Emerging Therapies in Management of Cholangiocarcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
Current Management of CCA
2. Emerging Therapies
2.1. FGFR Inhibitors
2.2. IDH Inhibitors
2.3. VEGF Inhibitors
2.4. EGFR Inhibitors
2.5. HGF/MET Inhibitors
2.6. ROS1/ALK Inhibitors
2.7. PI3K/PTEN/AKT/mTOR Signaling Pathway Inhibitors
2.8. RAS/RAF/MEK/ERK Signaling Pathway Inhibitors
2.9. Other
2.10. Immunotherapy: PD-1/PDL-1 Inhibitors
Treatment | Target | Population | Phase | ClinicalTrials.gov Identifier | Status |
---|---|---|---|---|---|
Ivosidenib | IDH1 | advanced solid tumors including CCA | I | NCT02073994 [79] | active |
TRK-950 in combination with selected anti-cancer treatment regimens | CAPRIN-1 + multiple drug targets | advanced solid tumors including CCA | I | NCT03872947 [80] | active |
Pemigatinib OR Ivosidenib + gemcitabine/cisplatin | FGFR2 + IDH | advanced CCA | I | NCT04088188 [81] | active |
LY3410738 | IDH1/2 | advanced solid tumors including CCA | I | NCT04521686 [82] | active |
CAR-macrophages (CT-0508) | CAR macrophages | HER2-overexpressing solid tumors including CCA | I | NCT04660929 [83] | active |
MIV 818 + Lenvatinib OR Pembrolizumab | liver-targeting prodrug of TRX-MP | HCC and iCCA | I/II | NCT03781934 [84] | active |
Durvalumab + Tremelimumab + gemcitabine/cisplatin | PDL-1 + CTLA4 | iCCA | I/II | NCT04989218 [85] | active |
Futibatinib | FGFR2 | advanced solid tumors including CCA | I/II | NCT05727176 [86] | active |
IMM2902 | HER2 + CD47 | HER2-expressing advanced solid tumors including CCA | I/II | NCT05805956 [87] | active |
Entrectinib | TrkA/B/C + ROS1 + ALK | solid tumors with TRKA/B/C, ROS1, or ALK gene rearrangements including CCA | II | NCT02568267 [88] | active |
Erdafitinib | FGFR | non-small cell lung cancer, urothelial cancer, esophageal cancer, and CCA | II | NCT02699606 [89] | active |
Olaparib | IDH1/2 | glioma, CCA, and other solid tumors | II | NCT03212274 [90] | active |
Olaparib + Ceralasertib | IDH1/2 + ATR kinase | advanced solid tumors including CCA | II | NCT03878095 [91] | suspended, pending data analysis |
Olaparib + Durvalumab | IDH + PD-L1 | glioma and CCA | II | NCT03991832 [92] | active |
DKN-01 + Nivolumab | DKK1 | advanced BTC | II | NCT04057365 [93] | active |
Pemigatinib after SBRT | FGFR2 | iCCA | II | NCT04088188 [81] | active |
Toripalimab + Lenvatinib | PD-1 + multikinase inhibitor | advanced BTC | II | NCT04211168 [94] | active |
Infigratinib | FGFR | advanced solid tumors including CCA | II | NCT04233567 [95] | active |
Pemigatinib | FGFR2 | advanced CCA | II | NCT04256980 [96] | active |
AZD6738 + Durvalumab | ATR + PDL-1 | BTC | II | NCT04298008 [97] | active |
Pembrolizumab + Olaparib | PD-1 + PARP | advanced CCA | II | NCT04306367 [98] | active |
Camrelizumab + Apatinib | PD-1 and VEGFR2 | advanced iCCA | II | NCT04454905 [99] | active |
Zanidatamab | HER2 | advanced BTC | II | NCT04466891 [100] | active |
Atezolizumab + Derazantinib | FGFR2 | advanced iCCA | II | NCT05174650 [101] | active |
Durvalumab + GemCis | PDL-1 | resectable iCCA | II | NCT05672537 [102] | active |
Futibatinib | FGFR2 | advanced CCA | II | NCT05727176 [86] | active |
SMT-NK + Pembrolizumab OR Pembrolizumab monotherapy | allogeneic natural killer cells + PD-1 inhibitor | advanced BTC | II/III | NCT05429697 [103] | active |
Pemigatinib + gemcitabine/cisplatin | FGFR2 | advanced CCA | III | NCT03656536 [104] | active |
Pembrolizumab + gemcitabine/cisplatin | PD-1 | advanced BTC | III | NCT04003636 [105] | active |
Futibatinib | FGFR2 | advanced iCCA | III | NCT04093362 [106] | active |
Toripalimab + Lenvatinib + GEMOX | PD-1 + multikinase inhibitor | unresectable iCCA | III | NCT05342194 [107] | not yet recruiting |
Ivosidenib | FGFR2 | previously treated CCA | IIIb | NCT05876754 [108] | active |
3. Conclusions
4. Expert Opinion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cholangiocarcinoma. Nat. Rev. Dis. Prim. 2021, 7, 66. [CrossRef]
- Bertuccio, P.; Malvezzi, M.; Carioli, G.; Hashim, D.; Boffetta, P.; El-Serag, H.B.; La Vecchia, C.; Negri, E. Global Trends in Mortality from Intrahepatic and Extrahepatic Cholangiocarcinoma. J. Hepatol. 2019, 71, 104–111. [Google Scholar] [CrossRef]
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next Horizon in Mechanisms and Management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef]
- Valle, J.; Wasan, H.; Palmer, D.H.; Cunningham, D.; Anthoney, A.; Maraveyas, A.; Madhusudan, S.; Iveson, T.; Hughes, S.; Pereira, S.P.; et al. Cisplatin plus Gemcitabine versus Gemcitabine for Biliary Tract Cancer. N. Engl. J. Med. 2010, 362, 1273–1281. [Google Scholar] [CrossRef]
- Chong, D.Q.; Zhu, A.X. The Landscape of Targeted Therapies for Cholangiocarcinoma: Current Status and Emerging Targets. Oncotarget 2016, 7, 46750–46767. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Zhou, Z.; Chen, Z.; Xu, G.; Chen, Y. Fibroblast Growth Factor Receptors (FGFRs): Structures and Small Molecule Inhibitors. Cells 2019, 8, 614. [Google Scholar] [CrossRef]
- Vogel, A.; Segatto, O.; Stenzinger, A.; Saborowski, A. FGFR2 Inhibition in Cholangiocarcinoma. Annu. Rev. Med. 2023, 74, 293–306. [Google Scholar] [CrossRef]
- Patel, T.H.; Marcus, L.; Horiba, M.N.; Donoghue, M.; Chatterjee, S.; Mishra-Kalyani, P.S.; Schuck, R.N.; Li, Y.; Zhang, X.; Fourie Zirkelbach, J.; et al. FDA Approval Summary: Pemigatinib for Previously Treated, Unresectable Locally Advanced or Metastatic Cholangiocarcinoma with FGFR2 Fusion or Other Rearrangement. Clin. Cancer Res. 2023, 29, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Syed, Y.Y. Futibatinib: First Approval. Drugs 2022, 82, 1737–1743. [Google Scholar] [CrossRef] [PubMed]
- Kang, C. Infigratinib: First Approval. Drugs 2021, 81, 1355–1360. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Sahai, V.; Hollebecque, A.; Vaccaro, G.; Melisi, D.; Al-Rajabi, R.; Paulson, A.S.; Borad, M.J.; Gallinson, D.; Murphy, A.G.; et al. Pemigatinib for Previously Treated, Locally Advanced or Metastatic Cholangiocarcinoma: A Multicentre, Open-Label, Phase 2 Study. Lancet Oncol. 2020, 21, 671–684. [Google Scholar] [CrossRef]
- Bibeau, K.; Féliz, L.; Lihou, C.F.; Ren, H.; Abou-Alfa, G.K. Progression-Free Survival in Patients With Cholangiocarcinoma With or Without FGF/FGFR Alterations: A FIGHT-202 Post Hoc Analysis of Prior Systemic Therapy Response. JCO Precis. Oncol. 2022, 6, e2100414. [Google Scholar] [CrossRef]
- Shi, G.-M.; Huang, X.-Y.; Wen, T.-F.; Song, T.-Q.; Kuang, M.; Mou, H.-B.; Bao, L.-Q.; Zhao, H.-T.; Zhao, H.; Feng, X.-L.; et al. Pemigatinib in Previously Treated Chinese Patients with Locally Advanced or Metastatic Cholangiocarcinoma Carrying FGFR2 Fusions or Rearrangements: A Phase II Study. Cancer Med. 2023, 12, 4137–4146. [Google Scholar] [CrossRef]
- Bekaii-Saab, T.S.; Valle, J.W.; Van Cutsem, E.; Rimassa, L.; Furuse, J.; Ioka, T.; Melisi, D.; Macarulla, T.; Bridgewater, J.; Wasan, H.; et al. FIGHT-302: First-Line Pemigatinib vs Gemcitabine plus Cisplatin for Advanced Cholangiocarcinoma with FGFR2 Rearrangements. Future Oncol. 2020, 16, 2385–2399. [Google Scholar] [CrossRef] [PubMed]
- Ji, T.; Rockich, K.; Epstein, N.; Overholt, H.; Wang, P.; Chen, X.; Punwani, N.; Yeleswaram, S. Evaluation of the Pharmacokinetics of Pemigatinib in Patients with Impaired Hepatic or Renal Function. Br. J. Clin. Pharmacol. 2022, 88, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Javle, M.; Roychowdhury, S.; Kelley, R.K.; Sadeghi, S.; Macarulla, T.; Weiss, K.H.; Waldschmidt, D.-T.; Goyal, L.; Borbath, I.; El-Khoueiry, A.; et al. Infigratinib (BGJ398) in Previously Treated Patients with Advanced or Metastatic Cholangiocarcinoma with FGFR2 Fusions or Rearrangements: Mature Results from a Multicentre, Open-Label, Single-Arm, Phase 2 Study. Lancet Gastroenterol. Hepatol. 2021, 6, 803–815. [Google Scholar] [CrossRef]
- Goyal, L.; Meric-Bernstam, F.; Hollebecque, A.; Valle, J.W.; Morizane, C.; Karasic, T.B.; Abrams, T.A.; Furuse, J.; Kelley, R.K.; Cassier, P.A.; et al. Futibatinib for FGFR2-Rearranged Intrahepatic Cholangiocarcinoma. N. Engl. J. Med. 2023, 388, 228–239. [Google Scholar] [CrossRef]
- Sootome, H.; Fujita, H.; Ito, K.; Ochiiwa, H.; Fujioka, Y.; Ito, K.; Miura, A.; Sagara, T.; Ito, S.; Ohsawa, H.; et al. Futibatinib Is a Novel Irreversible FGFR 1-4 Inhibitor That Shows Selective Antitumor Activity against FGFR-Deregulated Tumors. Cancer Res. 2020, 80, 4986–4997. [Google Scholar] [CrossRef]
- Mazzaferro, V.; El-Rayes, B.F.; Droz Dit Busset, M.; Cotsoglou, C.; Harris, W.P.; Damjanov, N.; Masi, G.; Rimassa, L.; Personeni, N.; Braiteh, F.; et al. Derazantinib (ARQ 087) in Advanced or Inoperable FGFR2 Gene Fusion-Positive Intrahepatic Cholangiocarcinoma. Br. J. Cancer 2019, 120, 165–171. [Google Scholar] [CrossRef]
- Loriot, Y.; Necchi, A.; Park, S.H.; Garcia-Donas, J.; Huddart, R.; Burgess, E.; Fleming, M.; Rezazadeh, A.; Mellado, B.; Varlamov, S.; et al. Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2019, 381, 338–348. [Google Scholar] [CrossRef]
- Ahn, D.H.; Uson Junior, P.L.S.; Masci, P.; Kosiorek, H.; Halfdanarson, T.R.; Mody, K.; Babiker, H.; DeLeon, T.; Sonbol, M.B.; Gores, G.; et al. A Pilot Study of Pan-FGFR Inhibitor Ponatinib in Patients with FGFR-Altered Advanced Cholangiocarcinoma. Investig. New Drugs 2022, 40, 134–141. [Google Scholar] [CrossRef]
- Casak, S.J.; Pradhan, S.; Fashoyin-Aje, L.A.; Ren, Y.; Shen, Y.-L.; Xu, Y.; Chow, E.C.Y.; Xiong, Y.; Zirklelbach, J.F.; Liu, J.; et al. FDA Approval Summary: Ivosidenib for the Treatment of Patients with Advanced Unresectable or Metastatic, Chemotherapy Refractory Cholangiocarcinoma with an IDH1 Mutation. Clin. Cancer Res. 2022, 28, 2733–2737. [Google Scholar] [CrossRef] [PubMed]
- Lowery, M.A.; Burris, H.A.; Janku, F.; Shroff, R.T.; Cleary, J.M.; Azad, N.S.; Goyal, L.; Maher, E.A.; Gore, L.; Hollebecque, A.; et al. Safety and Activity of Ivosidenib in Patients with IDH1-Mutant Advanced Cholangiocarcinoma: A Phase 1 Study. Lancet Gastroenterol. Hepatol. 2019, 4, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.T.; Borad, M.J.; Bridgewater, J.A.; et al. Final Overall Survival Efficacy Results of Ivosidenib for Patients With Advanced Cholangiocarcinoma With IDH1 Mutation: The Phase 3 Randomized Clinical ClarIDHy Trial. JAMA Oncol. 2021, 7, 1669–1677. [Google Scholar] [CrossRef]
- Cleary, J.M.; Rouaisnel, B.; Daina, A.; Raghavan, S.; Roller, L.A.; Huffman, B.M.; Singh, H.; Wen, P.Y.; Bardeesy, N.; Zoete, V.; et al. Secondary IDH1 Resistance Mutations and Oncogenic IDH2 Mutations Cause Acquired Resistance to Ivosidenib in Cholangiocarcinoma. Npj Precis. Oncol. 2022, 6, 61. [Google Scholar] [CrossRef]
- Eder, J.P.; Doroshow, D.B.; Do, K.T.; Keedy, V.L.; Sklar, J.S.; Glazer, P.; Bindra, R.; Shapiro, G.I. Clinical Efficacy of Olaparib in IDH1/IDH2-Mutant Mesenchymal Sarcomas. JCO Precis. Oncol. 2021, 5, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Foà, R.; Vitale, A.; Vignetti, M.; Meloni, G.; Guarini, A.; De Propris, M.S.; Elia, L.; Paoloni, F.; Fazi, P.; Cimino, G.; et al. Dasatinib as First-Line Treatment for Adult Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Blood 2011, 118, 6521–6528. [Google Scholar] [CrossRef] [PubMed]
- Venkatraman, S.; Balasubramanian, B.; Pongchaikul, P.; Tohtong, R.; Chutipongtanate, S. Molecularly Guided Drug Repurposing for Cholangiocarcinoma: An Integrative Bioinformatic Approach. Genes 2022, 13, 271. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, B.; Cloyd, J.M.; Alaimo, L.; Xu, G.; Du, S.; Mao, Y.; Pawlik, T.M. Novel Drug Candidate Prediction for Intrahepatic Cholangiocarcinoma via Hub Gene Network Analysis and Connectivity Mapping. Cancers 2022, 14, 3284. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Yoshikawa, D.; Ojima, H.; Iwasaki, M.; Hiraoka, N.; Kosuge, T.; Kasai, S.; Hirohashi, S.; Shibata, T. Clinicopathological and Prognostic Significance of EGFR, VEGF, and HER2 Expression in Cholangiocarcinoma. Br. J. Cancer 2008, 98, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Yang, X.; Lin, J.; Yang, X.; Wang, D.; Zhang, L.; Bai, Y.; Bian, J.; Long, J.; Xie, F.; et al. Apatinib as Non-First-Line Treatment in Patients with Intrahepatic Cholangiocarcinoma. J. Cancer 2021, 12, 1555–1562. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Gong, S.; Pang, L.; Hou, L.; He, W. Efficacy and Safety of Apatinib Treatment for Advanced Cholangiocarcinoma After Failed Gemcitabine-Based Chemotherapy: An Open-Label Phase II Prospective Study. Front. Oncol. 2021, 11, 659217. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Shroff, R.T.; Makawita, S.; Xiao, L.; Danner De Armas, A.; Bhosale, P.; Reddy, K.; Shalaby, A.; Raghav, K.; Pant, S.; et al. Phase II Study of Ramucirumab in Advanced Biliary Tract Cancer Previously Treated By Gemcitabine-Based Chemotherapy. Clin. Cancer Res. 2022, 28, 2229–2236. [Google Scholar] [CrossRef]
- Valle, J.W.; Vogel, A.; Denlinger, C.S.; He, A.R.; Bai, L.-Y.; Orlova, R.; Van Cutsem, E.; Adeva, J.; Chen, L.-T.; Obermannova, R.; et al. Addition of Ramucirumab or Merestinib to Standard First-Line Chemotherapy for Locally Advanced or Metastatic Biliary Tract Cancer: A Randomised, Double-Blind, Multicentre, Phase 2 Study. Lancet Oncol. 2021, 22, 1468–1482. [Google Scholar] [CrossRef]
- Xu, J.; Bai, Y.; Sun, H.; Bai, C.; Jia, R.; Li, Y.; Zhang, W.; Liu, L.; Huang, C.; Guan, M.; et al. A Single-Arm, Multicenter, Open-Label Phase 2 Trial of Surufatinib in Patients with Unresectable or Metastatic Biliary Tract Cancer. Cancer 2021, 127, 3975–3984. [Google Scholar] [CrossRef]
- Murahashi, M.; Tsuruta, T.; Yamada, K.; Hijikata, Y.; Ogata, H.; Kishimoto, J.; Yoshimura, S.; Hikichi, T.; Nakanishi, Y.; Tani, K. Clinical Trial of a Cancer Vaccine Targeting VEGF and KIF20A in Advanced Biliary Tract Cancer. Anticancer Res. 2021, 41, 1485–1496. [Google Scholar] [CrossRef]
- Javle, M.M.; Oh, D.-Y.; Ikeda, M.; Yong, W.-P.; Hsu, K.; Lindmark, B.; McIntyre, N.; Firth, C. Varlitinib plus Capecitabine in Second-Line Advanced Biliary Tract Cancer: A Randomized, Phase II Study (TreeTopp). ESMO Open 2022, 7, 100314. [Google Scholar] [CrossRef]
- Amin, N.E.L.; Hansen, T.F.; Fernebro, E.; Ploen, J.; Eberhard, J.; Lindebjerg, J.; Jensen, L.H. Randomized Phase II Trial of Combination Chemotherapy with Panitumumab or Bevacizumab for Patients with Inoperable Biliary Tract Cancer without KRAS Exon 2 Mutations. Int. J. Cancer 2021, 149, 119–126. [Google Scholar] [CrossRef]
- Fu, J.; Su, X.; Li, Z.; Deng, L.; Liu, X.; Feng, X.; Peng, J. HGF/c-MET Pathway in Cancer: From Molecular Characterization to Clinical Evidence. Oncogene 2021, 40, 4625–4651. [Google Scholar] [CrossRef]
- Pellino, A.; Loupakis, F.; Cadamuro, M.; Dadduzio, V.; Fassan, M.; Guido, M.; Cillo, U.; Indraccolo, S.; Fabris, L. Precision Medicine in Cholangiocarcinoma. Transl. Gastroenterol. Hepatol. 2018, 3, 40. [Google Scholar] [CrossRef]
- Pant, S.; Saleh, M.; Bendell, J.; Infante, J.R.; Jones, S.; Kurkjian, C.D.; Moore, K.M.; Kazakin, J.; Abbadessa, G.; Wang, Y.; et al. A Phase I Dose Escalation Study of Oral C-MET Inhibitor Tivantinib (ARQ 197) in Combination with Gemcitabine in Patients with Solid Tumors. Ann. Oncol. 2014, 25, 1416–1421. [Google Scholar] [CrossRef]
- He, A.R.; Cohen, R.B.; Denlinger, C.S.; Sama, A.; Birnbaum, A.; Hwang, J.; Sato, T.; Lewis, N.; Mynderse, M.; Niland, M.; et al. First-in-Human Phase I Study of Merestinib, an Oral Multikinase Inhibitor, in Patients with Advanced Cancer. Oncologist 2019, 24, e930–e942. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, L.N.; Larkins, E.; Akinboro, O.; Roy, P.; Amatya, A.K.; Fiero, M.H.; Mishra-Kalyani, P.S.; Helms, W.S.; Myers, C.E.; Skinner, A.M.; et al. FDA Approval Summary: Capmatinib and Tepotinib for the Treatment of Metastatic NSCLC Harboring MET Exon 14 Skipping Mutations or Alterations. Clin. Cancer Res. 2022, 28, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Lefler, D.S.; Tierno, M.B.; Bashir, B. Partial Treatment Response to Capmatinib in MET-Amplified Metastatic Intrahepatic Cholangiocarcinoma: Case Report & Review of Literature. Cancer Biol. Ther. 2022, 23, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Turpin, A.; Descarpentries, C.; Grégoire, V.; Farchi, O.; Cortot, A.B.; Jamme, P. Response to Capmatinib in a MET Fusion-Positive Cholangiocarcinoma. Oncologist 2023, 28, 80–83. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, Q.; Li, W.; Qu, Y.; Zhang, Y.; Liu, T. Identification of a Novel EHBP1-MET Fusion in an Intrahepatic Cholangiocarcinoma Responding to Crizotinib. Oncologist 2020, 25, 1005–1008. [Google Scholar] [CrossRef] [PubMed]
- Fountzilas, C.; Adjei, A.; Opyrchal, M.; Evans, R.; Ghasemi, M.; Attwood, K.; Groman, A.; Bshara, W.; Goey, A.; Wilton, J.; et al. A Phase I Study of the Anaplastic Lymphoma Kinase Inhibitor Ceritinib in Combination with Gemcitabine-Based Chemotherapy in Patients with Advanced Solid Tumors. Int. J. Cancer 2021, 149, 2063–2074. [Google Scholar] [CrossRef] [PubMed]
- Goyal, L.; Zheng, H.; Yurgelun, M.B.; Abrams, T.A.; Allen, J.N.; Cleary, J.M.; Knowles, M.; Regan, E.; Reardon, A.; Khachatryan, A.; et al. A Phase 2 and Biomarker Study of Cabozantinib in Patients with Advanced Cholangiocarcinoma. Cancer 2017, 123, 1979–1988. [Google Scholar] [CrossRef]
- Gu, T.-L.; Deng, X.; Huang, F.; Tucker, M.; Crosby, K.; Rimkunas, V.; Wang, Y.; Deng, G.; Zhu, L.; Tan, Z.; et al. Survey of Tyrosine Kinase Signaling Reveals ROS Kinase Fusions in Human Cholangiocarcinoma. PLoS ONE 2011, 6, e15640. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, K.B.; Kim, T.Y.; Han, S.W.; Oh, D.Y.; Im, S.A.; Kim, T.Y.; Yi, N.J.; Lee, K.W.; Suh, K.S.; et al. Clinical and Pathological Significance of ROS1 Expression in Intrahepatic Cholangiocarcinoma. BMC Cancer 2015, 15, 721. [Google Scholar] [CrossRef]
- Yothaisong, S.; Dokduang, H.; Techasen, A.; Namwat, N.; Yongvanit, P.; Bhudhisawasdi, V.; Puapairoj, A.; Riggins, G.J.; Loilome, W. Increased Activation of PI3K/AKT Signaling Pathway Is Associated with Cholangiocarcinoma Metastasis and PI3K/mTOR Inhibition Presents a Possible Therapeutic Strategy. Tumour Biol. 2013, 34, 3637–3648. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Ren, Z.; Fan, J.; Gao, Q. Genetic Profiling of Intrahepatic Cholangiocarcinoma and its Clinical Implication in Targeted Therapy. Am. J. Cancer Res. 2016, 6, 577–586. [Google Scholar] [PubMed]
- Varnier, R.; Puszkiel, A.; Tod, M.; Calattini, S.; Payen, L.; Lopez, J.; Guitton, J.; Schwiertz, V.; Fontaine, J.; Peron, J.; et al. Clinical Results of the EVESOR Trial, a Multiparameter Phase I Trial of Everolimus and Sorafenib Combination in Solid Tumors. Cancer Chemother. Pharmacol. 2023, 91, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.S.; Cao, B.; Kim, J.; Al-Toubah, T.E.; Mehta, R.; Centeno, B.A.; Kim, R.D. Phase 2 Study of Copanlisib in Combination with Gemcitabine and Cisplatin in Advanced Biliary Tract Cancers. Cancer 2021, 127, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Rovida, E.; Tusa, I. Targeting MAPK in Cancer 2.0. Int. J. Mol. Sci. 2022, 23, 5702. [Google Scholar] [CrossRef]
- Hyman, D.M.; Puzanov, I.; Subbiah, V.; Faris, J.E.; Chau, I.; Blay, J.-Y.; Wolf, J.; Raje, N.S.; Diamond, E.L.; Hollebecque, A.; et al. Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. N. Engl. J. Med. 2015, 373, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Weng, S.; Zhang, D.; Yang, M.; Wang, L.; Yuan, Y. Vemurafenib Effectively Controlled Chemotherapy-Refractory Intrahepatic Cholangiocarcinoma with BRAF V600E Mutation: A Case Report and Literature Review. Z. Gastroenterol. 2022, 60, 1787–1791. [Google Scholar] [CrossRef] [PubMed]
- Garbe, C.; Eigentler, T.K. Vemurafenib. In Small Molecules in Oncology; Recent Results in Cancer Research; Springer: Cham, Switzerland, 2018; Volume 211, pp. 77–89. [Google Scholar] [CrossRef]
- Subbiah, V.; Lassen, U.; Élez, E.; Italiano, A.; Curigliano, G.; Javle, M.; de Braud, F.; Prager, G.W.; Greil, R.; Stein, A.; et al. Dabrafenib plus Trametinib in Patients with BRAFV600E-Mutated Biliary Tract Cancer (ROAR): A Phase 2, Open-Label, Single-Arm, Multicentre Basket Trial. Lancet Oncol. 2020, 21, 1234–1243. [Google Scholar] [CrossRef]
- Wabitsch, S.; Tandon, M.; Ruf, B.; Zhang, Q.; McCallen, J.D.; McVey, J.C.; Ma, C.; Green, B.L.; Diggs, L.P.; Heinrich, B.; et al. Anti-PD-1 in Combination with Trametinib Suppresses Tumor Growth and Improves Survival of Intrahepatic Cholangiocarcinoma in Mice. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 1166–1178. [Google Scholar] [CrossRef]
- Ewald, F.; Nörz, D.; Grottke, A.; Hofmann, B.T.; Nashan, B.; Jücker, M. Dual Inhibition of PI3K-AKT-mTOR- and RAF-MEK-ERK-Signaling Is Synergistic in Cholangiocarcinoma and Reverses Acquired Resistance to MEK-Inhibitors. Investig. New Drugs 2014, 32, 1144–1154. [Google Scholar] [CrossRef] [PubMed]
- Anichini, G.; Carrassa, L.; Stecca, B.; Marra, F.; Raggi, C. The Role of the Hedgehog Pathway in Cholangiocarcinoma. Cancers 2021, 13, 4774. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Molina, L.; Tao, J.; Liu, S.; Hassan, M.; Singh, S.; Poddar, M.; Bell, A.; Sia, D.; Oertel, M.; et al. NOTCH-YAP1/TEAD-DNMT1 Axis Drives Hepatocyte Reprogramming Into Intrahepatic Cholangiocarcinoma. Gastroenterology 2022, 163, 449–465. [Google Scholar] [CrossRef] [PubMed]
- Mancarella, S.; Serino, G.; Dituri, F.; Cigliano, A.; Ribback, S.; Wang, J.; Chen, X.; Calvisi, D.F.; Giannelli, G. Crenigacestat, a Selective NOTCH1 Inhibitor, Reduces Intrahepatic Cholangiocarcinoma Progression by Blocking VEGFA/DLL4/MMP13 Axis. Cell Death Differ. 2020, 27, 2330–2343. [Google Scholar] [CrossRef]
- Mancarella, S.; Gigante, I.; Serino, G.; Pizzuto, E.; Dituri, F.; Valentini, M.F.; Wang, J.; Chen, X.; Armentano, R.; Calvisi, D.F.; et al. Crenigacestat Blocking Notch Pathway Reduces Liver Fibrosis in the Surrounding Ecosystem of Intrahepatic CCA viaTGF-β Inhibition. J. Exp. Clin. Cancer Res. 2022, 41, 331. [Google Scholar] [CrossRef] [PubMed]
- Massard, C.; Cassier, P.A.; Azaro, A.; Anderson, B.; Yuen, E.; Yu, D.; Oakley, G.; Benhadji, K.A.; Pant, S. A Phase 1b Study of Crenigacestat (LY3039478) in Combination with Gemcitabine and Cisplatin or Gemcitabine and Carboplatin in Patients with Advanced or Metastatic Solid Tumors. Cancer Chemother. Pharmacol. 2022, 90, 335–344. [Google Scholar] [CrossRef]
- Goyal, L.; Sirard, C.; Schrag, M.; Kagey, M.H.; Eads, J.R.; Stein, S.; El-Khoueiry, A.B.; Manji, G.A.; Abrams, T.A.; Khorana, A.A.; et al. Phase I and Biomarker Study of the Wnt Pathway Modulator DKN-01 in Combination with Gemcitabine/Cisplatin in Advanced Biliary Tract Cancer. Clin. Cancer Res. 2020, 26, 6158–6167. [Google Scholar] [CrossRef]
- Di Maira, G.; Gentilini, A.; Pastore, M.; Caligiuri, A.; Piombanti, B.; Raggi, C.; Rovida, E.; Lewinska, M.; Andersen, J.B.; Borgo, C.; et al. The Protein Kinase CK2 Contributes to the Malignant Phenotype of Cholangiocarcinoma Cells. Oncogenesis 2019, 8, 61. [Google Scholar] [CrossRef]
- Borad, M.J.; Bai, L.-Y.; Richards, D.; Mody, K.; Hubbard, J.; Rha, S.Y.; Soong, J.; McCormick, D.; Tse, E.; O’Brien, D.; et al. Silmitasertib plus Gemcitabine and Cisplatin First-Line Therapy in Locally Advanced/Metastatic Cholangiocarcinoma: A Phase 1b/2 Study. Hepatology 2023, 77, 760–773. [Google Scholar] [CrossRef]
- Yao, W.Y.; Gong, W. Immunotherapy in Cholangiocarcinoma: From Concept to Clinical Trials. Surg. Pract. Sci. 2021, 5, 100028. [Google Scholar] [CrossRef]
- Fontugne, J.; Augustin, J.; Pujals, A.; Compagnon, P.; Rousseau, B.; Luciani, A.; Tournigand, C.; Cherqui, D.; Azoulay, D.; Pawlotsky, J.-M.; et al. PD-L1 Expression in Perihilar and Intrahepatic Cholangiocarcinoma. Oncotarget 2017, 8, 24644–24651. [Google Scholar] [CrossRef]
- Ma, K.; Wei, X.; Dong, D.; Wu, Y.; Geng, Q.; Li, E. PD-L1 and PD-1 Expression Correlate with Prognosis in Extrahepatic Cholangiocarcinoma. Oncol. Lett. 2017, 14, 250–256. [Google Scholar] [CrossRef]
- Oh, D.-Y.; Ruth He, A.; Qin, S.; Chen, L.-T.; Okusaka, T.; Vogel, A.; Kim, J.W.; Suksombooncharoen, T.; Lee, M.A.; Kitano, M.; et al. Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer. NEJM Evid. 2022, 1, EVIDoa2200015. [Google Scholar] [CrossRef]
- Shi, G.-M.; Huang, X.-Y.; Wu, D.; Sun, H.-C.; Liang, F.; Ji, Y.; Chen, Y.; Yang, G.-H.; Lu, J.-C.; Meng, X.-L.; et al. Toripalimab Combined with Lenvatinib and GEMOX Is a Promising Regimen as First-Line Treatment for Advanced Intrahepatic Cholangiocarcinoma: A Single-Center, Single-Arm, Phase 2 Study. Signal Transduct. Target. Ther. 2023, 8, 106. [Google Scholar] [CrossRef] [PubMed]
- Sahai, V.; Griffith, K.A.; Beg, M.S.; Shaib, W.; Mahalingam, D.; Zhen, D.B.; Deming, D.A.; Zalupski, M.M. A Randomized Phase 2 Trial of Nivolumab, Gemcitabine, and Cisplatin or Nivolumab and Ipilimumab in Previously Untreated Advanced Biliary Cancer: BilT-01. Cancer 2022, 128, 3523–3530. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Qin, S.; Gu, S.; Ren, Z.; Chen, Z.; Xiong, J.; Liu, Y.; Meng, Z.; Zhang, X.; Wang, L.; et al. Camrelizumab plus Oxaliplatin-Based Chemotherapy as First-Line Therapy for Advanced Biliary Tract Cancer: A Multicenter, Phase 2 Trial. Int. J. Cancer 2021, 149, 1944–1954. [Google Scholar] [CrossRef] [PubMed]
- Yoo, C.; Javle, M.M.; Verdaguer Mata, H.; de Braud, F.; Trojan, J.; Raoul, J.-L.; Kim, J.W.; Ueno, M.; Lee, C.-K.; Hijioka, S.; et al. Phase 2 Trial of Bintrafusp Alfa as Second-Line Therapy for Patients with Locally Advanced/Metastatic Biliary Tract Cancers. Hepatology 2023, 78, 758–770. [Google Scholar] [CrossRef]
- Study of Orally Administered AG-120 in Subjects with Advanced Solid Tumors, Including Glioma, with and IDH1 Mutation. ClinicalTrials.gov Identifier: NCT02073994. Updated 5 December 2023. Available online: https://clinicaltrials.gov/study/NCT02073994 (accessed on 10 January 2024).
- Bauernschub, Vicki. A Study of TRK-950 in Combinations with Anti-Cancer Treatment Regimens in Patients with Advanced Solid Tumors. ClinicalTrials.gov Identifier: NCT03872947. Updated 18 November 2023. Available online: https://clinicaltrials.gov/study/NCT03872947 (accessed on 10 January 2024).
- Gemcitabine and Cisplatin With Ivosidenib or Pemigatinib for the Treatment of Unresectable or Metastatic Cholangiocarcinoma. ClinicalTrials.gov Identifier: NCT04088188. Updated 5 July 2023. Available online: https://clinicaltrials.gov/study/NCT04088188 (accessed on 10 January 2024).
- Study of LY3410738 Administered to Patients with Advanced Solid Tumors with IDH1 or IDH2 Mutations. ClinicalTrials.gov Identifier: NCT04521686. Updated 1 September 2023. Available online: https://clinicaltrials.gov/study/NCT04521686 (accessed on 10 January 2024).
- Swaby, Ramona. CAR-Macrophages for the Treatment of HER2 Overexpressing Solid Tumors. ClinicalTrials.gov Identifier: NCT04660929. Updated 19 December 2023. Available online: https://clinicaltrials.gov/study/NCT04660929 (accessed on 10 January 2024).
- A Study to Evaluate MIV-818 in Patients with Liver Cancer Manifestations. ClinicalTrials.gov Identifier: NCT03781934. Updated 11 September 2023. Available online: https://clinicaltrials.gov/study/NCT03781934 (accessed on 10 January 2024).
- Isaac, Shiney. Durvalumab and Tremelimumab with Platinum-based Chemotherapy in Intrahepatic Cholangiocarcinoma. ClinicalTrials.gov Identifier: NCT04989218. Updated 3 January 2024. Available online: https://clinicaltrials.gov/study/NCT04989218 (accessed on 10 January 2024).
- Study of Futibatinib in Patients with Advanced Cholangiocarcinoma with FGFR2 Fusion or Rearrangement (FOENIX-CCA4). ClinicalTrials.gov Identifier: NCT05727176. Updated 21 December 2023. Available online: https://clinicaltrials.gov/study/NCT05727176 (accessed on 10 January 2024).
- Chen, D. IMM2902 in Patients with Advanced Solid Tumors Expressing HER2. ClinicalTrials.gov Identifier: NCT05805956. Updated 10 April 2023. Available online: https://clinicaltrials.gov/study/NCT05805956 (accessed on 10 January 2024).
- Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients with Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions) (STARTRK-2). ClinicalTrials.gov Identifier: NCT02568267. 3 January 2024. Available online: https://clinicaltrials.gov/study/NCT02568267 (accessed on 10 January 2024).
- A Study to Evaluate the Clinical Efficacy of JNJ-42756493 (Erdafitinib), A Pan-Fibroblast Growth Factor Receptor (FGFR) Tyrosine Kinase Inhibitor, In Asian Participants with Advanced Non-Small-Cell Lung Cancer, Urothelial Cancer, Esophageal Cancer Or Cholangiocarcinoma. ClinicalTrials.gov Identifier: NCT02699606. Updated 3 January 2024. Available online: https://clinicaltrials.gov/study/NCT02699606 (accessed on 10 January 2024).
- Olaparib in Treating Patients with Advanced Glioma, Cholangiocarcinoma, or Solid Tumors with IDH1 or IDH2 Mutations. ClinicalTrials.gov Identifier: NCT03212274. Updated 12 December 2023. Available online: https://clinicaltrials.gov/study/NCT03212274 (accessed on 10 January 2024).
- Testing Olaparib and AZD6738 in IDH1 and IDH2 Mutant Tumors. ClinicalTrials.gov Identifier: NCT03878095. Updated 6 December 2023. Available online: https://clinicaltrials.gov/study/NCT03878095 (accessed on 10 January 2024).
- Chen, E. Study of Olaparib and Durvalumab in IDH-Mutated Solid Tumors (SOLID). ClinicalTrials.gov Identifier: NCT03991832. Updated 10 January 2023. Available online: https://clinicaltrials.gov/study/NCT03991832 (accessed on 10 January 2024).
- Goyal, L. Study of the Combination of DKN-01 and Nivolumab in Previously Treated Patients with Advanced Biliary Tract Cancer (BTC). ClinicalTrials.gov Identifier: NCT04057365. Updated 26 January 2021. Available online: https://clinicaltrials.gov/study/NCT04057365 (accessed on 10 January 2024).
- Yang, X. Toripalimab Plus Lenvatinib as Second-line Treatment in Advanced Biliary Tract Cancers. ClinicalTrials.gov Identifier: NCT04211168. Updated 29 March 2023. Available online: https://clinicaltrials.gov/study/NCT04211168 (accessed on 10 January 2024).
- Roychowdhury, S. Infigratinib for the Treatment of Advanced or Metastatic Solid Tumors in Patients With FGFR Gene Mutations. ClinicalTrials.gov Identifier: NCT04233567. Updated 18 September 2023. Available online: https://clinicaltrials.gov/study/NCT04233567 (accessed on 10 January 2024).
- Pemigatinib in Treating Patients with Advanced/Metastatic or Surgically Unresectable Cholangiocarcinoma Including FGFR2 Rearrangement. ClinicalTrials.gov Identifier: NCT04256980. Updated 4 October 2022. Available online: https://clinicaltrials.gov/study/NCT04256980 (accessed on 10 January 2024).
- Oh, D.-Y. AZD6738 Plus Durvalumab in Biliary Tract Cancer. ClinicalTrials.gov Identifier: NCT04298008. Updated 12 April 2023. Available online: https://clinicaltrials.gov/study/NCT04298008 (accessed on 10 January 2024).
- Study of Pembrolizumab and Olaparib in Bile Duct Cancer. ClinicalTrials.gov Identifier: NCT04306367. Updated 5 April 2023. Available online: https://clinicaltrials.gov/study/NCT04306367 (accessed on 10 January 2024).
- Xu, L. Camrelizumab in Combination with Apatinib in Advanced ICC: A Single-arm Phase II Study. ClinicalTrials.gov Identifier: NCT04454905. Updated 19 April 2023. Available online: https://clinicaltrials.gov/study/NCT04454905 (accessed on 10 January 2024).
- A Study of ZW25 (Zanidatamab) in Subjects with Advanced or Metastatic HER2-Amplified Biliary Tract Cancers (HERIZON-BTC-01). ClinicalTrials.gov Identifier: NCT04466891. Updated 7 December 2023. Available online: https://clinicaltrials.gov/study/NCT04466891 (accessed on 10 January 2024).
- Vogel, A. Treatment of Atezolizumab and Derazantinib in Patients with Advanced iCCA With FGFR2 Fusions/Rearrangements. ClinicalTrials.gov Identifier: NCT05174650. Updated 23 May 2023. Available online: https://clinicaltrials.gov/study/NCT05174650 (accessed on 10 January 2024).
- Durvalumab Combined with GemCis Neoadjuvant Therapy of Resectable Intrahepatic Cholangiocarcinoma with High Recurrence Risk. ClinicalTrials.gov Identifier: NCT05672537. Updated 5 January 2023. Available online: https://clinicaltrials.gov/study/NCT05672537 (accessed on 10 January 2024).
- Im, J. Study of SMT-NK Inj. Plus Pembrolizumab vs Pembrolizumab Monotherapy in Patients with Advanced Biliary Tract Cancer. ClinicalTrials.gov Identifier: NCT05429697. Updated 27 September 2022. Available online: https://clinicaltrials.gov/study/NCT05429697 (accessed on 10 January 2024).
- A Study to Evaluate the Efficacy and Safety of Pemigatinib Versus Chemotherapy in Unresectable or Metastatic Cholangiocarcinoma (FIGHT-302). ClinicalTrials.gov Identifier: NCT03656536. Updated 5 January 2024. Available online: https://clinicaltrials.gov/study/NCT03656536 (accessed on 10 January 2024).
- Pembrolizumab (MK-3475) Plus Gemcitabine/Cisplatin Versus Placebo Plus Gemcitabine/Cisplatin for First-Line Advanced and/or Unresectable Biliary Tract Carcinoma (BTC) (MK-3475-966/KEYNOTE-966) (KEYNOTE-966). ClinicalTrials.gov Identifier: NCT04003636. Updated 12 December 2022. Available online: https://clinicaltrials.gov/study/NCT04003636 (accessed on 10 January 2024).
- Futibatinib Versus Gemcitabine-Cisplatin Chemotherapy as First-Line Treatment of Patients with Advanced Cholangiocarcinoma Harboring FGFR2 Gene Rearrangements (FOENIX-CCA3). ClinicalTrials.gov Identifier: NCT04093362. Updated 9 January 2024. Available online: https://clinicaltrials.gov/study/NCT04093362 (accessed on 10 January 2024).
- Yan, J. Toripalimab Plus Lenvatinib and Gemcitabine-based Chemotherapy in 1L Treatment of Advanced ICC: A Phase III Study. ClinicalTrials.gov Identifier: NCT05342194. Updated 15 August 2022. Available online: https://clinicaltrials.gov/study/NCT05342194 (accessed on 10 January 2024).
- An Early Access Study of Ivosidenib in Patients with a Pretreated Locally Advanced or Metastatic Cholangiocarcinoma (ProvIDHe). ClinicalTrials.gov Identifier: NCT05876754. Updated 7 December 2023. Available online: https://clinicaltrials.gov/study/NCT05876754 (accessed on 10 January 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speckart, J.; Rasmusen, V.; Talib, Z.; GnanaDev, D.A.; Rahnemai-Azar, A.A. Emerging Therapies in Management of Cholangiocarcinoma. Cancers 2024, 16, 613. https://doi.org/10.3390/cancers16030613
Speckart J, Rasmusen V, Talib Z, GnanaDev DA, Rahnemai-Azar AA. Emerging Therapies in Management of Cholangiocarcinoma. Cancers. 2024; 16(3):613. https://doi.org/10.3390/cancers16030613
Chicago/Turabian StyleSpeckart, Jessica, Veronica Rasmusen, Zohray Talib, Dev A. GnanaDev, and Amir A. Rahnemai-Azar. 2024. "Emerging Therapies in Management of Cholangiocarcinoma" Cancers 16, no. 3: 613. https://doi.org/10.3390/cancers16030613
APA StyleSpeckart, J., Rasmusen, V., Talib, Z., GnanaDev, D. A., & Rahnemai-Azar, A. A. (2024). Emerging Therapies in Management of Cholangiocarcinoma. Cancers, 16(3), 613. https://doi.org/10.3390/cancers16030613