Radiomic and Clinical Model in the Prognostic Evaluation of Adenoid Cystic Carcinoma of the Head and Neck
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Image Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ellington, C.L.; Goodman, M.; Kono, S.A.; Grist, W.; Wadsworth, T.; Chen, A.Y.; Owonikoko, T.; Ramalingam, S.; Shin, D.M.; Khuri, F.R.; et al. Adenoid Cystic Carcinoma of the Head and Neck: Incidence and Survival Trends Based on 1973–2007 Surveillance, Epidemiology, and End Results Data. Cancer 2012, 118, 4444–4451. [Google Scholar] [CrossRef] [PubMed]
- Ciccolallo, L.; Licitra, L.; Cantú, G.; Gatta, G. EUROCARE Working Group Survival from Salivary Glands Adenoid Cystic Carcinoma in European Populations. Oral Oncol. 2009, 45, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Atallah, S.; Casiraghi, O.; Fakhry, N.; Wassef, M.; Uro-Coste, E.; Espitalier, F.; Sudaka, A.; Kaminsky, M.C.; Dakpe, S.; Digue, L.; et al. A Prospective Multicentre REFCOR Study of 470 Cases of Head and Neck Adenoid Cystic Carcinoma: Epidemiology and Prognostic Factors. Eur. J. Cancer 2020, 130, 241–249. [Google Scholar] [CrossRef]
- Terhaard, C.H.J.; Lubsen, H.; Van der Tweel, I.; Hilgers, F.J.M.; Eijkenboom, W.M.H.; Marres, H.A.M.; Tjho-Heslinga, R.E.; de Jong, J.M.A.; Roodenburg, J.L.N. Dutch Head and Neck Oncology Cooperative Group Salivary Gland Carcinoma: Independent Prognostic Factors for Locoregional Control, Distant Metastases, and Overall Survival: Results of the Dutch Head and Neck Oncology Cooperative Group. Head Neck 2004, 26, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, D.; Tomasoni, M.; Lorini, L.; Gurizzan, C.; Tomasini, D.; Ardighieri, L.; Battocchio, S.; Bozzola, A.; Mattavelli, D.; Paderno, A.; et al. Baseline Prognostic Factors Affecting Survival in Recurrent and/or Metastatic Salivary Gland Adenoid Cystic Carcinoma. Oral Oncol. 2022, 126, 105764. [Google Scholar] [CrossRef] [PubMed]
- Lorini, L.; Ardighieri, L.; Bozzola, A.; Romani, C.; Bignotti, E.; Buglione, M.; Guerini, A.; Lombardi, D.; Deganello, A.; Tomasoni, M.; et al. Prognosis and Management of Recurrent and/or Metastatic Head and Neck Adenoid Cystic Carcinoma. Oral Oncol. 2021, 115, 105213. [Google Scholar] [CrossRef]
- Geiger, J.L.; Ismaila, N.; Beadle, B.; Caudell, J.J.; Chau, N.; Deschler, D.; Glastonbury, C.; Kaufman, M.; Lamarre, E.; Lau, H.Y.; et al. Management of Salivary Gland Malignancy: ASCO Guideline. J. Clin. Oncol. 2021, 39, 1909–1941. [Google Scholar] [CrossRef]
- Lombardi, D.; Tomasoni, M.; Paderno, A.; Mattavelli, D.; Ferrari, M.; Battocchio, S.; Missale, F.; Mazzola, F.; Peretti, G.; Mocellin, D.; et al. The Impact of Nodal Status in Major Salivary Gland Carcinoma: A Multicenter Experience and Proposal of a Novel N-Classification. Oral Oncol. 2021, 112, 105076. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Tan, Y.; Xiong, P.; Zhong, L. Accuracy of Diagnosis of Salivary Gland Tumors with the Use of Ultrasonography, Computed Tomography, and Magnetic Resonance Imaging: A Meta-Analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 119, 238–245.e2. [Google Scholar] [CrossRef]
- Abdel Razek, A.A.K.; Mukherji, S.K. Imaging of Minor Salivary Glands. Neuroimaging Clin. N. Am. 2018, 28, 295–302. [Google Scholar] [CrossRef]
- Mao, K.; Wong, L.M.; Zhang, R.; So, T.Y.; Shan, Z.; Hung, K.F.; Ai, Q.Y.H. Radiomics Analysis in Characterization of Salivary Gland Tumors on MRI: A Systematic Review. Cancers 2023, 15, 4918. [Google Scholar] [CrossRef] [PubMed]
- Aringhieri, G.; Fanni, S.C.; Febi, M.; Colligiani, L.; Cioni, D.; Neri, E. The Role of Radiomics in Salivary Gland Imaging: A Systematic Review and Radiomics Quality Assessment. Diagnostics 2022, 12, 3002. [Google Scholar] [CrossRef] [PubMed]
- Committeri, U.; Barone, S.; Salzano, G.; Arena, A.; Borriello, G.; Giovacchini, F.; Fusco, R.; Vaira, L.A.; Scarpa, A.; Abbate, V.; et al. Support Tools in the Differential Diagnosis of Salivary Gland Tumors through Inflammatory Biomarkers and Radiomics Metrics: A Preliminary Study. Cancers 2023, 15, 1876. [Google Scholar] [CrossRef] [PubMed]
- Khodabakhshi, Z.; Motisi, L.; Bink, A.; Broglie, M.A.; Rupp, N.J.; Fleischmann, M.; von der Grün, J.; Guckenberger, M.; Tanadini-Lang, S.; Balermpas, P. MRI-Based Radiomics for Predicting Histology in Malignant Salivary Gland. Tumors: Methodology and “Proof of Principle”. Sci. Rep. 2024, 14, 9945. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-M.; Li, J.; Liu, S.; Cui, J.-F.; Zhan, J.-F.; Pang, J.; Zhou, R.-Z.; Li, X.-L.; Dong, C. MRI-Based Radiomics Nomogram for Differentiation of Benign and Malignant Lesions of the Parotid Gland. Eur. Radiol. 2021, 31, 4042–4052. [Google Scholar] [CrossRef]
- Piludu, F.; Marzi, S.; Ravanelli, M.; Pellini, R.; Covello, R.; Terrenato, I.; Farina, D.; Campora, R.; Ferrazzoli, V.; Vidiri, A. MRI-Based Radiomics to Differentiate between Benign and Malignant Parotid Tumors With External Validation. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef]
- Hu, Z.; Guo, J.; Feng, J.; Huang, Y.; Xu, H.; Zhou, Q. Value of T2-Weighted-Based Radiomics Model in Distinguishing Warthin Tumor from Pleomorphic Adenoma of the Parotid. Eur. Radiol. 2023, 33, 4453–4463. [Google Scholar] [CrossRef]
- Shao, S.; Zheng, N.; Mao, N.; Xue, X.; Cui, J.; Gao, P.; Wang, B. A Triple-Classification Radiomics Model for the Differentiation of Pleomorphic Adenoma, Warthin Tumour, and Malignant Salivary Gland Tumours on the Basis of Diffusion-Weighted Imaging. Clin. Radiol. 2021, 76, 472.e11–472.e18. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Benítez-Parejo, N.; Rodríguez del Águila, M.M.; Pérez-Vicente, S. Survival Analysis and Cox Regression. Allergol. Et Immunopathol. 2011, 39, 362–373. [Google Scholar] [CrossRef]
- Qiu, X.; Gao, J.; Yang, J.; Hu, J.; Hu, W.; Kong, L.; Lu, J.J. A Comparison Study of Machine Learning (Random Survival Forest) and Classic Statistic (Cox Proportional Hazards) for Predicting Progression in High-Grade Glioma after Proton and Carbon Ion Radiotherapy. Front. Oncol. 2020, 10, 551420. [Google Scholar] [CrossRef] [PubMed]
- Rigatti, S.J. Random Forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Nowok, B.; Raab, G.M.; Dibben, C. Synthpop: Bespoke Creation of Synthetic Data in R. J. Stat. Softw. 2016, 74, 1–26. [Google Scholar] [CrossRef]
- Mogensen, U.B.; Ishwaran, H.; Gerds, T.A. Evaluating Random Forests for Survival Analysis Using Prediction Error Curves. J. Stat. Softw. 2012, 50, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Perzin, K.H.; Gullane, P.; Clairmont, A.C. Adenoid Cystic Carcinomas Arising in Salivary Glands.A Correlation of Histologic Features and Clinical Course. Cancer 1978, 42, 265–282. [Google Scholar] [CrossRef]
- Szanto, P.A.; Luna, M.A.; Tortoledo, M.E.; White, R.A. Histologic Grading of Adenoid Cystic Carcinoma of the Salivary Glands. Cancer 1984, 54, 1062–1069. [Google Scholar] [CrossRef]
- Zhang, R.; Ai, Q.Y.H.; Wong, L.M.; Green, C.; Qamar, S.; So, T.Y.; Vlantis, A.C.; King, A.D. Radiomics for Discriminating Benign and Malignant Salivary Gland Tumors; Which Radiomic Feature Categories and MRI Sequences Should Be Used? Cancers 2022, 14, 5804. [Google Scholar] [CrossRef]
- Muntean, D.D.; Dudea, S.M.; Băciuț, M.; Dinu, C.; Stoia, S.; Solomon, C.; Csaba, C.; Rusu, G.M.; Lenghel, L.M. The Role of an MRI-Based Radiomic Signature in Predicting Malignancy of Parotid Gland Tumors. Cancers 2023, 15, 3319. [Google Scholar] [CrossRef]
Patients and Tumor Characteristics | ||
---|---|---|
Gender | Female | 63.5% |
Median age 53 (Inter-quartile range 38–61) | ||
Site of origin | Minor salivary glands | 79.6% |
Subsite of origin | Sinonasal tract | 44.9% |
Parotid gland | 20.4% | |
Oral cavity | 18.4% | |
Nasopharynx | 10.2% | |
Other | 6.1% | |
Histologic grading according to Perzin–Szanto | High-grade (G3) | 32.7% |
Intermediate-grade (G2) | 49.0% | |
Low-grade (G1) | 18.3% | |
Tumor staging | pT1 | 6.1% |
pT2 | 8.2 | |
pT3 | 10.2% | |
pT4 | 75.5% | |
Local tumor extension | Skin | 6.1% |
Named nerves | 58.3% | |
Muscles | 48.9% | |
Bones | 76.1% | |
Cartilage | 29.3% | |
Perineural invasion | Pn1 | 91.1% |
Lymphovascular invasion | Lv1 | 24.4% |
Surgical resection margins | R1 | 55.6% |
R2 | 15.6% | |
N status | N+ | 18.4% |
Extranodal extension | ENE+ | 14.3% |
Median N. of metastastic nodes (IQR) | 2 (2–5) | |
Adjuvant treatment | RT | 80.9% |
ChRT | 14.9% |
Outcome RFS | |||
---|---|---|---|
First Cox model | |||
Covariates | HR | 95% CI | p-value |
Grading G2 | 1.673 | (0.624–4.488) | 0.306 |
Grading G3 | 3.722 | (1.166–11.884) | 0.026 |
Margin SR1 | 2.506 | (0.902–6.964) | 0.078 |
Second Cox model | |||
Covariates | HR | 95% CI | p-value |
GrayLevelNonUniformity | 1.001 | (1.000–1.003) | 0.103 |
log_sigma_2_0_mm_3DglszmZoneVariance | 1.000 | (1.000–1.000) | 0.881 |
log_sigma_2_0_mm_3DglrlmGrayLevelNonUniformity | 0.996 | (0.991–1.000) | 0.059 |
log_sigma_2_0_mm_3DglszmLargeAreaEmphasis | 1.000 | (1.000–1.000) | 0.649 |
log_sigma_2_0_mm_3DgldmGrayLevelNonUniformity | 1.001 | (0.999–1.004) | 0.382 |
log_sigma_4_0_mm_3DgldmDependenceVariance | 1.034 | (0.963–1.111) | 0.358 |
DependenceEntropy | 2.313 | (1.024–5.223) | 0.044 |
log_sigma_4_0_mm_3DfirstorderMaximum | 1.008 | (1.002–1.014) | 0.009 |
log_sigma_4_0_mm_3DglrlmRunLengthNonUniformity | 1.000 | (0.999–1.000) | 0.805 |
log_sigma_4_0_mm_3DglrlmRunVariance | 0.949 | (0.612–1.471) | 0.815 |
Third Cox model | |||
Covariates | HR | 95% CI | p-value |
LevelNonUniformity | 1.000 | (0.998–1.002) | 0.950 |
log_sigma_2_0_mm_3DglszmZoneVariance | 1.000 | (1.000–1.000) | 0.996 |
log_sigma_2_0_mm_3DglrlmGrayLevelNonUniformity | 0.998 | (0.992–1.004) | 0.495 |
log_sigma_2_0_mm_3DglszmLargeAreaEmphasis | 1.000 | (1.000–1.000) | 0.064 |
log_sigma_2_0_mm_3DgldmGrayLevelNonUniformity | 1.002 | (0.999–1.005) | 0.208 |
log_sigma_4_0_mm_3DgldmDependenceVariance | 0.981 | (0.902–1.066) | 0.651 |
DependenceEntropy | 1.633 | (0.516–5.168) | 0.404 |
log_sigma_4_0_mm_3DfirstorderMaximum | 1.013 | (1.005–1.022) | 0.002 |
log_sigma_4_0_mm_3DglrlmRunLengthNonUniformity | 0.999 | (0.999–1.000) | 0.106 |
log_sigma_4_0_mm_3DglrlmRunVariance | 0.983 | (0.576–1.678) | 0.950 |
Grading G2 | 1.902 | (0.518–6.988) | 0.333 |
Grading G3 | 4.154 | (0.776–22.228) | 0.096 |
Margin SR1 | 11.634 | (2.202–61.454) | 0.004 |
Models | C-Index (se) |
---|---|
Model based on clinical covariates (grading and margin) | 0.67 ± 0.07 |
Model based on radiological features (ten variables selected by SRF) | 0.68 ± 0.04 |
Model based on clinical (grading and margin) and radiological (ten variables selected by SRF) covariates | 0.77 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rondi, P.; Tomasoni, M.; Cunha, B.; Rampinelli, V.; Bossi, P.; Guerini, A.; Lombardi, D.; Borghesi, A.; Magrini, S.M.; Buglione, M.; et al. Radiomic and Clinical Model in the Prognostic Evaluation of Adenoid Cystic Carcinoma of the Head and Neck. Cancers 2024, 16, 3926. https://doi.org/10.3390/cancers16233926
Rondi P, Tomasoni M, Cunha B, Rampinelli V, Bossi P, Guerini A, Lombardi D, Borghesi A, Magrini SM, Buglione M, et al. Radiomic and Clinical Model in the Prognostic Evaluation of Adenoid Cystic Carcinoma of the Head and Neck. Cancers. 2024; 16(23):3926. https://doi.org/10.3390/cancers16233926
Chicago/Turabian StyleRondi, Paolo, Michele Tomasoni, Bruno Cunha, Vittorio Rampinelli, Paolo Bossi, Andrea Guerini, Davide Lombardi, Andrea Borghesi, Stefano Maria Magrini, Michela Buglione, and et al. 2024. "Radiomic and Clinical Model in the Prognostic Evaluation of Adenoid Cystic Carcinoma of the Head and Neck" Cancers 16, no. 23: 3926. https://doi.org/10.3390/cancers16233926
APA StyleRondi, P., Tomasoni, M., Cunha, B., Rampinelli, V., Bossi, P., Guerini, A., Lombardi, D., Borghesi, A., Magrini, S. M., Buglione, M., Mattavelli, D., Piazza, C., Vezzoli, M., Farina, D., & Ravanelli, M. (2024). Radiomic and Clinical Model in the Prognostic Evaluation of Adenoid Cystic Carcinoma of the Head and Neck. Cancers, 16(23), 3926. https://doi.org/10.3390/cancers16233926