Added Value of Biological Effective Dose in Dosiomics-Based Modelling of Late Rectal Bleeding in Prostate Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Endpoint
2.3. Dosiomic Features and Clinical Parameter
2.4. NTCP Modelling
2.4.1. Part 1: Separate BED Models for HF and CF
2.4.2. Part 2: Single Models for CF and HF Patients Together
2.4.3. Part 3: Separate Physical Dose Models for HF and CF
2.4.4. Statistical Procedure
- 1.
- Feature selection
- The association between each candidate predictor and the outcome was determined with univariable logistic regression models. Candidate predictors with a p-value > 0.2 were rejected.
- Subsequently, multicollinearity was resolved by removing correlating candidate predictors. From the two predictors with the largest Spearman’s correlation coefficient between them, the one that was the least correlated to the outcome was removed. This was repeated until the variation inflation factor (VIF) ≤ 5 [26].
- The remaining predictors were used as candidate predictors in a multivariable logistic regression model with backwards elimination. The criterion for elimination was a change in deviance; if the p-value of the chi-squared test of the change in deviance after removing a predictor was larger than 0.01, the predictor was removed. The threshold of 0.01 was chosen to only allow the most predictive predictors to be selected. The remaining predictors in this bootstrap model made up the signature of the bootstrap sample.
- 2.
- Predictor coefficients
- 3.
- Performance
3. Results
3.1. NTCP Modelling
3.1.1. Part 1: Separate BED Models for HF and CF
3.1.2. Part 2: Single Models for CF and HF Patients Together
3.1.3. Part 3: Separate Physical Dose Models for HF and CF
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haralick, R.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man. Cybernet 1973, 3, 610–621. [Google Scholar] [CrossRef]
- Depeursinge, A.; Foncubierta-Rodriguez, A.; Ville, D.V.D.; Müller, H. Threedimensional solid texture analysis in biomedical imaging: Review and opportunities. Med. Image Anal. 2014, 18, 176–196. [Google Scholar] [CrossRef] [PubMed]
- Rossi, L.; Bijman, R.; Schillemans, W.; Aluwini, S.; Cavedon, C.; Witte, M.; Incrocci, L.; Heijmen, B. Texture analysis of 3D dose distributions for predictive modelling of toxicity rates in radiotherapy. Radiother. Oncol. 2018, 129, 548–553. [Google Scholar] [CrossRef]
- Gabryś, H.S.; Buettner, F.; Sterzing, F.; Hauswald, H.; Bangert, M. Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia. Front. Oncol. 2018, 8, 35. [Google Scholar] [CrossRef]
- Zhen, X.; Chen, J.; Zhong, Z.; Hrycushko, B.; Zhou, L.; Jiang, S.; Albuquerque, K.; Gu, X. Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: A feasibility study. Phys. Med. Biol. 2017, 62, 8246–8263. [Google Scholar] [CrossRef] [PubMed]
- Sheen, H.; Cho, W.; Kim, C.; Han, M.C.; Kim, H.; Lee, H.; Kim, D.W.; Kim, J.S.; Hong, C.S. Radiomics-based hybrid model for predicting radiation pneumonitis: A systematic review and meta-analysis. Phys. Med. 2024, 123, 103414. [Google Scholar] [CrossRef]
- Avanzo, M.; Pirrone, G.; Vinante, L.; Caroli, A.; Stancanello, J.; Drigo, A.; Massarut, S.; Mileto, M.; Urbani, M.; Trovo, M.; et al. Electron density and biologically effective dose (BED) radiomics-based machine learning models to predict late radiation-induced subcutaneous fibrosis. Front. Oncol. 2020, 10, 490. [Google Scholar] [CrossRef] [PubMed]
- Puttanawarut, C.; Sirirutbunkajorn, N.; Khachonkham, S.; Pattaranutaporn, P.; Wongsawat, Y. Biological dosiomic features for the prediction of radiation pneumonitis in esophageal cancer patients. Radiat. Oncol. 2021, 16, 220. [Google Scholar] [CrossRef]
- Zhou, L.; Wen, Y.; Zhang, G.; Wang, L.; Wu, S.; Zhang, S. Machine Learning-Based Multiomics Prediction Model for Radiation Pneumonitis. J. Oncol. 2023, 2023, 5328927. [Google Scholar] [CrossRef]
- Incrocci, L.; Wortel, R.C.; Alemayehu, W.G.; Aluwini, S.; Schimmel, E.; Krol, S.; van der Toorn, P.; de Jager, H.; Heemsbergen, W.; Heijmen, B.; et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): Final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016, 17, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Aluwini, S.; Pos, F.; Schimmel, E.; Krol, S.; van der Toorn, P.; de Jager, H.; Alemayehu, W.G.; Heemsbergen, W.; Heijmen, B.; Incrocci, L. Hypofractionated versus conventionally fractionated radiotherapy for patients with prostate cancer (HYPRO): Late toxicity results from a randomised, non-inferiority, phase 3 trial. Lancet Oncol. 2016, 17, 464–474. [Google Scholar] [CrossRef]
- Aluwini, S.; Pos, F.; Schimmel, E.; van Lin, E.; Krol, S.; van der Toorn, P.; de Jager, H.; Dirkx, M.; Alemayehu, W.G.; Heijmen, B.; et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with prostate cancer (HYPRO): Acute toxicity results from a randomised non-inferiority phase 3 trial. Lancet Oncol. 2015, 16, 274–283. [Google Scholar] [CrossRef]
- National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. 2017. Available online: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf (accessed on 11 June 2024).
- Cox, J.D.; Stez, J.; Pajak, T.F. Toxicity criteria of the radiation therapy oncology group (RTOG) and the European organization for research and treatment of cancer (EORTC). Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1341–1346. [Google Scholar] [CrossRef]
- Brenner, D.J. Fractionation and late rectal toxicity. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 1013–1015. [Google Scholar] [CrossRef] [PubMed]
- Tucker, S.L.; Thames, H.D.; Michalski, J.M.; Bosch, W.R.; Mohan, R.; Winter, K.; Cox, J.D.; Purdy, J.A.; Dong, L. Estimation of α/β for late rectal toxicity based on RTOG 94-06. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 600–605. [Google Scholar] [CrossRef]
- Marzi, S.; Saracino, B.; Petrongari, M.G.; Arcangeli, S.; Gomellini, S.; Arangeli, G.; Benassi, M.; Ladoni, V. Modeling of α/β for late rectal toxicity from a randomized phase II study: Conventional versus hypofractionated scheme for localized prostate cancer. J. Exp. Clin. Cancer Res. 2009, 28, 117. [Google Scholar] [CrossRef] [PubMed]
- Michalski, J.M.; Gay, H.; Jackson, A.; Tucker, S.L.; Deasy, J.O. Radiation dose–volume effects in radiation-induced rectal injury. Int. J. Radiat. Oncol. Biol. Phys. 2009, 76, S123–S129. [Google Scholar] [CrossRef]
- Brand, D.H.; Brüningk, S.C.; Wilkins, A.; Fernandez, K.; Naismith, O.; Gao, A.; Syndikus, I.; Dearnaley, D.P.; Tree, A.C.; van As, N.; et al. Estimates of Alpha/Beta (α/β) ratios for individual late rectal toxicity endpoints: An analysis of the CHHiP trial. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 596–608. [Google Scholar] [CrossRef]
- Vallières, M.; Freeman, C.R.; Skamene, S.R.; El Naqa, I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. 2015, 60, 5471–5496. [Google Scholar] [CrossRef]
- Galloway, M.M. Texture analysis using grey level run lengths. Comput. Graph. Image Process 1975, 4, 172–179. [Google Scholar] [CrossRef]
- Peeters, S.T.; Hoogeman, M.S.; Heemsbergen, W.D.; Hart, A.A.; Koper, P.C.; Lebesque, J.V. Rectal bleeding, fecal incontinence, and high stool frequency after conformal radiotherapy for prostate cancer: Normal tissue complication probability modeling. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Rancati, T.; Fiorino, C.; Fellin, G.; Vavassori, V.; Cagna, E.; Borca, V.C.; Girelli, G.; Menegotti, L.; Monti, A.F.; Tortoreto, F.; et al. Inclusion of clinical risk factors into NTCP modelling of late rectal toxicity after high dose radiotherapy for prostate cancer. Radiother. Oncol. 2011, 100, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Defraene, G.; Van den Bergh, L.; Al-Mamgani, A.; Haustermans, K.; Heemsbergen, W.; Van den Heuvel, F.; Lebesque, J.V. The benefits of including clinical factors in rectal normal tissue complication probability modeling after radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Fiorino, C.; Fellin, G.; Rancati, T.; Vavassori, V.; Bianchi, C.; Borca, V.C.; Girelli, G.; Mapelli, M.; Menegotti, L.; Nava, S.; et al. Clinical and dosimetric predictors of late rectal syndrome after 3D-CRT for localized prostate cancer: Preliminary results of a multicenter prospective study. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- Schaake, W.; van der Schaaf, A.; van Dijk, L.V.; Bongaerts, A.H.; van den Bergh, A.C.; Langendijk, J.A. Normal tissue complication probability (NTCP) models for late rectal bleeding, stool frequency and fecal incontinence after radiotherapy in prostate cancer patients. Radiother. Oncol. 2016, 119, 381–387. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org (accessed on 22 November 2024).
- RStudio Team. RStudio: Integrated Development for R. RStudio; PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com (accessed on 22 November 2024).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Hebbali, A.; olssr: Tools for Building OLS Regression Models. R Package Version 0.6.0. 2024. Available online: https://CRAN.R-project.org/package=olsrr (accessed on 22 November 2024).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D.; dplyr: A Grammar of Data Manipulation. R Package Version 1.1.4. 2023. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 22 November 2024).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Sadatsafavi, M.; Safari, A.; Lee, T.; predtools: Prediction Model Tools. R Package Version 0.0.3. 2023. Available online: https://CRAN.R-project.org/package=predtools (accessed on 22 November 2024).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Vanegas, L.; Rondón, L.; Paula, G.; glmtoolbox: Set of Tools to Data Analysis using Generalized Linear Models. R Package Version 0.1.12. 2024. Available online: https://CRAN.R-project.org/package=glmtoolbox (accessed on 22 November 2024).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Harrell, F.E., Jr.; rms: Regression Modeling Strategies. R Package Version 6.8-2. 2024. Available online: https://CRAN.R-project.org/package=rms (accessed on 22 November 2024).
- Fiorino, C.; Alongi, F.; Perna, L.; Broggi, S.; Cattaneo, G.M.; Cozzarini, C.; Di Muzio, N.; Fazio, F.; Calandrino, R. Dose–volume effects for normal tissues in external radiotherapy: Pelvis. Radiother. Oncol. 2009, 93, 153–167. [Google Scholar] [CrossRef]
- Jongen, C.A.M.; Heijmen, B.J.M.; Schillemans, W.; Zolnay, A.; Witte, M.G.; Pos, F.J.; Vanneste, B.; Dubois, L.J.; Van Klaveren, D.; Incrocci, L.; et al. Normal tissue complication probability modeling for late rectal bleeding after conventional or hypofractionated radiotherapy for prostate cancer. Clin. Transl. Radiat. Oncol. 2025, 50, 100886. [Google Scholar] [CrossRef]
Model | Predictor | Median OR | Median p-Value |
---|---|---|---|
HF_BEDα/β=2 Gy | VarianceGLCM | 49.7 | 0.005 |
RLV | 4.4 × 10−3 | 0.004 | |
Abd. Surg. | 1.87 | 0.058 | |
Constant (baseline odds) | 0.10 | ||
HF_BEDα/β=3 Gy | LRHGE | 71.2 | <0.001 |
Abd. Surg. | 1.98 | 0.036 | |
Constant (baseline odds) | 0.05 | ||
CF_BEDα/β=2 Gy | LZHGE | 9.87 | 0.041 |
Abd. Surg. | 1.74 | 0.159 | |
Constant (baseline odds) | 0.07 | ||
CF_BEDα/β=3 Gy | LZHGE | 8.19 | 0.03 |
Abd. Surg. | 1.72 | 0.16 | |
Constant (baseline odds) | 0.07 | ||
HF+CF_BEDα/β=2 Gy | Variance | 17.88 | 0.020 |
HGZE | 3.27 | 0.202 | |
LZHGE | 22.98 | 0.001 | |
Abd. Surg. | 1.80 | 0.019 | |
Constant (baseline odds) | 0.03 | ||
HF+CF_BEDα/β=3 Gy | LZHGE | 2.72 | 0.319 |
LRHGE | 16.91 | 0.004 | |
Fr. Sch. | 2.29 | 0.001 | |
Abd. Surg. | 1.83 | 0.015 | |
Constant (baseline odds) | 0.03 | ||
HF_PhyD | Kurtosis | 0.01 | 0.054 |
LRHGE | 288.9 | <0.001 | |
Abd. Surg. | 2.05 | 0.032 | |
Constant (baseline odds) | 0.18 | ||
CF_PhyD | RLN | 0.31 | 0.272 |
Abd. Surg. | 1.70 | 0.172 | |
Constant (baseline odds) | 0.11 |
Model | Measure | HF Data | CF Data |
---|---|---|---|
HF_BEDα/β=2Gy | AUC | 0.68 | 0.55 |
Cal Sl. | 0.97 | 0.25 | |
Cal Int. | −0.04 | −1.66 | |
HF_BEDα/β=3Gy | AUC | 0.69 | 0.62 |
Cal Sl. | 0.98 | 0.64 | |
Cal Int. | −0.03 | −1.29 | |
CF_BEDα/β=2Gy | AUC | 0.65 | 0.62 |
Cal Sl. | 1.64 | 0.99 | |
Cal Int. | 2.27 | −0.02 | |
CF_BEDα/β=3Gy | AUC | 0.65 | 0.63 |
Cal Sl. | 1.64 | 1.00 | |
Cal Int. | 2.26 | 0.01 | |
HF+CF_BEDα/β=2Gy | AUC | 0.66 | 0.64 |
Cal Sl. | 0.79 | 1.08 | |
Cal Int. | −0.59 | 0.28 | |
HF+CF_BEDα/β=3Gy | AUC | 0.63 | 0.69 |
Cal Sl. | 0.75 | 1.28 | |
Cal Int. | −0.52 | 0.42 | |
HF_PhyD | AUC | 0.69 | NA |
Cal Sl. | 0.99 | ||
Cal Int. | −0.02 | ||
CF_PhyD | AUC | NA | 0.61 |
Cal Sl. | 0.99 | ||
Cal Int. | −0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jongen, C.A.M.; Heemsbergen, W.D.; Incrocci, L.; Heijmen, B.J.M.; Rossi, L. Added Value of Biological Effective Dose in Dosiomics-Based Modelling of Late Rectal Bleeding in Prostate Cancer. Cancers 2024, 16, 4208. https://doi.org/10.3390/cancers16244208
Jongen CAM, Heemsbergen WD, Incrocci L, Heijmen BJM, Rossi L. Added Value of Biological Effective Dose in Dosiomics-Based Modelling of Late Rectal Bleeding in Prostate Cancer. Cancers. 2024; 16(24):4208. https://doi.org/10.3390/cancers16244208
Chicago/Turabian StyleJongen, Christian A. M., Wilma D. Heemsbergen, Luca Incrocci, Ben J. M. Heijmen, and Linda Rossi. 2024. "Added Value of Biological Effective Dose in Dosiomics-Based Modelling of Late Rectal Bleeding in Prostate Cancer" Cancers 16, no. 24: 4208. https://doi.org/10.3390/cancers16244208
APA StyleJongen, C. A. M., Heemsbergen, W. D., Incrocci, L., Heijmen, B. J. M., & Rossi, L. (2024). Added Value of Biological Effective Dose in Dosiomics-Based Modelling of Late Rectal Bleeding in Prostate Cancer. Cancers, 16(24), 4208. https://doi.org/10.3390/cancers16244208