PIM3 Kinase: A Promising Novel Target in Solid Cancers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Structure of PIM3 Kinase
3. PIM3 Is Overexpressed in Solid Cancers
4. Preclinical Studies of PIM3 in Solid Cancers
Tumor Type | Methods of PIM Inhibition | Experimental Model | Effects | Ref. |
---|---|---|---|---|
Hepatocellular carcinoma (HCC) | PIM3 shRNA | In vitro | Reduces the in vitro growth of different hepatocellular carcinoma cell types by causing apoptosis | [8] |
Human PIM3 transgene | In vitro and in vivo | PIM3 transgenic mice had a higher incidence (80%) and a more severe burden of HCC. Hepatocytes show faster cell cycle progression and increased phosphorylation of Bad112 | [31] | |
Hepatoblastoma | PIM3 siRNA and pan-PIM inhibitor (AZD1208) | In vitro and in vivo | Cell survival, attachment-independent growth, and motility were all reduced when PIM3 was inhibited by siRNA or the pan-PIM inhibitor AZD1208 | [32] |
PIM3-specific inhibitor (compound 11) | In vitro and In vivo | Cell survival, attachment-independent growth, and motility were all reduced when PIM3 was inhibited by siRNA or PIM inhibitor | [33] | |
Colon carcinoma | PIM3 shRNA | In vitro | Reduced phosphorylation Ser112 on Bad in human colon cancer cells, preventing apoptosis and contributing to cell survival and cell proliferation | [13] |
Gastric cancer | Bufothionine and PIM3 knockdown (RNAi) | In vitro and in vivo | Bufothionine’s anti-proliferative and pro-apoptotic actions in GC cells were markedly enhanced by PIM3 knockdown | [40] |
Ewing’s sarcoma | Retroviral vector- overexpression of human PIM3 and a kinase-dead mutant of human PIM3 (K69M) | In vitro and in vivo | PIM3 expression induced anchorage-independent growth. In mice lacking an immune system, co-expression of a kinase-deficient PIM3 mutant reduced the growth of the NIH 3T3 tumor | [28] |
Lung adenocarcinoma | PIM3 siRNA | In vitro | PIM3 downregulation induced apoptosis and inhibited cell growth; it was related to the lung STAT3 signaling pathway’s level of activity | [34] |
Melanoma | PIM3 shRNA | In vitro and in vivo | PIM3-induced STAT3 phosphorylation leads to Slug, Snail, and ZEB1 expression, which exacerbated EMT-related alterations and accelerated cell migration and invasion | [35] |
Pancreatic cancer | Retroviral vectors for human PIM3 overexpression and a kinase-dead mutant of human PIM3 (K69M) | In vitro and In vivo | PIM3 can stimulate the VEGF pathway, which can lead to tumor angiogenesis and proliferation | [37] |
Retroviral vectors, PIM3 shRNA, or scrambled shRNA | In vitro and in vivo | PIM3 kinase induced tumor neovascularization and tumor growth, as well as in accelerating growth of human pancreatic cancer | [38] | |
PIM3 inhibitors (M-110) | In vitro | Reduced expression of pSTAT3Tyr705 and suppressed cancer cell proliferation | [36] | |
Glioblastoma | PIM3 shRNA and PIM3-depleted glioblastoma cells | In vitro and in vivo | Increased apoptosis, cell cycle arrest, and lower proliferation In vitro. In vivo, suppressed growth of glioblastoma cells inserted beneath the skin, lowering the levels of Bcl-XL, cyclin D1, and Cdc25C and raising Bax protein levels | [39] |
TNBC | siRNA and lentivirus vector-based human PIM3 overexpression in TNBC cells | In vitro and in vivo | Targeting PIM3 by siRNA- inhibited cell proliferation, migration, and invasion while inducing chemo sensitivity and apoptotic cell death. PIM3 overexpression promoted proliferation, migration, and invasion.In vivo targeting PIM3 using siRNA-nano formulations suppressed tumor growth of MDA-MB-231 and MDA-MB-436 tumors in immune-deficient mice | [20] |
5. Signaling Pathways Induced by PIM3
5.1. STAT3
5.2. c-Myc
5.3. BAD
5.4. p27
5.5. 4EBP1
5.6. NOTCH 1/3
5.7. Other Targets
6. Therapies Targeting PIM in Cancer
6.1. SGI-1776
6.2. AZD1208
6.3. PIM447 (LGH447)
7. PIM3 and Immunotherapy
8. PIM3 and Resistance to Chemotherapy and Radiotherapy
9. Conclusions and Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Narlik-Grassow, M.; Blanco-Aparicio, C.; Carnero, A. The PIM family of serine/threonine kinases in cancer. Med. Res. Rev. 2014, 34, 136–159. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, Y.; Giles, F.J.; Swords, R.T. The PIM kinases in hematological cancers. Expert Rev. Hematol. 2012, 5, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhao, X.; Huang, L.; Zhang, T.; Yang, F.; Xie, L.; Song, S.; Miao, P.; Zhao, L.; Sun, X.; et al. Proviral insertion in murine lymphomas 2 (PIM2) oncogene phosphorylates pyruvate kinase M2 (PKM2) and promotes glycolysis in cancer cells. J. Biol. Chem. 2013, 288, 35406–35416. [Google Scholar] [CrossRef] [PubMed]
- Hsi, E.D.; Jung, S.H.; Lai, R.; Johnson, J.L.; Cook, J.R.; Jones, D.; Devos, S.; Cheson, B.D.; Damon, L.E.; Said, J. Ki67 and PIM1 expression predict outcome in mantle cell lymphoma treated with high dose therapy, stem cell transplantation and rituximab: A Cancer and Leukemia Group B 59909 correlative science study. Leuk. Lymphoma 2008, 49, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Zhang, C.; Du, E.; Wang, A.; Yang, Y.; Guo, J.; Wang, A.; Zhang, Z.; Xu, Y. Pim-3 is a Critical Risk Factor in Development and Prognosis of Prostate Cancer. Med. Sci. Monit. 2016, 22, 4254–4260. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Mukaida, N. Pathophysiological roles of Pim-3 kinase in pancreatic cancer development and progression. World J. Gastroenterol. 2014, 20, 9392–9404. [Google Scholar] [PubMed]
- Mukaida, N.; Wang, Y.-Y.; Li, Y.-Y. Roles of Pim-3, a novel survival kinase, in tumorigenesis. Cancer Sci. 2011, 102, 1437–1442. [Google Scholar] [CrossRef]
- Fujii, C.; Nakamoto, Y.; Lu, P.; Tsuneyama, K.; Popivanova, B.K.; Kaneko, S.; Mukaida, N. Aberrant expression of serine/threonine kinase Pim-3 in hepatocellular carcinoma development and its role in the proliferation of human hepatoma cell lines. Int. J. Cancer 2005, 114, 209–218. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, H.; Min, X.; Wang, Y.; Tang, J.; Cheng, J.; Li, D.; Chen, X.; Cheng, F.; Wang, N.; et al. Pim-3 is expressed in endothelial cells and promotes vascular tube formation. J. Cell. Physiol. 2009, 220, 82–90. [Google Scholar] [CrossRef]
- Zhang, R.X.; Zhou, Z.G.; Lu, S.X.; Lu, Z.H.; Wan, D.S.; Pan, Z.Z.; Wu, X.J.; Chen, G. Pim-3 as a potential predictor of chemoradiotherapy resistance in locally advanced rectal cancer patients. Sci. Rep. 2017, 7, 16043. [Google Scholar] [CrossRef]
- Brunen, D.; de Vries, R.C.; Lieftink, C.; Beijersbergen, R.L.; Bernards, R. PIM Kinases Are a Potential Prognostic Biomarker and Therapeutic Target in Neuroblastoma. Mol. Cancer Ther. 2018, 17, 849–857. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Popivanova, B.K.; Nagai, Y.; Ishikura, H.; Fujii, C.; Mukaida, N. Pim-3, a Proto-Oncogene with Serine/Threonine Kinase Activity, Is Aberrantly Expressed in Human Pancreatic Cancer and Phosphorylates Bad to Block Bad-Mediated Apoptosis in Human Pancreatic Cancer Cell Lines. Cancer Res. 2006, 66, 6741–6747. [Google Scholar] [CrossRef] [PubMed]
- Popivanova, B.K.; Li, Y.Y.; Zheng, H.; Omura, K.; Fujii, C.; Tsuneyama, K.; Mukaida, N. Proto-oncogene, Pim-3 with serine/threonine kinase activity, is aberrantly expressed in human colon cancer cells and can prevent Bad-mediated apoptosis. Cancer Sci. 2007, 98, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Wang, Y.Y.; Taniguchi, T.; Kawakami, T.; Baba, T.; Ishibashi, H.; Mukaida, N. Identification of stemonamide synthetic intermediates as a novel potent anticancer drug with an apoptosis-inducing ability. Int. J. Cancer 2010, 127, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Zhao, M.Y.; Hei, K.W.; Yang, B.C.; Sun, L.; Du, X.; Li, Y.M. Aberrant expression of pim-3 promotes proliferation and migration of ovarian cancer cells. Asian Pac. J. Cancer Prev. 2015, 16, 3325–3331. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.-C.; Tsuneyama, K.; Takahashi, H.; Miwa, S.; Sugiyama, T.; Popivanova, B.K.; Fujii, C.; Nomoto, K.; Mukaida, N.; Takano, Y. Aberrant Pim-3 expression is involved in gastric adenoma–adenocarcinoma sequence and cancer progression. J. Cancer Res. Clin. Oncol. 2008, 134, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, R.; Wang, R.; Zhang, Y.; Xu, L.; Chen, J.; Zhang, J.; Huang, Z.; Chen, M.; Pan, Z. Expression of Pim-3 in colorectal cancer and its relationship with prognosis. Tumor Biol. 2016, 37, 9151–9156. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.; Liu, M.; Xu, J.; Fu, H.; Zhou, B.; Yuan, T.; Chen, P. MiR-377 inhibits the proliferation of pancreatic cancer by targeting Pim-3. Tumor Biol. 2016, 37, 14813–14824. [Google Scholar] [CrossRef]
- Stafman, L.L.; Waldrop, M.G.; Williams, A.P.; Aye, J.M.; Stewart, J.E.; Mroczek-Musulman, E.; Yoon, K.J.; Whelan, K.; Beierle, E.A. The presence of PIM3 increases hepatoblastoma tumorigenesis and tumor initiating cell phenotype and is associated with decreased patient survival. J. Pediatr. Surg. 2019, 54, 1206–1213. [Google Scholar] [CrossRef]
- Atalay, P.; Ozpolat, B. PIM3 Kinase is a Poor Prognostic Marker and Novel Molecular Target for Triple Negative Breast Cancer (abstract). In Proceedings of the American Association for Cancer Research Annual Meeting 2024, San Diego, CA, USA, 5–10 April 2024. Abstract no 650. [Google Scholar]
- Qian, K.C.; Wang, L.; Hickey, E.R.; Studts, J.; Barringer, K.; Peng, C.; Kronkaitis, A.; Li, J.; White, A.; Mische, S.; et al. Structural Basis of Constitutive Activity and a Unique Nucleotide Binding Mode of Human Pim-1 Kinase. J. Biol. Chem. 2005, 280, 6130–6137. [Google Scholar] [CrossRef]
- Mondello, P.; Cuzzocrea, S.; Mian, M. Pim kinases in hematological malignancies: Where are we now and where are we going? J. Hematol. Oncol. 2014, 7, 95. [Google Scholar] [CrossRef] [PubMed]
- Nawijn, M.C.; Alendar, A.; Berns, A. For better or for worse: The role of Pim oncogenes in tumorigenesis. Nat. Rev. Cancer 2011, 11, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Ul-Haq, Z.; Gul, S.; Usmani, S.; Wadood, A.; Khan, W. Binding site identification and role of permanent water molecule of PIM-3 kinase: A molecular dynamics study. J. Mol. Graph. Model. 2015, 62, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Saris, C.J.; Domen, J.; Berns, A. The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. Embo J. 1991, 10, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Bullock, A.N.; Russo, S.; Amos, A.; Pagano, N.; Bregman, H.; Debreczeni, J.É.; Lee, W.H.; Delft, F.V.; Meggers, E.; Knapp, S. Crystal Structure of the PIM2 Kinase in Complex with an Organoruthenium Inhibitor. PLoS ONE 2009, 4, e7112. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Y.; Ren, C.P.; Wang, L.; Li, H.; Jiang, C.J.; Zhang, H.B.; Zhao, M.; Yao, K.T. Identification of differentially expressed genes in metastatic and non-metastatic nasopharyngeal carcinoma cells by suppression subtractive hybridization. Anal. Cell. Pathol. 2005, 27, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Deneen, B.; Welford, S.M.; Ho, T.; Hernandez, F.; Kurland, I.; Denny, C.T. PIM3 proto-oncogene kinase is a common transcriptional target of divergent EWS/ETS oncoproteins. Mol. Cell. Biol. 2003, 23, 3897–3908. [Google Scholar] [CrossRef]
- Eichmann, A.; Yuan, L.; Bréant, C.; Alitalo, K.; Koskinen, P.J. Developmental expression of pim kinases suggests functions also outside of the hematopoietic system. Oncogene 2000, 19, 1215–1224. [Google Scholar] [CrossRef]
- Mikkers, H.; Nawijn, M.; Allen, J.; Brouwers, C.; Verhoeven, E.; Jonkers, J.; Berns, A. Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol. Cell. Biol. 2004, 24, 6104–6115. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.Y.; Nakamoto, Y.; Li, Y.Y.; Baba, T.; Kaneko, S.; Fujii, C.; Mukaida, N. Accelerated hepatocellular carcinoma development in mice expressing the Pim-3 transgene selectively in the liver. Oncogene 2010, 29, 2228–2237. [Google Scholar] [CrossRef]
- Stafman, L.L.; Mruthyunjayappa, S.; Waters, A.M.; Garner, E.F.; Aye, J.M.; Stewart, J.E.; Yoon, K.J.; Whelan, K.; Mroczek-Musulman, E.; Beierle, E.A. Targeting PIM kinase as a therapeutic strategy in human hepatoblastoma. Oncotarget 2018, 9, 22665–22679. [Google Scholar] [CrossRef] [PubMed]
- Nakano, H.; Hasegawa, T.; Saito, N.; Furukawa, K.; Mukaida, N.; Kojima, H.; Okabe, T.; Nagano, T. Design and synthesis of an in vivo-efficacious PIM3 kinase inhibitor as a candidate anti-pancreatic cancer agent. Bioorganic Med. Chem. Lett. 2015, 25, 5687–5693. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Xie, Y.; Zhang, L.; Gao, X.; Han, J.; Chen, Y.; Yang, J.; Li, S. Effect of Pim-3 Downregulation on Proliferation and Apoptosis in Lung Adenocarcinoma A549 Cells. Ann. Clin. Lab. Sci. 2019, 49, 770–776. [Google Scholar] [PubMed]
- Liu, J.; Qu, X.; Shao, L.; Hu, Y.; Yu, X.; Lan, P.; Guo, Q.; Han, Q.; Zhang, J.; Zhang, C. Pim-3 enhances melanoma cell migration and invasion by promoting STAT3 phosphorylation. Cancer Biol. Ther. 2018, 19, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Kanwar, N.; Feng, E.; Siu, A.; Liu, X.; Ma, D.; Jongstra, J. PIM kinase inhibitors downregulate STAT3(Tyr705) phosphorylation. Mol. Cancer Ther. 2010, 9, 2478–2487. [Google Scholar] [CrossRef]
- Wang, C.; Li, H.Y.; Liu, B.; Huang, S.; Wu, L.; Li, Y.Y. Pim-3 promotes the growth of human pancreatic cancer in the orthotopic nude mouse model through vascular endothelium growth factor. J. Surg. Res. 2013, 185, 595–604. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Z.; Li, H.-Y.; Zhang, B.; Ping, B.; Li, Y.-Y. Pim-3 promotes human pancreatic cancer growth by regulating tumor vasculogenesis. Oncol. Rep. 2014, 31, 2625–2634. [Google Scholar] [CrossRef]
- Quan, J.; Zhou, L.; Qu, J. Knockdown of Pim-3 suppresses the tumorigenicity of glioblastoma by regulating cell cycle and apoptosis. Cell. Mol. Biol. 2015, 61, 42–50. [Google Scholar]
- Wang, G.; Liu, G.; Ye, Y.; Fu, Y.; Zhang, X. Bufothionine exerts anti-cancer activities in gastric cancer through Pim3. Life Sci. 2019, 232, 116615. [Google Scholar] [CrossRef]
- Stout, B.A.; Bates, M.E.; Liu, L.Y.; Farrington, N.N.; Bertics, P.J. IL-5 and granulocyte-macrophage colony-stimulating factor activate STAT3 and STAT5 and promote Pim-1 and cyclin D3 protein expression in human eosinophils. J. Immunol. 2004, 173, 6409–6417. [Google Scholar] [CrossRef]
- Kunder, R.; Velyunskiy, M.; Dunne, S.F.; Cho, B.K.; Kanojia, D.; Begg, L.; Orriols, A.M.; Fleming-Trujillo, E.; Vadlamani, P.; Vialichka, A.; et al. Synergistic PIM kinase and proteasome inhibition as a therapeutic strategy for MYC-overexpressing triple-negative breast cancer. Cell Chem. Biol. 2022, 29, 358–372.e5. [Google Scholar] [CrossRef]
- Li, W.X. Canonical and non-canonical JAK-STAT signaling. Trends Cell Biol. 2008, 18, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Inghirami, G.; Chiarle, R.; Simmons, W.J.; Piva, R.; Schlessinger, K.; Levy, D.E. New and old functions of STAT3: A pivotal target for individualized treatment of cancer. Cell Cycle 2005, 4, 1131–1133. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lao, L.; Zhao, H.; Huang, Y. Serine threonine kinase Pim-3 regulates STAT3 pathway to inhibit proliferation of human liver cancers. Int. J. Clin. Exp. Med. 2014, 7, 348–355. [Google Scholar] [PubMed]
- Zhang, Y.; Wang, Z.; Li, X.; Magnuson, N.S. Pim kinase-dependent inhibition of c-Myc degradation. Oncogene 2008, 27, 4809–4819. [Google Scholar] [CrossRef] [PubMed]
- Beharry, Z.; Mahajan, S.; Zemskova, M.; Lin, Y.W.; Tholanikunnel, B.G.; Xia, Z.; Smith, C.D.; Kraft, A.S. The Pim protein kinases regulate energy metabolism and cell growth. Proc. Natl. Acad. Sci. USA 2011, 108, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Breuer, M.L.; Cuypers, H.T.; Berns, A. Evidence for the involvement of pim-2, a new common proviral insertion site, in progression of lymphomas. Embo J. 1989, 8, 743–748. [Google Scholar] [CrossRef] [PubMed]
- van Lohuizen, M.; Verbeek, S.; Krimpenfort, P.; Domen, J.; Saris, C.; Radaszkiewicz, T.; Berns, A. Predisposition to lymphomagenesis in pim-1 transgenic mice: Cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 1989, 56, 673–682. [Google Scholar] [CrossRef]
- Yeh, E.; Cunningham, M.; Arnold, H.; Chasse, D.; Monteith, T.; Ivaldi, G.; Hahn, W.C.; Stukenberg, P.T.; Shenolikar, S.; Uchida, T.; et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat. Cell Biol. 2004, 6, 308–318. [Google Scholar] [CrossRef]
- Forshell, L.P.; Li, Y.; Forshell, T.Z.; Rudelius, M.; Nilsson, L.; Keller, U.; Nilsson, J. The direct Myc target Pim3 cooperates with other Pim kinases in supporting viability of Myc-induced B-cell lymphomas. Oncotarget 2011, 2, 448–460. [Google Scholar] [CrossRef]
- Verbeek, S.; van Lohuizen, M.; van der Valk, M.; Domen, J.; Kraal, G.; Berns, A. Mice bearing the E mu-myc and E mu-pim-1 transgenes develop pre-B-cell leukemia prenatally. Mol. Cell. Biol. 1991, 11, 1176–1179. [Google Scholar] [CrossRef] [PubMed]
- Mikkers, H.; Allen, J.; Knipscheer, P.; Romeijn, L.; Hart, A.; Vink, E.; Berns, A. High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat. Genet. 2002, 32, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Lomonosova, E.; Chinnadurai, G. BH3-only proteins in apoptosis and beyond: An overview. Oncogene 2008, 27 (Suppl. S1), S2–S19. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.M.; Liu, Y.; Payne, G.; Lutz, R.J.; Chittenden, T. Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Ser155. J. Biol. Chem. 2000, 275, 25046–25051. [Google Scholar] [CrossRef] [PubMed]
- Warfel, N.A.; Kraft, A.S. PIM kinase (and Akt) biology and signaling in tumors. Pharmacol. Ther. 2015, 151, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Lou, L.; Wang, Y.; Cui, J.; Yan, X.; Xue, L.; Li, Y. Differential expression of Pim-3, c-Myc, and p-p27 proteins in adenocarcinomas of the gastric cardia and distal stomach. Tumor Biol. 2014, 35, 5029–5036. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Lee, H.; Nam, E.S.; Shin, H.S.; Sohn, J.H.; Park, C.H.; Yoon, D.S.; Song, S.Y.; Park, Y.E. Reduced expression of the cell-cycle inhibitor p27Kip1 is associated with progression and lymph node metastasis of gastric carcinoma. Histopathology 2000, 36, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Morishita, D.; Katayama, R.; Sekimizu, K.; Tsuruo, T.; Fujita, N. Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res. 2008, 68, 5076–5085. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Jiang, B.; Zhang, Y. 4E-BP1, a multifactor regulated multifunctional protein. Cell Cycle 2016, 15, 781–786. [Google Scholar] [CrossRef]
- Schatz, J.H.; Oricchio, E.; Wolfe, A.L.; Jiang, M.; Linkov, I.; Maragulia, J.; Shi, W.; Zhang, Z.; Rajasekhar, V.K.; Pagano, N.C.; et al. Targeting cap-dependent translation blocks converging survival signals by AKT and PIM kinases in lymphoma. J. Exp. Med. 2011, 208, 1799–1807. [Google Scholar] [CrossRef]
- Abel, E.V.; Kim, E.J.; Wu, J.; Hynes, M.; Bednar, F.; Proctor, E.; Wang, L.; Dziubinski, M.L.; Simeone, D.M. The Notch pathway is important in maintaining the cancer stem cell population in pancreatic cancer. PLoS ONE 2014, 9, e91983. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Song, M.; Kundu, J.K.; Lee, M.H.; Liu, Z.Z. PIM Kinase as an Executional Target in Cancer. J. Cancer Prev. 2018, 23, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Luszczak, S.; Kumar, C.; Sathyadevan, V.K.; Simpson, B.S.; Gately, K.A.; Whitaker, H.C.; Heavey, S. PIM kinase inhibition: Co-targeted therapeutic approaches in prostate cancer. Signal Transduct. Target. Ther. 2020, 5, 7. [Google Scholar] [CrossRef]
- Santio, N.M.; Landor, S.K.; Vahtera, L.; Ylä-Pelto, J.; Paloniemi, E.; Imanishi, S.Y.; Corthals, G.; Varjosalo, M.; Manoharan, G.B.; Uri, A.; et al. Phosphorylation of Notch1 by Pim kinases promotes oncogenic signaling in breast and prostate cancer cells. Oncotarget 2016, 7, 43220–43238. [Google Scholar] [CrossRef] [PubMed]
- Landor, S.K.; Mutvei, A.P.; Mamaeva, V.; Jin, S.; Busk, M.; Borra, R.; Grönroos, T.J.; Kronqvist, P.; Lendahl, U.; Sahlgren, C.M. Hypo- and hyperactivated Notch signaling induce a glycolytic switch through distinct mechanisms. Proc. Natl. Acad. Sci. USA 2011, 108, 18814–18819. [Google Scholar] [CrossRef] [PubMed]
- Panov, A.; Orynbayeva, Z. Bioenergetic and antiapoptotic properties of mitochondria from cultured human prostate cancer cell lines PC-3, DU145 and LNCaP. PLoS ONE 2013, 8, e72078. [Google Scholar] [CrossRef] [PubMed]
- Andersson, E.R.; Lendahl, U. Therapeutic modulation of Notch signalling—are we there yet? Nat. Rev. Drug Discov. 2014, 13, 357–378. [Google Scholar] [CrossRef] [PubMed]
- Brault, L.; Gasser, C.; Bracher, F.; Huber, K.; Knapp, S.; Schwaller, J. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 2010, 95, 1004–1015. [Google Scholar] [CrossRef] [PubMed]
- Diaz, N.; Minton, S.; Cox, C.; Bowman, T.; Gritsko, T.; Garcia, R.; Eweis, I.; Wloch, M.; Livingston, S.; Seijo, E.; et al. Activation of stat3 in primary tumors from high-risk breast cancer patients is associated with elevated levels of activated SRC and survivin expression. Clin. Cancer Res. 2006, 12, 20–28. [Google Scholar] [CrossRef]
- O’Connor, D.S.; Grossman, D.; Plescia, J.; Li, F.; Zhang, H.; Villa, A.; Tognin, S.; Marchisio, P.C.; Altieri, D.C. Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc. Natl. Acad. Sci. USA 2000, 97, 13103–13107. [Google Scholar] [CrossRef]
- Chen, L.S.; Balakrishnan, K.; Gandhi, V. Inflammation and survival pathways: Chronic lymphocytic leukemia as a model system. Biochem. Pharmacol. 2010, 80, 1936–1945. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.S.; Redkar, S.; Bearss, D.; Wierda, W.G.; Gandhi, V. Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells. Blood 2009, 114, 4150–4157. [Google Scholar] [CrossRef] [PubMed]
- Mumenthaler, S.M.; Ng, P.Y.; Hodge, A.; Bearss, D.; Berk, G.; Kanekal, S.; Redkar, S.; Taverna, P.; Agus, D.B.; Jain, A. Pharmacologic inhibition of Pim kinases alters prostate cancer cell growth and resensitizes chemoresistant cells to taxanes. Mol. Cancer Ther. 2009, 8, 2882–2893. [Google Scholar] [CrossRef] [PubMed]
- Mahalingam, D.; Espitia, C.M.; Medina, E.C.; Esquivel, J.A., 2nd; Kelly, K.R.; Bearss, D.; Choy, G.; Taverna, P.; Carew, J.S.; Giles, F.J.; et al. Targeting PIM kinase enhances the activity of sunitinib in renal cell carcinoma. Br. J. Cancer 2011, 105, 1563–1573. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.S.; Redkar, S.; Taverna, P.; Cortes, J.E.; Gandhi, V. Mechanisms of cytotoxicity to Pim kinase inhibitor, SGI-1776, in acute myeloid leukemia. Blood 2011, 118, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Zhao, J.J.; Tai, Y.T.; Amin, S.B.; Hu, Y.; Berger, A.J.; Richardson, P.; Chauhan, D.; Anderson, K.C. Investigational agent MLN9708/2238 targets tumor-suppressor miR33b in MM cells. Blood 2012, 120, 3958–3967. [Google Scholar] [CrossRef]
- Kelly, K.R.; Espitia, C.M.; Taverna, P.; Choy, G.; Padmanabhan, S.; Nawrocki, S.T.; Giles, F.J.; Carew, J.S. Targeting PIM kinase activity significantly augments the efficacy of cytarabine. Br. J. Haematol. 2012, 156, 129–132. [Google Scholar] [CrossRef]
- Cervantes-Gomez, F.; Chen, L.S.; Orlowski, R.Z.; Gandhi, V. Biological effects of the Pim kinase inhibitor, SGI-1776, in multiple myeloma. Clin. Lymphoma Myeloma Leuk. 2013, 13 (Suppl. S2), S317–S329. [Google Scholar] [CrossRef]
- Dakin, L.A.; Block, M.H.; Chen, H.; Code, E.; Dowling, J.E.; Feng, X.; Ferguson, A.D.; Green, I.; Hird, A.W.; Howard, T.; et al. Discovery of novel benzylidene-1,3-thiazolidine-2,4-diones as potent and selective inhibitors of the PIM-1, PIM-2, and PIM-3 protein kinases. Bioorganic Med. Chem. Lett. 2012, 22, 4599–4604. [Google Scholar] [CrossRef]
- Kirschner, A.N.; Wang, J.; van der Meer, R.; Anderson, P.D.; Franco-Coronel, O.E.; Kushner, M.H.; Everett, J.H.; Hameed, O.; Keeton, E.K.; Ahdesmaki, M.; et al. PIM kinase inhibitor AZD1208 for treatment of MYC-driven prostate cancer. J. Natl. Cancer Inst. 2015, 107, dju407. [Google Scholar] [CrossRef]
- Keeton, E.K.; McEachern, K.; Dillman, K.S.; Palakurthi, S.; Cao, Y.; Grondine, M.R.; Kaur, S.; Wang, S.; Chen, Y.; Wu, A.; et al. AZD1208, a potent and selective pan-Pim kinase inhibitor, demonstrates efficacy in preclinical models of acute myeloid leukemia. Blood 2014, 123, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Kreuz, S.; Holmes, K.B.; Tooze, R.M.; Lefevre, P.F. Loss of PIM2 enhances the anti-proliferative effect of the pan-PIM kinase inhibitor AZD1208 in non-Hodgkin lymphomas. Mol. Cancer 2015, 14, 205. [Google Scholar] [CrossRef]
- Cortes, J.; Tamura, K.; DeAngelo, D.J.; de Bono, J.; Lorente, D.; Minden, M.; Uy, G.L.; Kantarjian, H.; Chen, L.S.; Gandhi, V.; et al. Phase I studies of AZD1208, a proviral integration Moloney virus kinase inhibitor in solid and haematological cancers. Br. J. Cancer 2018, 118, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Burger, M.T.; Nishiguchi, G.; Han, W.; Lan, J.; Simmons, R.; Atallah, G.; Ding, Y.; Tamez, V.; Zhang, Y.; Mathur, M.; et al. Identification of N-(4-((1R,3S,5S)-3-Amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (PIM447), a Potent and Selective Proviral Insertion Site of Moloney Murine Leukemia (PIM) 1, 2, and 3 Kinase Inhibitor in Clinical Trials for Hematological Malignancies. J. Med. Chem. 2015, 58, 8373–8386. [Google Scholar] [CrossRef] [PubMed]
- Raab, M.S.; Thomas, S.K.; Ocio, E.M.; Guenther, A.; Goh, Y.-T.; Talpaz, M.; Hohmann, N.; Zhao, S.; Xiang, F.; Simon, C.; et al. The first-in-human study of the pan-PIM kinase inhibitor PIM447 in patients with relapsed and/or refractory multiple myeloma. Leukemia 2019, 33, 2924–2933. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, L.S.; Neelapu, S.S.; Miranda, R.N.; Medeiros, L.J.; Gandhi, V. Transcription and translation are primary targets of Pim kinase inhibitor SGI-1776 in mantle cell lymphoma. Blood 2012, 120, 3491–3500. [Google Scholar] [CrossRef]
- Matou-Nasri, S.; Rabhan, Z.; Al-Baijan, H.; Al-Eidi, H.; Yahya, W.B.; Al Abdulrahman, A.; Almobadel, N.; Alsubeai, M.; Al Ghamdi, S.; Alaskar, A.; et al. CD95-mediated apoptosis in Burkitt’s lymphoma B-cells is associated with Pim-1 down-regulation. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 239–252. [Google Scholar] [CrossRef]
- Cohen, A.M.; Grinblat, B.; Bessler, H.; Kristt, D.; Kremer, A.; Schwartz, A.; Halperin, M.; Shalom, S.; Merkel, D.; Don, J. Increased expression of the hPim-2 gene in human chronic lymphocytic leukemia and non-Hodgkin lymphoma. Leuk. Lymphoma 2004, 45, 951–955. [Google Scholar] [CrossRef]
- Cervantes-Gomez, F.; Stellrecht, C.M.; Ayres, M.L.; Keating, M.J.; Wierda, W.G.; Gandhi, V. PIM kinase inhibitor, AZD1208, inhibits protein translation and induces autophagy in primary chronic lymphocytic leukemia cells. Oncotarget 2019, 10, 2793–2809. [Google Scholar] [CrossRef]
- Szydłowski, M.; Garbicz, F.; Jabłońska, E.; Górniak, P.; Komar, D.; Pyrzyńska, B.; Bojarczuk, K.; Prochorec-Sobieszek, M.; Szumera-Ciećkiewicz, A.; Rymkiewicz, G.; et al. Inhibition of PIM Kinases in DLBCL Targets MYC Transcriptional Program and Augments the Efficacy of Anti-CD20 Antibodies. Cancer Res. 2021, 81, 6029–6043. [Google Scholar] [CrossRef]
- Szydłowski, M.; Dębek, S.; Prochorec-Sobieszek, M.; Szołkowska, M.; Tomirotti, A.M.; Juszczyński, P.; Szumera-Ciećkiewicz, A. PIM Kinases Promote Survival and Immune Escape in Primary Mediastinal Large B-Cell Lymphoma through Modulation of JAK-STAT and NF-κB Activity. Am. J. Pathol. 2021, 191, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Masugi, Y.; Nishihara, R.; Yang, J.; Mima, K.; da Silva, A.; Shi, Y.; Inamura, K.; Cao, Y.; Song, M.; Nowak, J.A.; et al. Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut 2017, 66, 1463–1473. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, Q.; Luo, H.; Chen, R. Role and mechanism of PIM family in the immune microenvironment of diffuse large B cell lymphoma. World J. Surg. Oncol. 2023, 21, 76. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Chakraborty, P.; Daenthanasanmak, A.; Iamsawat, S.; Andrejeva, G.; Luevano, L.A.; Wolf, M.; Baliga, U.; Krieg, C.; Beeson, C.C.; et al. Targeting PIM Kinase with PD1 Inhibition Improves Immunotherapeutic Antitumor T-cell Response. Clin. Cancer Res. 2019, 25, 1036–1049. [Google Scholar] [CrossRef] [PubMed]
- Jian, J.; Li, S.; Fang, N.; Cao, Y.Z.; Zhen, L.; Qin, J.B.; Li, B. Pim-3 alleviates lipopolysaccharide-stimulated AR42J pancreatic acinar cell injury via improving the inflammatory microenvironment. Exp. Ther. Med. 2019, 18, 4427–4435. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, S.K.; Wu, S.; Xiu, J.; Farrell, A.P.; Radovich, M.; Heath, E.I.; McKay, R.R.; Sutterby, K.; Chauhan, S.S.; Nabhan, C.; et al. Characterizing the role of PIM kinases in the prostate tumor immune microenvironment. J. Clin. Oncol. 2023, 41, e17080. [Google Scholar] [CrossRef]
- Xu, D.; Allsop, S.A.; Witherspoon, S.M.; Snider, J.L.; Yeh, J.J.; Fiordalisi, J.J.; White, C.D.; Williams, D.; Cox, A.D.; Baines, A.T. The oncogenic kinase Pim-1 is modulated by K-Ras signaling and mediates transformed growth and radioresistance in human pancreatic ductal adenocarcinoma cells. Carcinogenesis 2011, 32, 488–495. [Google Scholar] [CrossRef]
- Kim, W.; Youn, H.; Seong, K.M.; Yang, H.J.; Yun, Y.J.; Kwon, T.; Kim, Y.H.; Lee, J.Y.; Jin, Y.W.; Youn, B. PIM1-activated PRAS40 regulates radioresistance in non-small cell lung cancer cells through interplay with FOXO3a, 14-3-3 and protein phosphatases. Radiat. Res. 2011, 176, 539–552. [Google Scholar] [CrossRef]
- Natarajan, K.; Bhullar, J.; Shukla, S.; Burcu, M.; Chen, Z.S.; Ambudkar, S.V.; Baer, M.R. The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms. Biochem. Pharmacol. 2013, 85, 514–524. [Google Scholar] [CrossRef]
- Xu, D.; Cobb, M.G.; Gavilano, L.; Witherspoon, S.M.; Williams, D.; White, C.D.; Taverna, P.; Bednarski, B.K.; Kim, H.J.; Baldwin, A.S.; et al. Inhibition of oncogenic Pim-3 kinase modulates transformed growth and chemosensitizes pancreatic cancer cells to gemcitabine. Cancer Biol. Ther. 2013, 14, 492–501. [Google Scholar] [CrossRef]
- Le, X.; Antony, R.; Razavi, P.; Treacy, D.J.; Luo, F.; Ghandi, M.; Castel, P.; Scaltriti, M.; Baselga, J.; Garraway, L.A. Systematic Functional Characterization of Resistance to PI3K Inhibition in Breast Cancer. Cancer Discov. 2016, 6, 1134–1147. [Google Scholar] [CrossRef]
- An, N.; Xiong, Y.; LaRue, A.C.; Kraft, A.S.; Cen, B. Activation of Pim Kinases Is Sufficient to Promote Resistance to MET Small-Molecule Inhibitors. Cancer Res. 2015, 75, 5318–5328. [Google Scholar] [CrossRef]
- Chen, X.Y.; Wang, Z.; Li, B.; Zhang, Y.J.; Li, Y.Y. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells. Biochem. Biophys. Res. Commun. 2016, 473, 296–302. [Google Scholar] [CrossRef]
Cancer Types | Association of High PIM3 Levels with Clinical Outcome | Ref. | ||
---|---|---|---|---|
Poor survival | Metastases | Tumor size/stage | ||
Ovarian cancer | − | + | + | [15] |
Gastric cancer | + | − | − | [16] |
Colorectal carcinoma | + | + | − | [17] |
Prostate cancer | + | + | + | [5] |
Pancreatic cancer | + | + | + | [18] |
Hepatocellular carcinoma | + | [19] | ||
Triple-negative breast cancer | + | + | + | [20] |
Inhibitors | IC50/Ki (nM) | ||
---|---|---|---|
PIM1 | PIM2 | PIM3 | |
SGI-1776 | 7 | 363 | 69 |
AZD1208 | 0.4 | 5 | 1.9 |
PIM447 | 0.006 | 0.018 | 0.009 |
Drug | Cancer Type | Clinical Trial Phase | Clinical Trial Registry Number | Results |
---|---|---|---|---|
SGI-1776 (Astex Pharmaceuticals) | Relapsed/Refractory Leukemia | Phase 1 (withdrawn) | NCT01239108 | Withdrawn due to cardiac QTc prolongation |
Refractory Prostate and Relapsed/Refractory Non-Hodgkin’s Lymphoma | Phase 1 (terminated) | NCT00848601 | Withdrawn due to cardiac QTc prolongation | |
AZD1208 (Astrazeneca) | Acute Myelogenous Leukemia (AML) Patients | Phase 1 (terminated) | NCT01489722 | Serious AEs in 23 patients (discontinued in 8) and DLTs in 5; no clinical response |
Advanced Solid Tumors and Malignant Lymphoma | Phase1 (completed) | NCT01588548 | Serious AEs in 8 patients and DLTs in 4; best response SD ≥ 6 weeks (13 patients; ORR, 0%) | |
PIM447 (Novartis) | Relapsed and Refractory Multiple Myeloma | Phase 1/2 (completed) | NCT02144038 | A maximum tolerated dose was not declared, and the phase II portion of the study was not initiated |
AML or High-Risk Myelodysplastic Syndrome (MDS) | Phase 1 (completed) | NCT02078609 | Data revealed minimal antitumor activity, (PK) results also revealed a complex drug–drug interaction between PIM447 and midostaurin | |
Multiple Myeloma | Phase 1 (completed) | NCT02160951 | MTD for expansion was not determined, an overall response rate of 15.4%, a clinical benefit rate of 23.1%, and a disease control rate of 69.2% | |
Myelofibrosis | Phase 1 (terminated) | NCT02370706 | Terminated due to hematologic toxicity | |
Relapsed and/or Refractory Multiple Myeloma | Phase 1 (completed) | NCT01456689 | Hematologic grade 3/4 AEs; disease control rate of 72.2%, ORR of 8.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atalay, P.; Ozpolat, B. PIM3 Kinase: A Promising Novel Target in Solid Cancers. Cancers 2024, 16, 535. https://doi.org/10.3390/cancers16030535
Atalay P, Ozpolat B. PIM3 Kinase: A Promising Novel Target in Solid Cancers. Cancers. 2024; 16(3):535. https://doi.org/10.3390/cancers16030535
Chicago/Turabian StyleAtalay, Pinar, and Bulent Ozpolat. 2024. "PIM3 Kinase: A Promising Novel Target in Solid Cancers" Cancers 16, no. 3: 535. https://doi.org/10.3390/cancers16030535
APA StyleAtalay, P., & Ozpolat, B. (2024). PIM3 Kinase: A Promising Novel Target in Solid Cancers. Cancers, 16(3), 535. https://doi.org/10.3390/cancers16030535