Cancer Chemotherapy: Combination with Inhibitors (Volume I)
1. Introduction
2. An Overview of the Published Articles
3. Conclusions
Author Contributions
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Urticaceae, A.; Alemany, R.; Balart, J.; Villanueva, A.; Vinals, F.; Capella, G. Recent advances in cancer therapy: An overview. Curr. Pharm. Des. 2010, 16, 3–10. [Google Scholar]
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.-W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 2012, 9, 193. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019, 2, 141–160. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.; Sadeghi, S.; Tabatabaeian, H. Battling chemoresistance in cancer: Root causes and strategues to uproot them. Int. J. Mol. Sci. 2021, 22, 9451. [Google Scholar] [CrossRef] [PubMed]
- D’Orazi, G.; Cirone, M. Interconnected adaptive Responses: A way out for cancer cells to avoid cellular demise. Cancers 2022, 14, 2780. [Google Scholar] [CrossRef] [PubMed]
- Concomitant inhibition of IRE1α/XBP1 axis of UPR and PARP: Promising therapeutic approach against c-Myc and gammaherpesviruses-driven B-cell lymphoma. Int. J. Mol. Sci. 2022, 23, 9113. [CrossRef]
- Garufi, A.; Pettinari, R.; Marchetti, F.; Cirone, M.; D’Orazi, G. NRF2 and Bip interconnection mediates resistance to the organometallic Ruthenium-Cymene Bisdemethoxycurcumin complex cytotoxicity in colon cancer cells. Biomedicines 2023, 11, 593. [Google Scholar] [CrossRef] [PubMed]
- Byskata, K.; Lukoseviciute, M.; Tuti, F.; Zupancic, M.; Kostopoulou, O.N.; Holzhauser, S.; Dalianis, T. Targeted therapy with PI3K, PARP and WEEI inhibitors and radiotherapy in HPV positive and negative tonsillar squamous cell carcinoma cell lines reveals synergy while effects with APR-246 are limited. Cancers 2023, 15, 93. [Google Scholar] [CrossRef]
- Strohl, M.P.; Wai, K.C.; Ha, P.K. De-intensification strategies in HPV-related oropharyngeal squamous cell carcinoma—A narrative review. Ann. Transl. Med. 2020, 8, 1601. [Google Scholar] [CrossRef]
- Lechner, M.; Liu, J.; Masterson, L.; Fenton, R.T. HPV-associated oropharyngeal cancer: Epidemiology, molecular biology and clinical management. Nat. Rev. Clin. Oncol. 2022, 19, 306–327. [Google Scholar] [CrossRef]
- Lechner, M.; Frampton, G.M.; Fenton, T.; Feber, A.; Palmer, G.; Jay, A.; Pillay, N.; Forster, M.; Cronin, M.T.; Lipson, D.; et al. Targeted next-generation sequencing of head and neck squamous cell carcinoma identifies novel genetic alterations in HPV+ and HPV− tumors. Genome Med. 2013, 5, 49. [Google Scholar] [CrossRef]
- Jordheim, L.P. PARP Inhibitors and Proteins Interacting with SLX4. Cancers 2023, 15, 997. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.S.; Banerji, U. Maximising the potential of AKT inhibitors as anti-cancer treatments. Pharmacol. Ther. 2017, 172, 101–115. [Google Scholar] [CrossRef]
- Hua, H.; Zhang, H.; Chen, J.; Wang, J.; Liu, J.; Jiang, Y. Targeting Akt in cancer for precision therapy. J. Hematol. Oncol. 2021, 14, 128. [Google Scholar] [CrossRef]
- Ye, M.; Liu, T.; Miao, L.; Zou, S.; Ji, H.; Zhang, J.; Zhu, X. The Role of ZNF275/AKT Pathway in Carcinogenesis and Cisplatin Chemosensitivity of Cervical Cancer Using Patient-Derived Xenograft Models. Cancers 2023, 15, 5625. [Google Scholar] [CrossRef] [PubMed]
- Littlepage, L.E.; Adler, A.S.; Kouros-Mehr, H.; Huang, G.; Chou, J.; Krig, S.R.; Griffith, O.L.; Korkola, J.E.; Qu, K.; Lawson, D.A.; et al. The transcription factor ZNF217 is a prognostic biomarker and therapeutic target during breast cancer progression. Cancer Discov. 2012, 2, 638–651. [Google Scholar] [CrossRef]
- Trifănescu, O.G.; Mitrea, D.; Gales, L.N.; Ciornei, A.; Păun, M.P.; Butnariu, I.; Trifănescu, R.A.; Motas, N.; Toma, R.V.; Bîlteanu, L.; et al. Therapies beyond Physiological Barriers and Drug Resistance: A Pilot Study and Review of the Literature Investigating If Intrathecal Trastuzumab and New Treatment Options Can Improve Oncologic Outcomes in Leptomeningeal Metastases from HER2-Positive Breast Cancer. Cancers 2023, 15, 2508. [Google Scholar] [CrossRef]
- Garg, R.; Jandial, K.; Chen, M. GM-CSF—An Oncogenic Driver of HER2+ Breast Leptomeningeal Metastasis. Oncoscience 2022, 9, 57–59. [Google Scholar] [CrossRef]
- Chen, Q.H. Crosstalk between Microtubule Stabilizing Agents and Prostate Cancer. Cancers 2023, 15, 3308. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Tan, E.; Li, J.; Xu, H.E.; Melcher, K.; Yong, E.-L. Androgen receptor: Structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin. 2015, 36, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Chandler, C.; Liu, T.; Buchanovich, R.; Coffman, L.G. The double edge sword of fibrosis in cancer. Transl. Res. 2019, 209, 55–67. [Google Scholar] [CrossRef]
- Conte, A.; Valente, V.; Paladino, S.; Pierantoni, G.M. HIPK2 in cancer biology and therapy: Recent findings and future perspectives. Cell. Signal. 2023, 101, 110491. [Google Scholar] [CrossRef] [PubMed]
- Garufi, A.; Pistritto, G.; Gabriella D’Orazi, G. HIPK2 as a Novel Regulator of Fibrosis. Cancers 2023, 15, 1059. [Google Scholar] [CrossRef] [PubMed]
- Puca, R.; Nardinocchi, L.; Givol, D.; D’Orazi, G. Regulation of p53 activity by HIPK2: Molecular mechanisms and therapeutical implications in human cancer cells. Oncogene 2010, 29, 4378–4387. [Google Scholar] [CrossRef] [PubMed]
- Garufi, A.; Traversi, G.; Cirone, M.; D’Orazi, G. HIPK2 role in the tumor-host interaction: Impact of fibroblasts transdifferentiation CAF-like. IUBMB Life 2019, 71, 2055–2061. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Orazi, G.; Cirone, M. Cancer Chemotherapy: Combination with Inhibitors (Volume I). Cancers 2024, 16, 607. https://doi.org/10.3390/cancers16030607
D’Orazi G, Cirone M. Cancer Chemotherapy: Combination with Inhibitors (Volume I). Cancers. 2024; 16(3):607. https://doi.org/10.3390/cancers16030607
Chicago/Turabian StyleD’Orazi, Gabriella, and Mara Cirone. 2024. "Cancer Chemotherapy: Combination with Inhibitors (Volume I)" Cancers 16, no. 3: 607. https://doi.org/10.3390/cancers16030607
APA StyleD’Orazi, G., & Cirone, M. (2024). Cancer Chemotherapy: Combination with Inhibitors (Volume I). Cancers, 16(3), 607. https://doi.org/10.3390/cancers16030607