, J.; Scheib, R.; Parker, L.M.; Schernhammer, E.S. A randomized, placebo-controlled trial of melatonin on breast cancer survivors: Impact on sleep, mood, and hot flashes. Breast Cancer Res. Treat. 2014, 145, 381–388. [Google Scholar] [CrossRef]
- Seo, K.; Kim, J.H.; Han, D. Effects of melatonin supplementation on sleep quality in breast cancer patients: A systematic review and meta-analysis. Healthcare 2023, 11, 675. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.B.; Ali, A.; Bilal, M.; Rashid, S.M.; Wani, A.B.; Bhat, R.R.; Rehman, M.U. Melatonin and health: Insights of melatonin action, biological functions, and associated disorders. Cell. Mol. Neurobiol. 2023, 43, 2437–2458. [Google Scholar] [CrossRef] [PubMed]
- Mogavero, M.P.; DelRosso, L.M.; Fanfulla, F.; Bruni, O.; Ferri, R. Sleep disorders and cancer: State of the art and future perspectives. Sleep Med. Rev. 2021, 56, 101409. [Google Scholar] [CrossRef] [PubMed]
- López, E.; de la Torre-Luque, A.; Lazo, A.; Álvarez, J.; Buela-Casal, G. Assessment of sleep disturbances in patients with cancer: Cross-sectional study in a radiotherapy department. Eur. J. Oncol. Nurs. 2016, 20, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Ahabrach, H.; El Mlili, N.; Errami, M.; Cauli, O. Circadian rhythm and concentration of melatonin in breast cancer patients. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 1869–1881. [Google Scholar] [CrossRef] [PubMed]
- Shahrokhi, M.; Ghaeli, P.; Arya, P.; Shakiba, A.; Noormandi, A.; Soleimani, M.; Esfandbod, M. Comparing the effects of melatonin and zolpidem on sleep quality, depression, and anxiety in patients with colorectal cancer under going chemotherapy. Basic Clin. Neurosci. 2021, 12, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Etedali, A.; Hosseni, A.K.; Derakhshandeh, A.; Mehrzad, V.; Sharifi, M.; Moghaddas, A. Melatonin in the management of mood and sleep problems induced by androgen deprivation therapy in prostate cancer patients: A randomized double-blinded, placebo-controlled clinical trial. Iran. J. Pharm. Res. 2022, 21, e128817. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Bu, X.; Yang, S.; Tan, Y.; Wang, T.; Chen, H.; Li, X. Effect of melatonin on quality of life and symptoms in patients with cancer: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2022, 14, e060912. [Google Scholar] [CrossRef]
- Palmer, A.C.S.; Zortea, M.; Souza, A.; Santos, V.; Biazús, J.V.; Torres, I.L.S.; Fregni, F.; Caumo, W. Clinical impact of melatonin on breast cancer patients undergoing chemotherapy; effects on cognition, sleep and depressive symptoms: A randomized, double-blind, placebo-controlled trial. PLoS ONE 2020, 15, e0231379. [Google Scholar] [CrossRef]
- Shokri-Mashhadi, N.; Darand, M.; Rouhani, M.H.; Yahay, M.; Feltham, B.A.; Saraf-Bank, S. Effects of melatonin supplementation on BDNF concentrations and depression: A systematic review and meta-analysis of randomized controlled trials. Behav. Brain Res. 2023, 436, 114083. [Google Scholar] [CrossRef]
Active Ingredient | Excipients | |
---|---|---|
Melatonin tablet | melatonin, 1 mg | mannitol, corn starch, stearic acid, ethyl cellulose, microcrystalline cellulose, magnesium stearate, sodium carboxymethylcellulose, wild berry flavor, silicon dioxide, sucralose. |
Placebo tablet | - | dextrose, magnesium stearate, microcrystalline cellulose, berry flavor. |
Characteristics | Enrolled Patients (N = 49) | Melatonin Group (N = 23) | Placebo Group (N = 26) | p-Value |
---|---|---|---|---|
Age (years); median (IQR) | 52.0 (17.5) | 54.0 (21.0) | 51.0 (17.3) | 0.873 |
Body weight (Kg); median (IQR) | 69.9 (24.4) | 69.9 (22.4) | 70.7 (25.0) | 0.582 |
BMI (kg/m2); median (IQR) | 26.5 (9.4) | 26.4 (8.1) | 28.3 (11.4) | 0.515 |
<18.5; N (%) | 2 (4.1) | 2 (8.7) | 0 (0.0) | - |
18.5–24.9; N (%) | 18 (36.7) | 8 (34.8) | 10 (38.5) | - |
25–29.9; N (%) | 12 (24.5) | 7 (30.4) | 5 (19.2) | - |
>30; N (%) | 17 (34.7) | 6 (26.1) | 11 (42.3) | - |
Fat mass %; median (IQR) | 43.5 (15.3) | 39.9 (17.7) | 44.0 (14.2) | 0.155 |
WC (cm); median (IQR) | 96.0 (18.0) | 96.5 (15.0) | 96.0 (24.3) | 0.588 |
Blood markers | ||||
WBC (103/uL); median (IQR) | 6.0 (3.0) | 5.6 (2.4) | 6.5 (4.8) | 0.346 |
NEU %; median (IQR) | 64.8 (16.0) | 65.1 (17.9) | 64.4 (14.7) | 0.719 |
PL (103/uL); median (IQR) | 227.0 (81.0) | 199.0 (77.0) | 243.5 (80.5) | 0.602 |
HGB (g/dL); median (IQR) | 11.8 (1.8) | 11.8 (2.1) | 11.8 (1.8) | 0.846 |
HCT %; median (IQR) | 35.7 (3.1) | 35.7 (3.8) | 35.8 (3.4) | 0.938 |
LDH (u/L); median (IQR) | 218.0 (115.0) | 201.0 (136.4) | 226.5 (128.7) | 0.502 |
GLU (mg/dL); median (IQR) | 98.0 (11.0) | 97.0 (16.0) | 98.0 (9.8) | 0.484 |
ATC category | ||||
A03F; N (%) | 1 (2.0) | 1 (4.3) | 0 (0.0) | - |
A02B; N (%) | 10 (20.4) | 4 (17.4) | 6 (23.1) | - |
H03A; N (%) | 15 (30.6) | 6 (26.1) | 9 (34.6) | - |
R03A; N (%) | 2 (4.1) | 1 (4.3) | 1 (3.8) | - |
H02A; N (%) | 33 (67.3) | 16 (69.6) | 17 (65.4) | - |
A04A; N (%) | 29 (59.2) | 15 (65.2) | 14 (53.8) | - |
L02B; N (%) | 7 (14.3) | 3 (13.0) | 4 (15.4) | - |
C08D; N (%) | 1 (2.0) | 1 (4.3) | 0 (0.0) | - |
B01A; N (%) | 4 (8.2) | 2 (8.7) | 2 (7.7) | - |
C07A; N (%) | 3 (6.1) | 1 (4.3) | 2 (7.7) | - |
C10A; N (%) | 5 (10.2) | 2 (8.7) | 3 (11.5) | - |
A03A; N (%) | 1 (2.0) | 1 (4.3) | 0 (0.0) | - |
C08C; N (%) | 1 (2.0) | 1 (4.3) | 0 (0.0) | - |
C09C; N (%) | 2 (4.1) | 1 (4.3) | 1 (3.8) | - |
C10B; N (%) | 1 (2.0) | 0 (0.0) | 1 (3.8) | - |
C07C; N (%) | 1 (2.0) | 0 (0.0) | 1 (3.8) | - |
A10B; N (%) | 1 (2.0) | 0 (0.0) | 1 (3.8) | - |
C09D; N (%) | 1 (2.0) | 0 (0.0) | 1 (3.8) | - |
P01B; N (%) | 1 (2.0) | 0 (0.0) | 1 (3.8) | - |
Current smokers; N (%) | 0 (0.0) | 0 (0.0) | 0 (0.0) | - |
ECOG performance status | ||||
Score 0; N (%) | 28 (57.1) | 15 (65.2) | 13 (50.0) | - |
Score 1; N (%) | 21 (42.9) | 8 (34.8) | 13 (50.0) | - |
MedDietScore; median (IQR) | 33.0 (5.0) | 32.0 (5.0) | 34.5 (6.3) | 0.379 |
FACIT-F scale; median (IQR) | 123.0 (26.5) | 122.0 (45.0) | 127.0 (27.5) | 0.161 |
Tested Association | Unadjusted Model | Adjusted Model 1 | Adjusted Model 2 | Adjusted Model 3 | ||||
---|---|---|---|---|---|---|---|---|
Beta | p-Value | Beta | p-Value | Beta | p-Value | Beta | p-Value | |
FACIT-F | ||||||||
| −0.304 | 0.034 | −0.300 | 0.028 | −0.509 | 0.041 | −0.882 | 0.003 |
| 0.389 | 0.006 | 0.337 | 0.019 | 0.338 | 0.019 | 0.248 | 0.179 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nimee, F.; Gioxari, A.; Papandreou, P.; Amerikanou, C.; Karageorgopoulou, S.; Kaliora, A.C.; Skouroliakou, M. The Effect of Melatonin Supplementation on Cancer-Related Fatigue during Chemotherapy Treatment of Breast Cancer Patients: A Double-Blind, Randomized Controlled Study. Cancers 2024, 16, 802. https://doi.org/10.3390/cancers16040802
Nimee F, Gioxari A, Papandreou P, Amerikanou C, Karageorgopoulou S, Kaliora AC, Skouroliakou M. The Effect of Melatonin Supplementation on Cancer-Related Fatigue during Chemotherapy Treatment of Breast Cancer Patients: A Double-Blind, Randomized Controlled Study. Cancers. 2024; 16(4):802. https://doi.org/10.3390/cancers16040802
Chicago/Turabian StyleNimee, Frantzeska, Aristea Gioxari, Panos Papandreou, Charalampia Amerikanou, Sofia Karageorgopoulou, Andriana C. Kaliora, and Maria Skouroliakou. 2024. "The Effect of Melatonin Supplementation on Cancer-Related Fatigue during Chemotherapy Treatment of Breast Cancer Patients: A Double-Blind, Randomized Controlled Study" Cancers 16, no. 4: 802. https://doi.org/10.3390/cancers16040802
APA StyleNimee, F., Gioxari, A., Papandreou, P., Amerikanou, C., Karageorgopoulou, S., Kaliora, A. C., & Skouroliakou, M. (2024). The Effect of Melatonin Supplementation on Cancer-Related Fatigue during Chemotherapy Treatment of Breast Cancer Patients: A Double-Blind, Randomized Controlled Study. Cancers, 16(4), 802. https://doi.org/10.3390/cancers16040802