Healthcare Costs and Resource Utilisation of Italian Metastatic Non-Small Cell Lung Cancer Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Cohorts Description
- Mutation-positive with oncogenic driver mutation in EGFR, ALK, or ROS1, regardless of the availability of the first ICI as 1L monotherapy at the date of their 1L starting time.
- Negative/Unknown without oncogenic driver mutation or unknown status in EGFR, ALK, or ROS1, which was divided into two sub-groups according to the availability of the first ICI as 1L monotherapy:
- Pre-1L IO included eligible patients who started 1L treatment from January 2014 to June 2017 before the 1L ICI was available in the Emilia–Romagna region;
- Post-1L IO included eligible patients who started 1L treatment from July 2017 to June 2020 after 1L ICI was available in the Emilia–Romagna region.
2.4. Data Sources
- Hospital Discharge Records (SDO) collects information on hospital admissions, both ordinary (with at least one overnight stay in hospital) and day-hospital stays (admissions without an overnight stay), which was active until April 2016. The SDO collects the start and end date of hospitalisation, the primary diagnosis coded according to the International Classification of Disease, Ninth Revision, Clinical Modification (ICD-9-CM), and the procedures and services provided. The remuneration system is based on the classification of the Diagnosis Related Groups (DRG), which aggregates the activities of each individual diagnosis and defines the reimbursement rate. Under the DRG-based reimbursement system, each hospitalized patient falls into a group of homogeneous diagnostic cases. Therefore, patients with the same DRG value have been allocated the same reimbursement costs, which do not correspond to the total amount of resources used during the hospital stay, but it is an average value of resource utilisation attributable to that DRG [25];
- Outpatient Specialist Assistance Database (ASA) collects individual information on all outpatient visits, clinical tests, and procedures delivered in the outpatient setting. The outpatient costs were estimated based on the assumption that each procedure is reimbursed according to the Regional Healthcare Range of Fees [26]. The ASA costs were calculated by multiplying the unit cost for resource consumption;
- Emergency Room Admissions Database (PS) contained information about any single emergency admission, including procedures, diagnoses, and costs performed during emergency room (ER) admission;
- Electronic Health Records were used to retrieve data on biomarker and gene panel tests.
- Pharmaceutical Databases (FED and AFT–direct hospital administration and territorial pharmacies distribution) coded according to the Anatomical Therapeutic Chemical classification system were used to collect data on drugs administered;
- Hospice Discharge Records contain the main information about any single hospice admission;
- Registry of Mortality (REM) of the Emilia–Romagna region was used to retrieve data on vital status.
2.5. Outcome Measures
- Ordinary hospitalization refers to costs of all-cause hospitalization (with at least one overnight stay in hospital), except inpatient stays for therapy administration (identified by code 410);
- Cancer therapy included costs of dispensed drugs, ordinary hospitalization, and day-hospital service for therapy administration (Code 410), and the costs associated with the outpatient setting of drug administration (Code 99.25), medical visits, and blood draws performed before each drug administration;
- Outpatient procedures included costs associated with FU visits, diagnostic exams, biomarker and gene panel tests, laboratory tests, and day-hospital admissions (with code different from 410) performed in the outpatient setting;
- Hospice included all costs associated with the hospice admission.
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Treatment Patterns
3.3. Healthcare Costs
3.4. HCRU
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- I Numeri del Cancro in Italia 2022. Available online: https://www.aiom.it/i-numeri-del-cancro-in-italia/ (accessed on 28 February 2023).
- Breathnach, O.S.; Freidlin, B.; Conley, B.; Green, M.R.; Johnson, D.H.; Gandara, D.R.; O’Connell, M.; Shepherd, F.A.; Johnson, B.E. Twenty-two years of phase III trials for patients with advanced non-small-cell lung cancer: Sobering results. J. Clin. Oncol. 2001, 19, 1734–1742. [Google Scholar] [CrossRef]
- Arbour, K.C.; Riely, G.J. Systemic Therapy for Locally Advanced and Metastatic Non-Small Cell Lung Cancer: A Review. JAMA 2019, 322, 764–774. [Google Scholar] [CrossRef]
- Luengo-Fernandez, R.; Leal, J.; Gray, A.; Sullivan, R. Economic burden of cancer across the European Union: A population-based cost analysis. Lancet Oncol. 2013, 14, 1165–1174. [Google Scholar] [CrossRef]
- Vergnenègre, A.; Chouaïd, C. Review of economic analyses of treatment for non-small-cell lung cancer (NSCLC). Expert. Rev. Pharmacoecon. Outcomes Res. 2018, 18, 519–528. [Google Scholar] [CrossRef]
- Wong, W.B.; Wu, N.; Yang, E.; Davies, J.; Chae, Y.K. Real-World Clinical and Economic Outcomes and the Role of Bevacizumab in Patients with Non-Small-Cell Lung Cancer With Liver Metastases. J. Oncol. Pract. 2019, 15, e878–e887. [Google Scholar] [CrossRef]
- Nesline, M.K.; Knight, T.; Colman, S.; Patel, K. Economic Burden of Checkpoint Inhibitor Immunotherapy for the Treatment of Non-Small Cell Lung Cancer in US Clinical Practice. Clin. Ther. 2020, 42, 1682–1689. [Google Scholar] [CrossRef]
- Lin, H.M.; Pan, X.; Hou, P.; Huang, H.; Wu, Y.; Ren, K.; Jahanzeb, M. Economic burden in patients with ALK + non-small cell lung cancer, with or without brain metastases, receiving second-line anaplastic lymphoma kinase (ALK) inhibitors. J. Med. Econ. 2020, 23, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Chai, Q.; Shen, Y.; Du, J.; Zhu, J.; Wu, B. Economic burden of patients with advanced non-small-cell lung cancer receiving nivolumab versus chemotherapy in China. Immunotherapy 2020, 12, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Chouaid, C.; Monnet, I.; Robinet, G.; Perol, M.; Fournel, P.; Vergnenegre, A. Economic impact of gefitinib for refractory non-small-cell lung cancer: A Markov model-based analysis. Curr. Med. Res. Opin. 2007, 23, 1509–1515. [Google Scholar] [CrossRef] [PubMed]
- Vera-Llonch, M.; Weycker, D.; Glass, A.; Gao, S.; Borker, R.; Barber, B.; Oster, G. Healthcare costs in patients with metastatic lung cancer receiving chemotherapy. BMC Health Serv. Res. 2011, 11, 305. [Google Scholar] [CrossRef]
- Verma, V.; Sprave, T.; Haque, W.; Simone, C.B.; Chang, J.Y.; Welsh, J.W.; Thomas, C.R., Jr. A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors. J. Immunother. Cancer 2018, 6, 128. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Lopes, G.D.L.; Insinga, R.P.; Burke, T.; Ejzykowicz, F.; Zhang, Y.; Feliciano, J.L. Cost-effectiveness of pembrolizumab versus chemotherapy as first-line treatment in PD-L1-positive advanced non-small-cell lung cancer in the USA. Immunotherapy 2019, 11, 1463–1478. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Lou, Y.; Pellissier, J.; Burke, T.; Liu, F.X.; Xu, R.; Velcheti, V. Cost Effectiveness of Pembrolizumab vs. Standard-of-Care Chemotherapy as First-Line Treatment for Metastatic NSCLC that Expresses High Levels of PD-L1 in the United States. Pharmacoeconomics 2017, 35, 831–844. [Google Scholar] [CrossRef]
- Bhadhuri, A.; Insinga, R.; Guggisberg, P.; Panje, C.; Schwenkglenks, M. Cost effectiveness of pembrolizumab vs. chemotherapy as first-line treatment for metastatic NSCLC that expresses high levels of PD-L1 in Switzerland. Swiss Med. Wkly. 2019, 149, w20170. [Google Scholar] [CrossRef] [PubMed]
- Barbier, M.C.; Pardo, E.; Panje, C.M.; Gautschi, O.; Lupatsch, J.E.; Swiss Group for Clinical Cancer Research (SAKK). A cost-effectiveness analysis of pembrolizumab with or without chemotherapy for the treatment of patients with metastatic, non-squamous non-small cell lung cancer and high PD-L1 expression in Switzerland. Eur. J. Health Econ. 2021, 22, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Chouaid, C.; Bensimon, L.; Clay, E.; Millier, A.; Levy-Bachelot, L.; Huang, M.; Levy, P. Cost-effectiveness analysis of pembrolizumab versus standard-of-care chemotherapy for first-line treatment of PD-L1 positive (>50%) metastatic squamous and non-squamous non-small cell lung cancer in France. Lung Cancer 2019, 127, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Perrone, F.; Benelli, G.; Lopatriello, S.; Portalone, L.; Salvati, F.; Zorat, P.; Negrini, C. Cost of non-small cell lung cancer in Italy. Results of the longitudinal study ALCEA (Advanced Lung Cancer Economic Assessment). 2004 ASCO Annual meeting. J. Clin. Oncol. 2004, 22, 8265–8865. [Google Scholar] [CrossRef]
- Migliorino, M.R.; Santo, A.; Romano, G.; Cortinovis, D.; Galetta, D.; Alabiso, O.; Cartenì, G.; Vari, S.; Fasola, G.; Pazzola, A.; et al. Economic burden of patients affected by non-small cell lung cancer (NSCLC): The LIFE study. J. Cancer Res. Clin. Oncol. 2017, 143, 783–791. [Google Scholar] [CrossRef]
- Buja, A.; Pasello, G.; De Luca, G.; Bortolami, A.; Zorzi, M.; Rea, F.; Pinato, C.; Dal Cin, A.; De Polo, A.; Schiavon, M.; et al. Non-Small-Cell Lung Cancer: Real-World Cost Consequence Analysis. JCO Oncol. Pract. 2021, 17, e1085–e1093. [Google Scholar] [CrossRef]
- Franchi, M.; Cortinovis, D.; Corrao, G. Treatment Patterns, Clinical Outcomes and Healthcare Costs of Advanced Non-Small Cell Lung Cancer: A Real-World Evaluation in Italy. Cancers 2021, 13, 3809. [Google Scholar] [CrossRef]
- Verleger, K.; Penrod, J.R.; Daumont, M.M.; Solem, C.; Luo, L.; Macahilig, C.; Hertel, N. Costs and cost drivers associated with non-small-cell lung cancer patients who received two or more lines of therapy in Europe. Clinicoecon. Outcomes Res. 2020, 12, 22–33. [Google Scholar] [CrossRef]
- Danesi, V.; Massa, I.; Foca, F.; Delmonte, A.; Crinò, L.; Bronte, G.; Ragonesi, M.; Maltoni, R.; Manunta, S.; Cravero, P.; et al. Real-World Outcomes and Treatments Patterns Prior and after the Introduction of First-Line Immunotherapy for the Treatment of Metastatic Non-Small Cell Lung Cancer. Cancers 2022, 14, 4481. [Google Scholar] [CrossRef]
- Giunta della Regione Emilia Romagna, Delibera n.1673/2014. Determinazione delle Tariffe per Prestazioni di Assistenza Ospedaliera in Strutture Pubbliche e Private Accreditate della Regione Emilia-Romagna Applicabili a Decorrere dall’ 01/01/2014. Available online: https://salute.regione.emilia-romagna.it/siseps/sanita/sdo/files/DGR_1673_2014.pdf/@@download/file/DGR_1673_2014.pdf (accessed on 1 February 2023).
- Regione Emilia-Romagna. Nomenclatore Tariffario Specialistica Ambulatoriale, 6 April 2018. 2018. Available online: https://salute.regione.emilia-romagna.it/specialistica-ambulatoriale/nomenclatore-tariffario-regionale (accessed on 1 February 2023).
- Wood, R.; Taylor-Stokes, G.; Lees, M.; Chirita, O. Cost Burden Associated with Advanced Non-Small Cell Lung Cancer (A-NSCLC): Impact of Disease Stage. BMC Cancer 2017, 20, PA427. [Google Scholar] [CrossRef]
- Piantedosi, F.; Cerisoli, R.; Battiloro, C.; Andreozzi, F.; Vitiello, F.; Gilli, M.; De Marino, V.; Letizia, A.; Bianco, A.; Caprice, I.; et al. Treatments of Advanced Non-Small Cell Lung Cancer (NSCLC) in an Italian Center: Drug Utilization and the Treatment Costs of Innovative Drugs. Farmeconomia Health Econ. Ther. Pathways 2019, 20, 27–41. [Google Scholar] [CrossRef]
- Lee, D.H.; Isobe, H.; Wirtz, H.; Aleixo, S.B.; Parente, P.; De Marinis, F.; Huang, M.; Arunachalam, A.; Kothari, S.; Cao, X.; et al. Health care resource use among patients with advanced non-small cell lung cancer: The PIvOTAL retrospective observational study. BMC Health Serv. Res. 2018, 18, 147. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Mok, T.S.K.; Wu, Y.L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G., Jr.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. KEYNOTE-042 Investigators. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef] [PubMed]
EGFR, ALK, or ROS1 Mutation-Positive Patients | EGFR, ALK, or ROS1 Negative/Unknown patients | ||
---|---|---|---|
Characteristics | N = 125 (%) | Pre-1L IO N = 229 (%) | Post-1L IO N = 290 (%) |
IIIBrp/IV stage | |||
IIIBrp | 2 (2.6) | 10 (4.4) | 6 (2.1) |
IV | 123 (98.4) | 219 (95.6) | 284 (97.9) |
Age at IIIBrp/IV stage diagnosis | |||
<70 years | 69 (55.2) | 118 (51.5) | 124 (42.8) |
70–74 years | 18 (14.4) | 52 (22.7) | 67 (23.1) |
75–79 years | 13 (10.4) | 35 (15.3) | 70 (24.1) |
80–84 years | 18 (14.4) | 22 (9.6) | 20 (6.9) |
≥85 years | 7 (5.6) | 2 (0.9) | 9 (3.1) |
Gender | |||
Female | 87 (69.6) | 80 (34.9) | 93 (32.1) |
Male | 38 (30.4) | 149 (65.1) | 197 (67.9) |
Race | |||
White | 123 (98.4) | 228 (99.6) | 290 (100.0) |
Other | 2 (1.6) | 1 (0.4) | 0 (0.0) |
Smoking history | |||
Never | 57 (50.9) | 9 (5.2) | 17 (7.4) |
Ever | 55 (49.1) | 165 (94.8) | 212 (92.6) |
Unknown | 13 | 55 | 61 |
Year smoked | |||
≤20 years | 7 (17.5) | 9 (6.9) | 17 (13.1) |
>20 years | 33 (82.5) | 122 (93.1) | 112 (86.9) |
Unknown | 40 | 131 | 129 |
Packs/year | |||
≤20 packs/years | 14 (37.8) | 11 (8.9) | 20 (15.9) |
>20 packs/years | 23 (62.2) | 113 (91.1) | 106 (84.1) |
Unknown | 88 | 105 | 164 |
ECOG PS at IIIBrp/IV stage diagnosis | |||
0 | 26 (22.6) | 37 (17.0) | 42 (15.2) |
1 | 67 (58.3) | 143 (65.6) | 186 (67.1) |
≥2 | 22 (19.1) | 38 (17.4) | 49 (17.7) |
Unknown | 10 | 11 | 13 |
Histology | |||
Squamous cell | 1 (0.8) | 37 (16.4) | 57 (20.0) |
Non-squamous cell | 121 (96.8) | 172 (76.4) | 223 (78.2) |
Adenocarcinoma | 120 (96.0) | 170 (75.6) | 223 (78.2) |
Large cell carcinoma | 1 (0.8) | 2 (0.8) | 0 (0.0) |
Other | 3 (2.4) | 16 (7.2) | 5 (1.8) |
Unknown | 0 | 4 | 5 |
Location of metastases | |||
Bone | 41 (32.8) | 80 (34.9) | 79 (27.2) |
Lymph nodes | 37 (29.6) | 49 (21.4) | 78 (26.9) |
Brain | 30 (24.0) | 35 (15.3) | 49 (16.9) |
Liver | 14 (11.2) | 23 (10.0) | 26 (9.0) |
Pleura | 25 (20.0) | 30 (13.1) | 44 (15.2) |
Contralateral lung | 49 (39.2) | 77 (33.6) | 99 (34.1) |
Other | 15 (12.0) | 67 (29.2) | 45 (15.5) |
Missing/Unknown | 0 | 3 | 5 |
EGFR, ALK, or ROS1 Mutation-Positive Patients | EGFR, ALK, or ROS1 Negative/Unknown Patients | ||
---|---|---|---|
First-line (1L) Therapies | N = 125 (%) | Pre-1L IO N = 229 (%) | Post-1L IO N = 290 (%) |
Multi-agent chemotherapy | 17 (13.6) | 155 (67.7) | 142 (49.0) |
Gemcitabine + Platin | 5 (4.0) | 67 (29.3) | 90 (31.0) |
Pemetrexed +/− Platin | 12 (9.6) | 83 (36.2) | 43 (14.9) |
Paclitaxel + Carboplatin | — | 5 (2.2) | 9 (3.1) |
Single-agent chemotherapy | 5 (4.0) | 74 (32.3) | 62 (21.4) |
Gemcitabine | 4 (3.2) | 42 (18.4) | 30 (10.3) |
Vinorelbine | 1 (0.8) | 28 (12.2) | 31 (10.7) |
Docetaxel | — | 4 (1.7) | 1 (0.4) |
Targeted therapy | 103 (82.4) | 0 (0.0) | 0 (0.0) |
Afatinib | 23 (18.4) | — | — |
Alectinib | 7 (5.6) | — | — |
Crizotinib | 7 (5.6) | — | — |
Erlotinib | 10 (8.0) | — | — |
Gefitinib | 37 (29.6) | — | — |
Osimertinib | 19 (15.2) | — | — |
PD-1/PD-L1 inhibitor single agent | — | — | 67 (23.1) |
Pembrolizumab | — | — | 67 (23.1) |
PD-1/PDL1 inhibitor + chemotherapy | — | — | 19 (6.5) |
1L Costs | EGFR, ALK, or ROS1 Mutation-Positive Patients | EGFR, ALK, or ROS1 Negative/Unknown Patients Pre-1L IO | EGFR, ALK, or ROS1 Negative/Unknown Patients Post-1L IO | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean PPPM € (%) | Mean Cost € (%) | Percentiles of the Costs Distribution | Mean PPPM € (%) | Mean Cost € (%) | Percentiles of the Costs Distribution | Mean PPPM € (%) | Mean Cost € (%) | Percentiles of the Costs Distribution | |||||||||||||
10% | 25% | 50% | 75% | 90% | 10% | 25% | 50% | 75% | 90% | 10% | 25% | 50% | 75% | 90% | |||||||
Hospitalization | 575 (15.1) | 4415 (9.7) | 0 | 0 | 1471 | 7500 | 13,297 | 1233 (37.2) | 2789 (35.7) | 0 | 0 | 0 | 4161 | 8405 | 1154 (33.3) | 3181 (16.5) | 0 | 0 | 0 | 4332 | 8799 |
Cancer therapy | 2583 (67.7) | 34,597 (76.5) | 4771 | 9892 | 24,730 | 49,689 | 82,893 | 1398 (42.1) | 2790 (35.8) | 750 | 1340 | 3500 | 6340 | 10,542 | 1510 (43.6) | 12,517 (64.9) | 507 | 957 | 2331 | 14,711 | 36,119 |
Outpatient procedures | 573 (15.0) | 5967 (13.2) | 1355 | 2443 | 4593 | 7617 | 11,726 | 576 (17.4) | 1988 (25.5) | 19 | 547 | 1309 | 2347 | 4070 | 741 (21.4) | 3403 (17.6) | 750 | 1455 | 2461 | 4163 | 7087 |
Hospice | 83 (2.2) | 268 (0.6) | 0 | 0 | 0 | 0 | 0 | 111 (3.3) | 237 (3.0) | 0 | 0 | 0 | 0 | 0 | 59 (1.7) | 200 (1.0) | 0 | 0 | 0 | 0 | 0 |
Total cost | 3814 (100.0) | 45,247 (100.0) | 8707 | 16,657 | 37,878 | 60,276 | 91,313 | 3318 (100.0) | 7804 (100.0) | 2939 | 5254 | 7641 | 13,283 | 17,852 | 3464 (100.0) | 19,301 (100.0) | 2846 | 5067 | 10,249 | 24,317 | 47,118 |
Overall Costs | EGFR, ALK, or ROS1 Mutation-Positive Patients | EGFR, ALK, or ROS1 Negative/Unknown Patients Pre-1L IO | EGFR, ALK, or ROS1 Negative/Unknown Patients Post-1L IO | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean PPPM € (%) | Mean Cost € (%) | Percentiles of the Costs Distribution | Mean PPPM € (%) | Mean Cost € (%) | Percentiles of the Costs Distribution | Mean PPPM € (%) | Mean Cost € (%) | Percentiles of the Costs Distribution | |||||||||||||
10% | 25% | 50% | 75% | 90% | 10% | 25% | 50% | 75% | 90% | 10% | 25% | 50% | 75% | 90% | |||||||
Hospitalization | 631 (17.2) | 7290 (10.2) | 0 | 0 | 4508 | 12,116 | 17,241 | 1376 (45.2) | 6926 (35.2) | 0 | 1758 | 4161 | 9230 | 16,204 | 1179 (36.4) | 6413 (22.1) | 0 | 0 | 4161 | 9129 | 17,863 |
Cancer therapy | 2414 (65.7) | 53,895 (75.9) | 6739 | 15,588 | 35,140 | 62,606 | 132,707 | 914 (30.0) | 7187 (36.6) | 800 | 1760 | 4186 | 8877 | 14,216 | 1333 (41.2) | 16,424 (56.4) | 546 | 1445 | 6204 | 21,917 | 44,745 |
Outpatient procedures | 484 (13.2) | 8556 (12.1) | 2276 | 4196 | 7256 | 11,123 | 16,905 | 458 (15.0) | 3834 (19.5) | 122 | 778 | 2125 | 4533 | 8788 | 571 (17.6) | 5475 (18.8) | 1147 | 2010 | 3752 | 7753 | 12,065 |
Hospice | 144 (3.9) | 1244 (1.8) | 0 | 0 | 0 | 394 | 5516 | 298 (9.8) | 1702 (8.7) | 0 | 0 | 0 | 1576 | 4985 | 155 (4.8) | 799 (2.7) | 0 | 0 | 0 | 197 | 2659 |
Total cost | 3673 (100.0) | 70,985 (100.0) | 15,311 | 33,562 | 56,055 | 81,266 | 152,708 | 3046 (100.0) | 19,649 (100.0) | 5505 | 8721 | 14,815 | 23,794 | 35,389 | 3238 (100.0) | 29,111 (100.0) | 5408 | 10,572 | 20,978 | 38,490 | 60,314 |
1L HCRU | EGFR, ALK, or ROS1 Mutation-Positive Patients | EGFR, ALK, or ROS1 Negative/Unknown Patients Pre-1L IO | EGFR, ALK, or ROS1 Negative/Unknown Patients Post-1L IO | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PPPM | Mean HCRU | Percentiles of HCRU Distribution | PPPM | Mean HCRU | Percentiles of HCRU Distribution | PPPM | Mean HCRU | Percentiles of HCRU Distribution | |||||||||||||
10% | 25% | 50% | 75% | 90% | 10% | 25% | 50% | 75% | 90% | 10% | 25% | 50% | 75% | 90% | |||||||
Number of Hospitalization | 0.1 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 3.0 | 0.27 | 0.6 | 0.0 | 0 | 0.0 | 1.0 | 2.0 | 0.3 | 0.8 | 0.0 | 0.0 | 0.0 | 1.0 | 2.0 |
Hospitalization LOS | 1.0 | 6.9 | 0.0 | 0.0 | 2.0 | 10.0 | 21.0 | 3.24 | 6.7 | 0.0 | 0.0 | 0.0 | 9.0 | 20.0 | 3.1 | 8.0 | 0.0 | 0.0 | 0.0 | 13.0 | 22.5 |
Number of cancer therapy administrations | 1.9 | 17.4 | 0.0 * | 3.0 | 15.0 | 28.0 | 37.0 | 4.75 | 16.20 | 1.0 | 1.6 | 12.0 | 23.0 | 34.0 | 2.5 | 13.6 | 3.0 | 6.0 | 9.0 | 17.0 | 28.0 |
Number of outpatients visit | 2.4 | 27.2 | 6.0 | 10.0 | 20.0 | 38.0 | 55.0 | 2.33 | 8.2 | 1.0 | 2.0 | 5.0 | 11.0 | 18.0 | 2.9 | 13.7 | 4.0 | 5.0 | 9.0 | 16.0 | 27.5 |
Hospice LOS | 0.4 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.53 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 1.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
ER admissions | 0.2 | 1.2 | 0.0 | 0.0 | 1.0 | 2.0 | 4.0 | 0.37 | 1.1 | 0.0 | 0.0 | 1.0 | 2.0 | 3.0 | 0.4 | 1.0 | 0.0 | 0.0 | 1.0 | 2.0 | 3.0 |
Overall HCRU | EGFR, ALK, or ROS1 Mutation-Positive Patients | EGFR, ALK, or ROS1 Negative/Unknown Patients Pre-1L IO | EGFR, ALK, or ROS1 Negative/Unknown Patients Post-1L IO | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PPPM | Mean HCRU | Percentiles of HCRU Distribution | PPPM | Mean HCRU | Percentiles of HCRU Distribution | PPPM | Mean HCRU | Percentiles of HCRU Distribution | |||||||||||||
10% | 25% | 50% | 75% | 90% | 10% | 25% | 50% | 75% | 90% | 10% | 25% | 50% | 75% | 90% | |||||||
Number of Hospitalization | 0.2 | 1.7 | 0.0 | 0.0 | 1.0 | 3.0 | 4.0 | 0.33 | 1.7 | 0.0 | 1.0 | 1.0 | 2.0 | 4.0 | 0.3 | 1.6 | 0.0 | 0.0 | 1.0 | 2.0 | 4.0 |
Hospitalization LOS | 1.2 | 14.0 | 0.0 | 0.0 | 9.0 | 22.0 | 36.0 | 3.34 | 14.9 | 0.0 | 2.0 | 10.0 | 21.0 | 33.0 | 3.1 | 15.5 | 0.0 | 0.0 | 9.0 | 23.0 | 39.0 |
Number of cancer therapy administrations | 1.4 | 28.4 | 2.0 | 10.0 | 24.0 | 37.0 | 68.0 | 2.94 | 20.5 | 1.0 | 6.0 | 15.0 | 26.0 | 41.0 | 2.1 | 21.4 | 4.0 | 7.0 | 15.0 | 29.0 | 48.5 |
Number of outpatients visit | 2.2 | 40.5 | 10.0 | 18.0 | 32.0 | 54.0 | 90.0 | 2.10 | 18.8 | 1.0 | 3.0 | 10.0 | 23.0 | 44.0 | 2.4 | 22.9 | 4.0 | 9.0 | 15.5 | 32.0 | 49.5 |
Hospice LOS | 0.7 | 6.1 | 0.0 | 0.0 | 0.0 | 2.0 | 27.0 | 1.48 | 8.5 | 0.0 | 0.0 | 0.0 | 8.0 | 25.0 | 0.8 | 4.0 | 0.0 | 0.0 | 0.0 | 2.0 | 13.0 |
ER admissions | 0.1 | 1.9 | 0.0 | 0.0 | 1.0 | 3.0 | 5.0 | 0.33 | 2.0 | 0.0 | 1.0 | 1.0 | 3.0 | 4.0 | 0.3 | 1.6 | 0.0 | 0.0 | 1.0 | 2.0 | 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gentili, N.; Balzi, W.; Foca, F.; Danesi, V.; Altini, M.; Delmonte, A.; Bronte, G.; Crinò, L.; De Luigi, N.; Mariotti, M.; et al. Healthcare Costs and Resource Utilisation of Italian Metastatic Non-Small Cell Lung Cancer Patients. Cancers 2024, 16, 592. https://doi.org/10.3390/cancers16030592
Gentili N, Balzi W, Foca F, Danesi V, Altini M, Delmonte A, Bronte G, Crinò L, De Luigi N, Mariotti M, et al. Healthcare Costs and Resource Utilisation of Italian Metastatic Non-Small Cell Lung Cancer Patients. Cancers. 2024; 16(3):592. https://doi.org/10.3390/cancers16030592
Chicago/Turabian StyleGentili, Nicola, William Balzi, Flavia Foca, Valentina Danesi, Mattia Altini, Angelo Delmonte, Giuseppe Bronte, Lucio Crinò, Nicoletta De Luigi, Marita Mariotti, and et al. 2024. "Healthcare Costs and Resource Utilisation of Italian Metastatic Non-Small Cell Lung Cancer Patients" Cancers 16, no. 3: 592. https://doi.org/10.3390/cancers16030592
APA StyleGentili, N., Balzi, W., Foca, F., Danesi, V., Altini, M., Delmonte, A., Bronte, G., Crinò, L., De Luigi, N., Mariotti, M., Verlicchi, A., Burgio, M. A., Roncadori, A., Burke, T., & Massa, I. (2024). Healthcare Costs and Resource Utilisation of Italian Metastatic Non-Small Cell Lung Cancer Patients. Cancers, 16(3), 592. https://doi.org/10.3390/cancers16030592