Targeting TRPV1 for Cancer Pain Relief: Can It Work?
Abstract
:Simple Summary
Abstract
1. Introduction
2. TRPV1 in Cancer Pain: Molecular Mechanisms
3. Can Selective TRPV1 Antagonism Ameliorate Cancer Pain?
4. Topical Capsaicin Patch for Chemotherapy-Induced Peripheral Neuropathy (CIPN)
5. Resiniferatoxin for Permanent Cancer Pain Relief: Preclinical Studies
6. Resiniferatoxin for Permanent Cancer Pain Relief: Clinical Trials
7. Conclusions and Future Research Directions
- Is there a role for per os TRPV1 antagonists in cancer pain relief?
- Can site-specific (into the surgical wound) capsaicin or resiniferatoxin injections prevent the development of post-surgical pain in cancer patients?
- Can high-dose (8%) capsaicin patches relieve post-surgical (specifically, post-mastectomy) pain in cancer patients?
- Can topical capsaicin ameliorate localized pain in patients with oropharyngeal squamous cell carcinoma?
- What is the optimal dose of intrathecal resiniferatoxin at which it provides adequate pain relief with acceptable side-effects?
- Is epidural resiniferatoxin devoid of the side-effects of intrathecal administration?
- For TRPV1 knock-down mediated by siRNA given intrathecally, how does it compare to intrathecal resiniferatoxin?
- Does capsaicin/resiniferatoxin desensitization affect cancer growth?
Funding
Conflicts of Interest
References
- Schmidt, B.L. The neurobiology of cancer pain. J. Oral Maxillofac. Surg. 2015, 73, S132–S135. [Google Scholar] [CrossRef]
- Caraceni, A.; Shkodra, M. Cancer pain assessment and classification. Cancers 2019, 11, 510. [Google Scholar] [CrossRef] [PubMed]
- Haroun, R.; Wood, J.N.; Sikandar, S. Mechanisms of cancer pain. Front. Pain Res. 2022, 3, 1030899. [Google Scholar] [CrossRef]
- Snijders, R.A.H.; Brom, L.; Theunissen, M.; van den Beuken-van Everdingen, M.H.J. Update on prevalence of pain in patients with cancer 2022: A systematic literature review and meta-analysis. Cancers 2023, 15, 591. [Google Scholar] [CrossRef] [PubMed]
- Elmstedt, S.; Mogensen, H.; Hallmans, D.E.; Tavelin, B.; Lundström, S.; Lindskog, M. Cancer patients hospitalized in the last week of life risk insufficient care quality—A population-based study from the Swedish Register of Palliative Care. Acta Oncol. 2019, 4, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Mercadante, S. The patient with difficult cancer pain. Cancers 2019, 11, 565. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Cancer Pain Relief; World Health Organization: Geneva, Switzerland, 1986. [Google Scholar]
- Fallon, M.; Giusti, R.; Aielli, F.; Hoskin, P.; Rolke, R.; Sharma, M.; Ripamonti, C.I.; ESMO Guidelines Committee. Management of cancer pain in adult patients: ESMO clinical practice guidelines. Ann. Oncol. 2018, 29, iv166–iv191. [Google Scholar] [CrossRef] [PubMed]
- Opioid for Cancer Pain. American Cancer Society. Available online: https://cancer.org/content/dam/CRC/PDF/Public/8325.00.pdf (accessed on 22 January 2024).
- Deandrea, S.; Montanari, M.; Apolone, G. Prevalence of undertreatment in cancer pain. A review of published literature. Ann. Oncol. 2008, 19, 1985–1991. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, M.; Vlaeyen, J.W.S.; Rief, W.; Barke, A.; Aziz, Q.; Bonoliel, R.; Cohen, M.; Evers, S.; Giamberandino, M.A.; Goebel, A.; et al. The IASP classification of chronic pain for ICD-11: Chronic primary pain. Pain 2019, 060, 28–37. [Google Scholar] [CrossRef]
- Knudsen, A.K.; Aass, N.; Fainsinger, R.; Caraceni, A.; Klepstad, P.; Jordhoy, M.; Hjermstad, M.; Kaasa, S. Classification of pain in cancer patients—A systematic literature review. Palliat. Med. 2009, 23, 992–1022. [Google Scholar] [CrossRef]
- Potenoy, R.K.; Ahmed, E. Cancer pain syndromes. Hematol. Oncol. Clin. N. Am. 2018, 32, 371–386. [Google Scholar] [CrossRef]
- Niscola, P.; Tendas, A.; Scaramucci, L.; Giovaninni, M.; Cupelli, L.; De Sanctis, V.; Brunetti, G.A.; Bondanini, F.; Palumbo, R.; Lamanda, M. Pain in malignant hematology. Expert Rev. Hematol. 2011, 4, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Khasabova, I.A.; Stucky, C.L.; Harding-Rose, C.; Eikmeier, L.; Beitz, L.; Coicou, L.G.; Hanson, A.E.; Simone, D.A.; Seybold, V.S. Chemical interaction between fibrosarcoma cancer cells and sensory neurons contribute to cancer pain. J. Neurosci. 2007, 27, 10289–10298. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.M.; Ghilardi, J.R.; Keyser, C.P.; Kubota, K.; Lindsay, T.H.; Luger, N.M.; Mach, D.B.; Schwei, M.J.; Sevcik, M.A.; Mantyh, P.W. Tumor-induced injury of primary afferent sensory nerve fibers in bone cancer pain. Exp. Neurol. 2005, 193, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Falk, S.; Dickenson, A.H. Pain and nociception: Mechanisms of cancer-induced bone pain. J. Clin. Oncol. 2014, 32, 1647–1654. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, T.; Hiasa, M.; Okui, T.; Hata, K. Sensory nerves: A driver of the vicious cycle in bone metastasis? J. Bone Oncol. 2021, 30, 100387. [Google Scholar] [CrossRef] [PubMed]
- Diaz-delCastillo, M.; Chantry, A.D.; Lawson, M.A.; Heegaard, A.-M. Multiple myeloma—A painful disease of the bone marrow. Semin. Cell Develop. Biol. 2021, 112, 49–58. [Google Scholar]
- Seretny, M.; Currie, G.L.; Sena, E.S.; Ramnarine, S.; Grant, R.; MacLeod, M.R.; Colvin, L.A.; Fallon, M. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain 2014, 155, 2461–2470. [Google Scholar] [CrossRef] [PubMed]
- Szolcsányi, J. Capsaicin and sensory neurones: A historical perspective. Prog. Drug Res. 2014, 68, 1–37. [Google Scholar]
- Fischer, M.J.; Ciotu, C.I.; Szallasi, A. The mysteries of capsaicin-sensitive afferents. Front. Physiol. 2020, 11, 554195. [Google Scholar] [CrossRef]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef]
- Salas, M.M.; Hargreaves, K.M.; Akopian, A.N. TRPA1-mediated responses in trigeminal sensory neurons: Interactions between TRPA1 and TRPV1. Eur. J. Neurosci. 2009, 29, 1568–1578. [Google Scholar] [CrossRef]
- Patil, M.J.; Kim, S.H.; Bahia, P.K.; Nair, S.S.; Darcey, T.S.; Fiallo, J.; Zhu, X.X.; Frisina, R.D.; Hadley, S.H.; Taylor-Clark, T.E. A novel Flp reporter mouse shows that TRPA1 expression in largely limited to sensory neuron subsets. Eneuro 2023, 10. [Google Scholar] [CrossRef]
- Leffler, A.; Mönter, B.; Koltzenburg, M. The role of the capsaicin receptor TRPV1 and acid-sensing ion channels (ASICS) in proton sensitivity of subpopulations of primary nociceptive neurons in rats and mice. Neuroscience 2006, 139, 699–709. [Google Scholar] [CrossRef]
- Lu, H.-J.; Wu, X.-B.; Wei, Q.-Q. Ion channels in cancer-induced bone pain: From molecular mechanisms to clinical applications. Front. Mol. Neurosci. 2023, 16, 1239599. [Google Scholar] [CrossRef]
- Caterina, M.J.; Leffler, A.; Malmberg, A.B.; Martin, W.J.; Trafton, J.; Petersen-Zeitz, K.R.; Koltzenburg, M.; Basbaum, A.I.; Julius, D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288, 306–313. [Google Scholar] [CrossRef]
- Davis, J.B.; Gray, J.; Gunthorpe, M.J.; Hatcher, J.P.; Davey, P.T.; Overend, P.; Harries, M.H.; Latcham, J.; Clapham, C.; Atkinson, K.; et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 2000, 405, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Katz, B.; Zaguri, R.; Edvardson, S.; Maayan, C.; Elpeleg, O.; Lev, S.; Davidson, E.; Peters, M.; Kfir-Erenfeld, S.; Brger, E.; et al. Nociception and pain in humans lacking a functional TRPV1 channel. J. Clin. Investig. 2023, 133, e153558. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, M.; Caterina, M.J.; Malmberg, A.B.; Rosen, T.A.; Gilbert, H.; Skinner, K.; Raumann, B.E.; Basbaum, A.I.; Julius, D. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998, 21, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Jordt, S.E.; Tominaga, M.; Julius, D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc. Natl. Acad. Sci. USA 2000, 97, 8134–8139. [Google Scholar] [CrossRef] [PubMed]
- Dray, A.; Perkins, M.N. Bradykinin activates peripheral capsaicin-sensitive fibres via a second messenger system. Agents Actions 1988, 25, 214–215. [Google Scholar] [CrossRef]
- Chuang, H.H.; Prescott, E.D.; Kong, H.; Shields, S.; Jordt, S.E.; Basbaum, A.I.; Chao, M.V.; Julius, D. Bradykinin and nerve growth factor release the capsaicin receptor from Ptdlns(4,5)P2-mediated inhibition. Nature 2001, 411, 957–962. [Google Scholar] [CrossRef]
- Hutchings, C.; Phillips, J.A.; Djamgoz, M.B.A. Nerve input to tumours: Pathophysiological consequences of a dynamic relationship. Biochim. Biophys. Acta Rev. Cancer 2020, 1874, 188411. [Google Scholar] [CrossRef]
- Erin, N.; Shurin, G.V.; Baraldi, J.H.; Shurin, M.R. Regulation of carcinogenesis by sensory neurons and neuromediators. Cancers 2022, 14, 2333. [Google Scholar] [CrossRef]
- Ye, Y.; Xie, T.; Amit, M. Targeting the nerve-cancer circuit. Cancer Res. 2023, 83, 2445–2447. [Google Scholar] [CrossRef]
- Erin, N.; Szallasi, A. Carcinogenesis and metastasis: Focus on TRPV1-positive neurons and immune cells. Biomolecules 2023, 13, 983. [Google Scholar] [CrossRef]
- Reavis, H.D.; Chen, H.I.; Drapkin, R. Tumor innervation: Cancer has some nerve. Trends Cancer 2020, 6, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Gysler, S.M.; Drapkin, R. Tumor innervation: Peripheral nerves take control of the tumor microenvironment. J. Clin. Investig. 2021, 131, e147276. [Google Scholar] [CrossRef] [PubMed]
- Restaino, A.C.; Vermeer, P.D. Neural regulation of the tumor microenvironment. FASEB Bioadv. 2022, 4, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Restaino, A.C.; Walz, A.; Vermeer, S.J.; Barr, K.; Kovács, A.; Fettig, R.R.; Vermeer, D.W.; Reavis, H.; Williamson, C.S.; Lucido, C.T.; et al. Functional neuronal circuits promote disease progression in cancer. Sci. Adv. 2023, 9, eade4443. [Google Scholar] [CrossRef] [PubMed]
- Lautner, M.A.; Ruparel, S.B.; Patil, M.J.; Hargreaves, K.M. In vitro sarcoma cells release a lipophilic substance that activates the pain transduction system via TRPV1. Ann. Surg. Oncol. 2011, 18, 866–871. [Google Scholar] [CrossRef]
- Tong, Z.; Luo, W.; Wang, Y.; Yang, F.; Han, Y.; Li, H.; Luo, H.; Duan, B.; Xu, T.; Maoying, Q.; et al. Tumor tissue-derived formaldehyde and acidic microenvironment synergistically induce bone cancer pain. PLoS ONE 2010, 5, e10234. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Dang, D.; Zhang, J.; Viet, C.T.; Lam, D.K.; Dolan, J.C.; Gibbs, J.L.; Schmidt, B.L. Nerve growth factor links oral cancer progression, pain, and cachexia. Mol. Cancer Ther. 2011, 10, 1667–1676. [Google Scholar] [CrossRef] [PubMed]
- Amaya, F.; Shimosato, G.; Nagano, M.; Ueda, M.; Hashimoto, S.; Tanaka, Y.; Suzuki, H.; Tanaka, M. NGF and GDNF differentially regulates TRPV1 expression that contributes to development of inflammatory thermal hyperalgesia. Eur. J. Neurosci. 2004, 20, 2303–2310. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, J.; McNaughton, P.A. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J. 2005, 24, 4211–4223. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Morsy, N.; Winston, J.; Pasricha, P.J.; Garrett, K.; Akbarali, H.I. Modulation of TRPV1 by nonreceptor tyrosine kinase, c-Src kinase. Am. J. Physiol. Cell Physiol. 2004, 287, C558–C563. [Google Scholar] [CrossRef] [PubMed]
- Robilotto, G.L.; Mohapatra, D.P.; Shepherd, A.J.; Mickle, A.D. Role of Src kinase in regulating protein kinase C mediated phosphorylation of TRPV1. Eur. J. Pain 2022, 26, 1967–1978. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Chen, O.; Wang, Z.; Bang, S.; Li, J.; Lee, S.H.; Huh, Y.; Furutani, K.; He, Q.; Tao, X.; et al. IL-23/IL-17A/TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice. Neuron 2021, 109, 2691–2706. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, D.P.; Nau, C. Regulation of Ca2+-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J. Biol. Chem. 2005, 280, 13424–13432. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, S.R.; Pan, H.L. Calcineurin regulates synaptic plasticity and nociceptive transmission at the spinal cord level. Neuroscientist 2022, 28, 628–638. [Google Scholar] [CrossRef]
- Prommer, E. Calcineurin-inhibitor pain syndrome. Clin. J. Pain 2012, 28, 556–559. [Google Scholar] [CrossRef]
- Kita, T.; Uchia, K.; Kato, K.; Suzuki, Y.; Tominaga, M.; Yamazaki, J. FK506 (tacrolimus) causes pain sensation through the activation of transient receptor ankyrin 1 (TRPA1) channels. J. Physiol. Sci. 2018, 69, 305–316. [Google Scholar] [CrossRef]
- Cui, Q.; Jiang, D.; Zhang, Y.; Chen, C. The tumor-nerve circuit in breast cancer. Cancer Metastasis Rev. 2023, 42, 543–574. [Google Scholar] [CrossRef]
- Jerard, C.; Madhusudanan, P.; Swamy, A.; Ravikumar, K. Secretome mediated interactions between sensory neurons and breast cancer cells. Int. J. Cancer 2023, 153, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Balood, M.; Ahmadi, M.; Eichwald, T.; Ahmadi, A.; Majdoubi, R.; Roversi, K.; Lucido, C.T.; Restaino, A.C.; Huang, S.; Li, L.; et al. Nociceptor neurons affect cancer immunosurveillance. Nature 2022, 611, 405–412. [Google Scholar] [CrossRef] [PubMed]
- La Montanara, P.; Hervera, A.; Baltussen, L.L.; Hutson, T.H.; Palmisano, I.; De Virgillis, F.; Kong, G.; Chadwick, J.; Gao, Y.; Bartus, K.; et al. Cyclin-dependent-like kinase 5 is required for pain signaling in human sensory neurons and mouse models. Sci. Transl. Med. 2020, 12, eaax4846. [Google Scholar] [CrossRef] [PubMed]
- Mantyh, P. Bone cancer pain: Causes, consequences, and therapeutic opportunities. Pain 2013, 154, S54–S62. [Google Scholar] [CrossRef] [PubMed]
- Aielli, F.; Ponzetti, M.; Rucci, N. Bone metastasis pain, from the bench to the bedside. Int. J. Mol. Sci. 2019, 20, 280. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, W.; Zhang, R.; Wang, Y. Peripheral mechanism of cancer-induced bone pain. Neurosci. Bull. 2023. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, T.; Hata, K.; Nakanishi, M.; Nagae, M.; Nagayama, T.; Wakabayashi, H.; Nishisho, T.; Sakurai, T.; Hiraga, T. Involvement of acidic microenvironment in the pathophysiology of cancer-associated bone pain. Bone 2011, 48, 100–105. [Google Scholar] [CrossRef]
- Di Pompo, G.; Cortini, M.; Baldini, N.; Avnet, S. Acid microenvironment in bone sarcomas. Cancers 2021, 13, 3848. [Google Scholar] [CrossRef]
- Swietach, P.; Boedtkjer, E.; Pedersen, S.F. How protons pave the way to aggressive cancers. Nature Rev. Cancer 2023, 23, 825–841. [Google Scholar] [CrossRef]
- Fischer, M.J.; Reeh, P.W.; Sauer, S.K. Proton-induced calcitonin gene-related peptide release from rat sciatic nerve axons, in vitro, involving TRPV1. Eur. J. Neurosci. 2003, 18, 803–810. [Google Scholar] [CrossRef]
- Crider, B.P.; Xie, X.S.; Stone, D.K. Bafilomycin inhibits proton flow through the H+ channel of vacuolar proton pumps. J. Biol. Chem. 1994, 269, 17379–17381. [Google Scholar] [CrossRef]
- Hiasa, M.; Okui, T.; Allette, Y.M.; Ripsch, M.S.; Sun-Wada, G.H.; Wakabayashi, H.; Roodman, G.D.; White, F.A.; Yoneda, T. Bone pain-induced by multiple myeloma is reduced by targeting V-ATPase and ASIC3. Cancer Res. 2017, 77, 1283–1295. [Google Scholar] [CrossRef]
- Nagy, J.A.; Chang, S.H.; Dvoark, A.M.; Dvorak, H.F. Why are tumour blood vessels abnormal and why is it important to know? Br. J. Cancer 2009, 100, 865–869. [Google Scholar] [CrossRef]
- Roda, N.; Blandano, G.; Pelicci, P.G. Blood vessels and peripheral nerves as key players in cancer progression and therapy resistance. Cancers 2021, 13, 4471. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Yuan, Y. The role of tumor neogenesis pipelines in tumor progression and their therapeutic potential. Cancer Med. 2023, 12, 1558–1571. [Google Scholar] [CrossRef] [PubMed]
- Yakar, S.; Werner, H.; Rosen, C.J. Insulin-like growth factors: Actions on the skeleton. J. Mol. Endocrinol. 2018, 61, T115–T137. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cai, J.; Han, Y.; Xiao, X.; Meng, X.L.; Su, L.; Liu, F.Y.; Xing, G.G.; Wan, Y. Enhanced function of TRPV1 via up-regulation by insulin-like growth factor-1 in a rat model of bone cancer pain. Eur. J. Pain 2014, 18, 774–784. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, C.; Wang, X.; Tong, J. Calcitonin gene-related peptide: A promising bridge between cancer development and cancer-associated pain in oral squamous cell carcinoma. Oncol. Lett. 2020, 20, 253. [Google Scholar] [CrossRef]
- Zhu, W.; Sheng, D.; Shao, Y.; Zhang, Q.; Peng, Y. Neuronal calcitonin gene-related peptide promotes prostate tumor growth in the bone microenvironment. Peptides 2021, 135, 170423. [Google Scholar] [CrossRef]
- Sánchez, M.L.; Rodriguez, F.D.; Covenas, R. Peptidergic systems and cancer: Focus on tachykinin and calcitonin/calcitonin gene-related peptide families. Cancers 2023, 15, 1694. [Google Scholar] [CrossRef]
- Inyang, K.; Evans, C.M.; Heussner, M.; Petroff, M.; Reimers, M.; Vermeer, P.D.; Tykocki, N.; Folger, J.K.; Leumet, G. HPV+ head and neck cancer-derived small extracellular vesicles communicate with TRPV1+ neurons to mediate cancer pain. Pain 2023. [Google Scholar] [CrossRef]
- Quasthoff, S.; Hartung, H.P. Chemotherapy-induced peripheral neuropathy. J. Neurol. 2002, 249, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Farquhar-Smith, P. Chemotherapy-induced neuropathic pain. Curr. Opin. Support. Palliat. Care 2011, 5, 1–7. [Google Scholar] [CrossRef]
- Han, Y.; Smith, M.T. Pathobiology of cancer chemotherapy-induced peripheral neuropathy (CIPN). Front. Pharmacol. 2013, 4, 156. [Google Scholar] [CrossRef]
- Yoshida, A.; Nishibata, M.; Mruyama, T.; Sunami, S.; Isono, K.; Kawamata, T. Activation of transient receptor potential vanilloid 1 is involved in both pain and tumor growth in a mouse model of cancer pain. Neuroscience 2023, 538, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Avallone, A.; Bimonte, S.; Cardone, C.; Cascella, M.; Cuomo, A. Pathophysiology and therapeutic perspectives for chemotherapy-induced peripheral neuropathy. Anticancer Res. 2022, 42, 4667–4678. [Google Scholar] [CrossRef] [PubMed]
- Navia-Pelaez, J.M.; Borges Paes Lemes, J.; Gonzalez, L.; Delay, L.; Dos Santos, A.C.L.; Lu, J.W.; Dos Santos, G.G.; Gregus, A.M.; Doughery, P.M.; Yaksh, T.; et al. AIBP regulates TRPV1 activation in chemotherapy-induced peripheral neuropathy by controlling lipid raft dynamics and proximity to TLR4 in dorsal root ganglion neurons. Pain 2023, 64, e274–e285. [Google Scholar] [CrossRef] [PubMed]
- Ta, L.E.; Bieber, A.J.; Carlton, S.M.; Loprinzi, C.L.; Low, P.A.; Windebank, A.J. Transient receptor potential vanilloid 1 is essential for cisplatin-induced heat hyperalgesia in mice. Mol. Pain 2010, 6, 15. [Google Scholar] [CrossRef]
- Zhao, M.; Isami, K.; Nakamura, S.; Shiakawa, H.; Nakagawa, T.; Kaneko, S. Acute cold hypersensitivity characteristically induced by oxaliplatin is caused by enhanced responsiveness of TRPA1 in mice. Mol. Pain 2012, 8, 55. [Google Scholar] [CrossRef]
- Gauchan, P.; Andoh, T.; Kato, A.; Kuraishi, Y. Involvement of increased expression of transient receptor potential melastatin 8 in oxaliplatin-induced cold allodynia in mice. Neurosci. Lett. 2009, 458, 93–95. [Google Scholar] [CrossRef]
- Chen, W.; Li, H.; Hao, X.; Liu, C. TRPV1 in dorsal root ganglion contributed to bone cancer pain. Front. Pain Res. 2022, 3, 1022022. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, J.; Meng, Q. AAV-mediated siRNA against TRPV1 reduced nociception in a rat model of bone cancer pain. Neurol. Res. 2019, 41, 972–979. [Google Scholar] [CrossRef]
- Akhilesh; Uniyal, A.; Gadepalli, A.; Tiwari, V.; Allani, M.; Chouhan, D.; Ummadisetty, O.; Verma, N.; Tiwari, V. Unlocking the potential of TRPV1 based siRNA therapeutics for the treatment of chemotherapy-induced neuropathic pain. Life Sci. 2022, 288, 120187. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Wang, L.; Liao, T.T.; Li, W.; Zhou, J.; You, Y.; Shi, J. Progress in the development of TRPV1 small-molecule antagonists: Novel strategies for pain management. Eur. J. Med. Chem. 2023, 261, 115806. [Google Scholar] [CrossRef] [PubMed]
- Bertozzi, M.M.; Saraiva-Santos, T.; Zaninelli, T.H.; Pinho-Ribeiro, F.A.; Fattori, V.; Staurengo-Ferrari, L.; Ferraz, C.R.; Domiciano, T.P.; Calixto-Campos, C.; Borghi, S.M.; et al. Ehlich tumor induces TRPV1-dependent evoked and non-evoked pain-like behavior in mice. Brain Sci. 2022, 12, 1247. [Google Scholar] [CrossRef] [PubMed]
- Shinoda, M.; Ogino, A.; Ozaki, N.; Urano, H.; Hironaka, K.; Yasui, M.; Sugiura, Y. Involvement of TRPV1 in nociceptive behavior in a rat model of cancer pain. J. Pain 2008, 9, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, H.; Wakisaka, S.; Hiraga, T.; Hata, K.; Nishimura, R.; Tominaga, M.; Yoneda, T. Decreased sensory nerve excitation and bone pain associated with mouse Lewis lung cancer in TRPV1-deficient mice. J. Bone Miner. Metab. 2018, 36, 274–285. [Google Scholar] [CrossRef]
- Maggi, C.A.; Meli, A. The sensory-efferent function of capsaicin-sensitive sensory neurons. Gen. Pharmacol. 1988, 19, 1–43. [Google Scholar] [CrossRef]
- Buck, S.H.; Burks, T. F The neuropharmacology of capsaicin: Review of some recent observations. Pharmacol. Rev. 1986, 38, 179–226. [Google Scholar]
- Szallasi, A.; Blumberg, P.M. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev. 1999, 51, 159–212. [Google Scholar] [PubMed]
- Fattori, V.; Hohmann, M.S.N.; Rossaneis, A.C.; Pinho-Ribeiro, F.A.; Verri, W.A. Capsaicin: Current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules 2016, 21, 844. [Google Scholar] [CrossRef] [PubMed]
- Nolden, A.A.; Lenart, G.; Spielman, A.I.; Hayes, J.E. Inducible desensitization to capsaicin with repeated low-dose exposure in human volunteers. Physiol. Behav. 2023, 275, 114447. [Google Scholar] [CrossRef] [PubMed]
- Tomohiro, D.; Mizuta, K.; Fujita, T.; Nishikubo, Y.; Kumamoto, E. Inhibition by capsaicin and its related vanilloids of compound action potentials in frog sciatic nerves. Life Sci. 2013, 92, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.; Pierau, F.K.; Weyrich, M. The influence of capsaicin on membrane currents in dorsal root ganglion neurons of guinea-pig and chicken. Pflügers Arch. 1987, 409, 403–410. [Google Scholar] [CrossRef]
- Arbuckle, J.B.; Docherty, R.J. Expression of tetrodotoxin-resistant sodium channels in capsaicin-sensitive dorsal root ganglion neurons of adult rats. Neurosci. Lett. 1995, 185, 70–73. [Google Scholar] [CrossRef]
- Binshtok, A.M.; Bean, B.P.; Woolf, C.J. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature 2007, 449, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Ries, C.R.; Pillai, R.; Chung, C.C.W.; Wang, J.T.C.; MacLeod, B.A.; Schwarz, S.K.W. QX-314 produces long-lasting local anesthesia modulated by transient receptor potential vanilloid receptors in mice. Anesthesiology 2009, 111, 122–126. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Li Wan Po, A. The effectiveness of topically applied capsaicin. A meta-analysis. Eur. J. Clin. Pharmacol. 1994, 46, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Derry, S.; Sven-Rice, A.; Cole, P.; Tan, T.; Moore, R.A. Topical capsaicin (high concentration) for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2013, 28, CD007393. [Google Scholar]
- Mou, J.; Paillard, F.; Turnbull, B.; Trudeau, J.; Stoker, M.; Katz, N.P. Effiacy of Qutenza (capsaicin) 8% patch for neuropathic pain: A meta-analysis of the Qutenza Clinical Trials Database. Pain 2013, 154, 1632–1639. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Elsafa, E.; Privitera, R.; Naidoo, K.; Yiangou, Y.; Donatien, P.; Gabram, H.; Wasan, H.; Kenny, L.; Rahemtulla, A.; et al. Rational treatment of chemotherapy-induced peripheral neuropathy with capsaicin 8& patch: From pain relief towards disease modification. J. Pain Res. 2019, 12, 2039–2052. [Google Scholar] [PubMed]
- Watson, C.P.; Evans, R.J.; Watt, V.R. The post-mastectomy pain syndrome and the effect of topical capsaicin. Pain 1989, 38, 177–186. [Google Scholar] [CrossRef]
- Watson, P.N.C.; Evans, R.J. The post-mastectomy pain syndrome and topical capsaicin: A randomized trial. Pain 1992, 51, 375–379. [Google Scholar] [CrossRef]
- Dini, D.; Bertelli, G.; Gozza, A.; Forno, G.G. Treatment of the post-mastectomy pain syndrome with topical capsaicin. Pain 1993, 54, 223–226. [Google Scholar] [CrossRef]
- Ellison, N.; Loprinzi, C.L.; Kugler, J.; Hatfield, A.K.; Miser, A.; Sloan, J.A.; Wender, D.B.; Rowland, K.M.; Molina, R.; Cascino, T.L.; et al. Phase-III placebo-controlled trial of capsaicin cream in the management of surgical neuropathic pain in cancer patients. J. Clin. Oncol. 1997, 15, 2974–2980. [Google Scholar] [CrossRef]
- Larsson, I.M.; Sorensen, J.A.; Bilel, C. The post-mastectomy pain syndrome—A systematic review of the treatment modalities. Breast J. 2017, 23, 338–343. [Google Scholar] [CrossRef]
- Casale, R. Capsaicin 179 mg cutaneous patch in the treatment of post-surgical neuropathic pain: A scoping review of current evidence and place in therapy. Expert Rev. Neurother. 2021, 21, 1147–1158. [Google Scholar] [CrossRef]
- Laude-Pagniez, E.; Leclerc, J.; Lok, C.; Chanz, G.; Arnault, J.P. Capsaicin 8% patch as therapy for neuropathic chronic postsurgical pain after melanoma excision surgery: A single center case series. JAAD Case Rep. 2022, 30, 70–75. [Google Scholar] [CrossRef]
- O’Brien, J.; Murphy, K.; Weekes, G.; Keaveny, J. Management of post mastectomy neuropathic pain with capsaicin (8%) topical patch (Qutenza)—Case study. Eur. J. Oncol. Nurs. 2012, 16, S26. [Google Scholar] [CrossRef]
- Atreya, S. Pregabalin in chemotherapy-induced neuropathic pain. Ind. J. Palliat. Care 2016, 22, 101–103. [Google Scholar] [CrossRef]
- Evaluation in the Treatment of Neuropathic Pain Post Breast Surgery (CAPTRANE). Available online: https://ctv.veeva.com/study/evaluation-in-the-treatment-of-neuropathic-pain-post-breast-surgery (accessed on 22 January 2024).
- Dupoiron, D.; Jubier-Hamon, S.; Seegers, V.; Bienfalt, F.; Luchon, Y.M.; Lebrec, N.; Jaoul, V.; Delorme, T. Peripheral neuropathic pain following breast cancer: Effectiveness and tolerability of high-concentration capsaicin patch. J. Pain Res. 2022, 15, 241–255. [Google Scholar] [CrossRef]
- Bienfait, F.; Arther, J.; Jubier-hamon, S.; Seegers, V.; Delorme, T.; Jaoul, V.; Pluchon, Y.-M.; Lebrec, N.; Dupoiron, D. Evaluation of 8% capsaicin patches in chemotherapy-induced peripheral neuropathy: A retrospective study in a comprehensive cancer center. Cancers 2023, 15, 349. [Google Scholar] [CrossRef] [PubMed]
- Flöther, L.; Avila-Castillo, D.; Burgdorff, A.-M.; Benndorf, R. Capsaicin in the treatment of refractory neuropatic pain after mastectomy surgery: A case report. Case Rep. Oncol. 2020, 13, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Jordan, B.; Margulies, A.; Cardoso, F.; Cavaletti, G.; Haugnes, H.S.; Jahn, P.; Le Rhun, E.; Preusser, M.; Scotte, F.; Taphoorn, M.J.B.; et al. Systemic anticancer therapy-induced peripheral and central neurotoxicity: ESMO-EONS-EANO clinical practice guidelines for diagnosis, prevention, treatment and follow-up. Ann. Oncol. 2020, 31, 1306–1319. [Google Scholar] [CrossRef] [PubMed]
- Kautio, A.-L.; Haanpaa, M.; Saarto, T.; Kalso, E. Mitryptiline in the treatment of chemotherapy-induced neuropathic symptoms. J. Pain Sympt. Manag. 2008, 35, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Boden, A.; Lusque, A.; Lodin, S.; Bourgouin, M.; Mauries, V.; Moreau, C.; Fabre, A.; Mounier, M.; Poublanc, M.; Caunes-Hilary, N.; et al. Study protocol of the TEC-ORL clinical trial: A randomized comparative phase II trial investigating the analgesic activity of capsaicin vs Laroxyl in head and neck cancer survivors presenting with neuropathic pain sequelae. BMC Cancer 2022, 22, 1260. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; de Melo Cardoso, D.; Mitsuy Kayahara, G.; Gelera Benabe, D. A pilot study to improve pain phenotyping in head and neck cancer patients. Front. Pain Res. 2023, 4, 1146667. [Google Scholar] [CrossRef]
- Sawicki, C.M.; Janal, M.N.; Nicholson, S.J.; Wu, A.K.; Schmidt, B.L.; Albertson, D.G. Oral cancer patients experience mechanical and chemical sensitivity at the site of the cancer. BMC Cancer 2022, 22, 1165. [Google Scholar] [CrossRef]
- Hergenhahn, M.; Kusumoto, M.; Hecker, E. On the active principles of the spurge family (Euphorbiaceae). V. Extremely skin-irritant and moderate tumor-promoting diterpene esters from Euphorbia resinifera Berg. J. Cancer Res. Clin. Oncol. 1984, 108, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Szolcsányi, J.; Szallasi, A.; Szallasi, Z.; Joó, F.; Blumberg, P.M. Resiniferatoxin: An ultrapotent selective modulator of capsaicin-sensitive primary afferent neurons. J. Pharmacol. Exp. Ther. 1990, 255, 923–928. [Google Scholar] [PubMed]
- Cruz, F.; Guimaraes, M.; Silva, C.; Reis, M. Suppression of bladder hyperreflexia by intravesical resiniferatoxin. Lancet 1997, 350, 640–641. [Google Scholar] [CrossRef]
- Lazzeri, M.; Spinelli, M.; Beneforti, P.; Zanollo, A.; Turini, D. Intravesical resiniferatoxin for the treatment of hyperreflexia refractory to capsaicin in patients with chronic spinal cord disease. Scand. J. Urol. Nephrol. 1998, 32, 331–334. [Google Scholar]
- Rios, L.A.S.; Panhoca, R.; Mattos, D.; Srugi, M.; Bruschini, H. Intravesical resiniferatoxin for the treatment of women with idiopathic detrusor overactivity and urgency incontinence. A single dose, 4 weeks, double-blind, randomized, placebo-controlled trial. Neurourol. Urodyn. 2007, 26, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Tender, G.C.; Walbridge, S.; Oláh, Z.; Karai, L.; Iadarola, M.J.; Oldfield, E.H.; Lonser, R.R. Selective ablation of nociceptive neurons for elimination of hyperalgesia and neurogenic inflammation. J. Neurosurg. 2005, 102, 522–525. [Google Scholar] [CrossRef] [PubMed]
- Sapio, M.R.; Neubert, J.K.; LaPaglia, D.M.; Maric, D.; Keller, J.M.; Raithel, S.J.; Rohrs, E.L.; Anderson, E.M.; Butman, J.A.; Caudle, R.M.; et al. Pain control through selective chemo-ablation of centrally projecting TRPV1+ sensory neurons. J. Clin. Investig. 2018, 128, 1657–1670. [Google Scholar] [CrossRef]
- Mishra, S.K.; Hoon, M.A. Ablation of Trpv1 neurons reveals their selective role in thermal pain sensation. Mol. Cell. Neurosci. 2010, 43, 157–163. [Google Scholar] [CrossRef]
- Cimino Brown, D. Resiniferatoxin: The evolution of the “molecular scalpel” for chronic pain relief. Pharmaceuticals 2016, 9, 47. [Google Scholar] [CrossRef]
- Cruz, C.D.; Charrua, A.; Vieira, E.; Valente, J.; Avelino, A.; Cruz, F. Intrathecal delivery of resiniferatoxin (RTX) reduces detrusor overactivity and spinal expression of TRPV1 in spinal cord injured animals. Exp. Neurol. 2008, 214, 301–308. [Google Scholar] [CrossRef]
- Bishnoi, M.; Bosgraaf, C.A.; Premkumar, L.S. Preservation of acute pain and efferent functions following intrathecal resiniferatoxin-induced analgesia in rats. J. Pain 2011, 12, 991–1003. [Google Scholar] [CrossRef]
- Menéndez, L.; Juárez, L.; Garcia, E.; Garcia-Suárez, O.; Hidalgo, A.; Baamonde, A. Analgesic effects of capsazepine and resiniferatoxin on bone cancer pain in mice. Neurosci. Lett. 2006, 393, 70–73. [Google Scholar] [CrossRef]
- Rancilio, N.; Poulson, J.; Ko, J. Strategies for managing cancer pain in dogs and cats. Part 1. Pathophysiology and assessment of cancer pain. Today’s Vet. Med. 2015, 5, 60–68. [Google Scholar]
- Cimino Brown, D.; Iadarola, M.J.; Perkowski, S.Z.; Erin, H.; Shofer, F.; Karai, K.J.; Oláh, Z.; Mannes, A.J. Physiologic and antinociceptive effects of intrathecal resiniferatoxin in a canine bone cancer model. Anesthesiology 2005, 103, 1052–1059. [Google Scholar] [CrossRef] [PubMed]
- Szolcsányi, J. Effect of capsaicin on thermoregulation: An update with new aspects. Temperature 2015, 2, 277–296. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.X.; Ton, H.T.; Gulyás, H.; Pórszász, R.; Tóth, A.; Russo, R.; Kay, M.W.; Sahibzada, A.; Ahern, G.P. TRPV1 expressed throughout the arterial circulation regulates vasoconstriction and blood pressure. J. Physiol. 2020, 598, 5639–5659. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.C.; Agnello, K.; Iadarola, M.J. Intrathecal resiniferatoxin in a dog model: Efficacy in bone cancer pain. Pain 2015, 156, 1018–1024. [Google Scholar] [CrossRef]
- Iadarola, M.J.; Mannes, A.J. The vanilloid agonist resiniferatoxin for interventional-based pain control. Curr. Top. Med. Chem. 2011, 11, 2171–2179. [Google Scholar] [CrossRef]
- Parisi, J.R.; Martins de Andrade, A.L.; Torres Silva, J.R.; Silva, M.L. Antiallodynic effect of intrathecal resiniferatoxin on neuropathic pain model of chronic constriction injury. Acta Neurobiol. Exp. 2017, 77, 317–322. [Google Scholar] [CrossRef]
- Iadarola, M.J.; Brown, D.C.; Nahama, A.; Sapio, M.R.; Mannes, A. Pain treatment in the companion canine model to validate rodent results and incentivize transition to human clinical trials. Front. Pharmacol. 2021, 12, 705743. [Google Scholar] [CrossRef]
- Heiss, J.; Iadarola, M.J.; Cantor, F.; Oughourli, R.; Smith, R.; Mannes, A. A Phase I study of the intrathecal administration of resiniferatoxin for treating severe refractory pain associated with advanced cancer. J. Pain 2014, 15, S65. [Google Scholar] [CrossRef]
- Mannes, A.J.; Iadarola, M.J.; Jones, B.; Royal, M.A.; Heiss, J.D. Intrathecal resiniferatoxin for treating intractable cancer-related severe chronic pain. In Proceedings of the 15th World Congress on Pain, Buenos Aires, Argentina, 6–11 October 2014. [Google Scholar]
- Chaney, M.A. Side effects of intrathecal and epidural opioids. Can. J. Anaesth. 1995, 42, 891–903. [Google Scholar] [CrossRef]
- Iadarola, M.J.; Gonella, G.L. Resiniferatoxin for pain treatment: An interventional approach to personalized pain medicine. Open Pain J. 2013, 6 (Suppl. I), 95–107. [Google Scholar] [CrossRef]
- Nedeljkovic, S.S.; Narang, S.; Rickerson, E.; Levitt, R.C.; Horn, D.B.; Patin, D.L.; Albores-Ibarra, N.; Nahama, A.; Zhao, T.; Bharati, P.; et al. A multicenter, open-label, phase 1b study to assess the safety and define the maximal tolerated dose of epidural resiniferatoxin (RTX) injection for treatment of intractable pain associated with cancer. In Proceedings of the 2020 Annual Meeting of the American Academy of Pain Medicine, National Harbor, MD, USA, 26 February–1 March 2020. [Google Scholar]
- Study to Assess Epidural Resiniferatoxin for the Treatment of Intractable Pain Associated with Advanced Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT05067257 (accessed on 22 January 2024).
- Chwistek, M. Recent advances in understanding and managing cancer pain. F1000Research 2017, 6, 945. [Google Scholar] [CrossRef] [PubMed]
- Gadepalli, A.; Aklilesh; Uniyal, A.; Modi, A.; Chouhan, D.; Ummadisetty, O.; Khanna, S.; Solanki, S.; Allani, M.; Tiwari, V. Multifarious targets and recent developments in the therapeutics for the management of bone cancer pain. ACS Chem. Neurosci. 2021, 12, 4195–4208. [Google Scholar] [CrossRef] [PubMed]
- Szallasi, A. Vanilloid-sensitive neurons: A fundamental subdivision of the peripheral nervous system. J. Peripher. Nerv. Syst. 1996, 1, 6–18. [Google Scholar]
- Pineda-Farias, J.B.; Saloman, J.L.; Scheff, N.N. Animal models of cancer-related pain: Current perspectives in translation. Front. Pharmacol. 2020, 11, 610894. [Google Scholar] [CrossRef]
- Nielsen, C.S.; Staud, R.; Price, D.D. Individual differences in pain sensitivity: Measurement, causation, and consequences. J. Pain 2009, 10, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Im, E.-O. Ethnic differences in cancer pain experience. Nurs. Res. 2007, 56, 296–306. [Google Scholar] [CrossRef]
- Alodhayani, A.; Almitairi, K.M.; Vinluan, J.M.; Alsadhan, N.; Almigbal, T.H.; Alonazi, W.B.; Batais, M.A. Gender difference in pain management among adult cancer patients in Saudi Arabia: A cross-sectional assessment. Front. Psychol. 2021, 12, 628223. [Google Scholar] [CrossRef]
- Ibrahim, T.; Wu, P.; Wang, L.-J.; Chang, F.-M.; Murillo, J.; Merlo, J.; Shein, S.S.; Tumanov, A.V.; Lai, Z.; Weldon, K.; et al. Sex-dependent differences in the genomic profile of lingual sensory neurons in naïve and tongue-tumor bearing mice. Sci. Rep. 2023, 13, 13117. [Google Scholar] [CrossRef]
- Bennett, M.I.; Kaasa, S.; Barke, A.; Korwisi, B.; Rief, W.; Treede, R.D. The IASP classification of chronic pain for ICD-11: Chronic cancer-related pain. Pain 2019, 160, 38–44. [Google Scholar] [CrossRef]
- Moran, M.M.; Szallasi, A. Targeting nociceptive transient receptor potential channels to treat chronic pain: Current state of the field. Br. J. Pharmacol. 2018, 175, 2185–2203. [Google Scholar] [CrossRef]
- Koivisto, A.-P.; Voets, T.; Iadarola, M.J.; Szallasi, A. Targeting TRP channels for pain relief: A review of current evidence from bench to bedside. Curr. Opin. Pharmacol. 2023, in press. [Google Scholar]
- Su, C.-J.; Xu, J.-H.; Liu, X.; Zhao, F.-L.; Pan, J.; Zhang, Y.-S. X-ray induces mechanical and heat allodynia in mouse via TRPA1 and TRPV1 activation. Mol. Pain 2019, 15, 1–13. [Google Scholar]
- Meneses, C.S.; Gidcumb, E.M.; Marcus, K.L.; Gonzalez, Y.; Lai, Y.H.; Mishra, S.K.; Lascelles, B.D.X.; Nolan, M.W. Acute radiotherapy-associated oral pain may promote tumor growth at distant sites. Font. Oncol. 2023, 13, 1029108. [Google Scholar] [CrossRef] [PubMed]
- Grünenthal Starts Phase III Trials for Resiniferatoxin in Osteoarthritis-Related Pain. Available online: http://grunenthal.com/en/press-room/press-releases/2022/global-clinical-phae-iii-programme-for-resiniferatoxi-rtx (accessed on 22 January 2024).
- Available online: https://centrexion.com/science/pipeline/cntx-4975 (accessed on 22 January 2024).
- Wong, F.; Reddy, A.; Rho, Y.; Vollert, J.; Strutton, P.H.; Hughes, S.W. Responders and nonresponders to topical capsaicin display distinct temporal summation of pain profiles. Pain Rep. 2023, 8, e1071. [Google Scholar] [CrossRef]
- Forstenpointner, J.; Förster, M.; May, D.; Hofschulte, F.; Cascorbi, I.; Wasner, G.; Gierthmühlen, J.; Baron, R. TRPV1 polymorphism 1911 A>G alters capsaicin-induced sensory changes in healthy subjects. PLoS ONE 2017, 12, e0183322. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, N.; Okumura, M.; Tadokoro, O.; Sogawa, N.; Tomida, M.; Kondo, E. Effect of single-nucleotide polymorphisms in TRPV1 on burning pain and capsaicin sensitivity in Japanese adults. Mol. Pain 2018, 14, 1744806918804439. [Google Scholar] [CrossRef] [PubMed]
- Pabbidi, R.M.; Yu, S.-Q.; Peng, S.; Khardori, R.; Pauza, M.E.; Premkumar, L.S. Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity. Mol. Pain 2008, 4, 9. [Google Scholar] [CrossRef]
- Erin, N.; Zhao, W.; Bylander, J.; Chase, G.; Clawson, G. Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells. Breast Cancer Res. Treat. 2006, 99, 351–364. [Google Scholar] [CrossRef]
- Erin, N.; Boyer, P.J.; Bonneau, R.H.; Clawson, G.A.; Welch, D.R. Capsaicin-mediated denervation of sensory neurons promotes mammary tumor metastasis to lung and heart. Anticancer Res. 2004, 24, 1003–1009. [Google Scholar] [PubMed]
- Bencze, N.; Svarcz, C.; Danics, L.; Szőke, E.; Balogh, P.; Szallasi, A.; Hamar, P.; Helyes, Z.; Botz, B. Desensitization of capsaicin-sensitive afferents accelerates early tumor growth via increased vascular leakage in a murine model of triple negative breast cancer. Front. Oncol. 2012, 11, 685297. [Google Scholar] [CrossRef] [PubMed]
- Okui, T.; Hiasa, M.; Hatam, K.; Roodman, G.D.; Nakanishi, M.; Yoneda, T. The acid-sensing nociceptor TRPV1 controls breast cancer progression in bone via regulating HGF secretion from sensory neurons. Res. Sq. 2023, rs-3105966. [Google Scholar] [CrossRef]
- Tanaka, K.; Kondo, T.; Narita, M.; Muta, T.; Yoshida, S.; Sato, D.; Suda, Y.; Hamada, Y.; Tezuka, H.; Kuzumaki, N.; et al. Repeated activation of Trpv1-positive sensory neurons facilitates tumor growth associated with changes in tumor-infiltrating immune cells. Biochem. Biophys. Res. Commun. 2023, 648, 36–43. [Google Scholar] [CrossRef]
Cancer Pain | |
Acute Pain in the Cancer Patient | |
| |
| |
| |
Chronic Cancer Pain (Nociceptive, Neuropathic, Mixed) | |
| |
| |
| |
| |
Cancer Pain Treatment in Adult Patients—Briefly | |
Cancer Pain Treatment (Always Multimodal, Individual) | |
| |
| |
| |
| |
| |
ad 2. WHO analgesic ladder | |
Pain Intensity (Numeric Rating Score) | Type of Analgesics |
1–3 (4) | minor analgesics (paracetamol, metamizol, NSAIDs) |
4–6 | weak opioids (tramadol, DHC, etc.) |
>6 | strong opioids (morphine, oxycodone, hydromorphone, fentanyl, buprenorphine, methadone, etc.) |
ad.3. +/− adjuvant therapy | |
Type of Cancer Pain (Main Types) | Type of Adjuvant Therapy |
| anticonvulsive drugs (pregabalin, gabapentin), TCAs (amitriptylin, clomipramin), duloxetine, clonidine |
| corticosteroid + antineuropathic drugs, calcitonin, bisphosphonate compounds |
| corticosteroid |
| antispasticity agent (tizanidin, etc.) |
| |
| haloperidol |
Damage to the skeletal system |
|
Infiltration by solid tumors of visceral organs |
|
Infiltration by solid tumors of soft tissue |
|
Nervous system involvement |
|
nociceptive pain | superficial somatic deep somatic visceral |
|
neuropathic | peripheral central |
|
mixed |
% Decrease in Pain from Baseline | Average Pain | Worst Pain |
---|---|---|
30% | 65% of study participants | 47% of study participants |
50% | 35% of study participants | 29% of study participants |
70% | 23% of study participants | 18% of study participants |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szallasi, A. Targeting TRPV1 for Cancer Pain Relief: Can It Work? Cancers 2024, 16, 648. https://doi.org/10.3390/cancers16030648
Szallasi A. Targeting TRPV1 for Cancer Pain Relief: Can It Work? Cancers. 2024; 16(3):648. https://doi.org/10.3390/cancers16030648
Chicago/Turabian StyleSzallasi, Arpad. 2024. "Targeting TRPV1 for Cancer Pain Relief: Can It Work?" Cancers 16, no. 3: 648. https://doi.org/10.3390/cancers16030648
APA StyleSzallasi, A. (2024). Targeting TRPV1 for Cancer Pain Relief: Can It Work? Cancers, 16(3), 648. https://doi.org/10.3390/cancers16030648