A Machine Learning Model Based on Thyroid US Radiomics to Discriminate Between Benign and Malignant Nodules
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Image Acquisition
2.2. Radiomic-Based Machine Learning Modelling
2.3. Statistical Analysis
3. Results
3.1. Radiomic-Based Machine Learning Modelling
3.2. Radiomic Predictors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, M.; Song, F.; Zhao, Y.; Xie, Y.; Wen, Y.; Zhou, P. Ultrasonography-based radiomics and computer-aided diagnosis in thyroid nodule management: Performance comparison and clinical strategy optimization. Front. Endocrinol. 2023, 14, 1140816. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2015, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Duick, D.S.; Klopper, J.P.; Diggans, J.C.; Friedman, L.; Kennedy, G.C.; Lanman, R.B.; McIver, B. The Impact of Benign Gene Expression Classifier Test Results on the Endocrinologist—Patient Decision to Operate on Patients with Thyroid Nodules with Indeterminate FineNeedle Aspiration Cytopathology. Thyroid 2012, 22, 996–1001. [Google Scholar] [CrossRef] [PubMed]
- Nardi, F.; Basolo, F.; Crescenzi, A.; Fadda, G.; Frasoldati, A.; Palombini, L.; Orlandi, F.; Papini, E.; Zini, M.; Pontecorvi, A.; et al. Italian Consensus for the classification and reporting of thyroid cytology. J. Endocrinol. Investig. 2014, 37, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Baloch, Z.W.; Li Volsi, V.A.; Asa, S.L.; Rosai, J.; Merino, M.J.; Randolph, G.; Vielh, P.; DeMay, R.M.; Sidawy, M.K.; Frable, W.J. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: A synopsis of the National Cancer Institute Thyroid Fine-needle Aspiration State of the Science Conference. Diagn. Cytopahol. 2008, 36, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.Z.; Cibas, E.S. The Bethesda System for Reporting Thyroid Cytopathology: Definitions, Criteria and Explanatory Notes; Springer: New York, NY, USA, 2010. [Google Scholar]
- Cross, P.A.; Chandra, A.; Giles, T.; Johnson, S.; Kocjan, G.; Poller, D.; Sthephenson, T. Guidance on the Reporting of Thyroid Cytology Specimens. Available online: https://www.rcpath.org/static/d40af26c-0e49-4d40-8fce4a38f2a5c44b/G089-Guidance-on-the-reporting-of-thyroid-cytology-specimensFor-Publication.pdf (accessed on 7 October 2024).
- Sorrenti, S.; Dolcetti, V.; Radzina, M.; Bellini, M.I.; Frezza, F.; Munir, K.; Grani, G.; Durante, C.; D’Andrea, V.; David, E.; et al. Artificial Intelligence for Thyroid Nodule Characterization: Where Are We Standing? Cancers 2022, 14, 3357. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, W.W.; Zhang, D.; Ni, X.J. A Review of the Role of Ultrasound Radiomics and Its Application and Limitations in the Investigation of Thyroid Disease. Med. Sci. Monit. 2022, 28, e937738. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, H.; Jin, Y.; Dai, L.; Zhang, M.; Qiu, Y.; Wang, K.; Tian, J.; Zheng, J. Differential Diagnosis of Benign and Malignant Thyroid Nodules Using Deep Learning Radiomics of Thyroid Ultrasound Images. Eur. J. Radiol. 2020, 127, 108992. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Ma, B. Radiomics Features of Different Sizes of Medullary Thyroid Carcinoma (MTC) and Papillary Thyroid Carcinoma (PTC) Tumors: A Comparative Study. Clin. Med. Insights Oncol. 2022, 16, 11795549221097675. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McGill, R.; Turkey, J.W.; Larsen, W.A. Variations of Box Plots. Am. Stat. 1978, 32, 12–16. [Google Scholar] [CrossRef]
- Blum, M. Ultrasonography of the Thyroid. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Chang, Y.; Paul, A.K.; Kim, N.; Baek, J.H.; Choi, Y.J.; Ha, E.J.; Lee, K.D.; Lee, H.S.; Shin, D.; Kim, N. Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: A comparison with radiologist-based assessments. Med. Phys. 2016, 43, 554. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Liang, J.; Huang, X.; Hu, H.; Liu, Y.; Zhou, Q.; Cao, Q.; Wang, W.; Liu, B.; Zheng, Y.; Li, X.; et al. Predicting malignancy in thyroid nodules: Radiomics score versus 2017 American College of Radiology thyroid imaging, reporting and data system. Thyroid 2018, 28, 1024–1033. [Google Scholar] [CrossRef] [PubMed]
- Gild, M.L.; Chan, M.; Gajera, J.; Lurie, B.; Gandomkar, Z.; Clifton-Bligh, R.J. Risk stratification of indeterminate thyroid nodules using ultrasound and machine learning algorithms. Clin. Endocrinol. 2022, 96, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Fang, Z.; Zhang, P.; Yang, Y.; Zhang, H.; Wang, Z.; Ren, J. Radiomics score combined with ACR TI-RADS in discriminating benign and malignant thyroid nodules based on ultrasound images: A retrospective study. Diagnostics 2021, 11, 1011. [Google Scholar] [CrossRef] [PubMed]
Model | Metric | Training | Validation | Internal Testing (Mean) | Internal Testing (Majority Vote) |
---|---|---|---|---|---|
1 | ROC-AUC (%) (95% CI) | 100 1 [99,100] | 83 2 [81–84] | 84 2 [80–87] | 85 |
Accuracy (%) (95% CI) | 100 1 [99,100] | 79 2 [79,80] | 81 2 [77–85] | 83 | |
Sensitivity (%) (95% CI) | 100 1 [99,100] | 67 2 [81–84] | 68 2 [64–71] | 70 | |
Specificity (%) (95% CI) | 100 1 [99,100] | 84 2 [83–85] | 87 2 [82–91] | 88 | |
PPV (%) (95% CI) | 100 1 [99,100] | 63 2 [60–66] | 66 2 [58–75] | 70 | |
NPV (%) (95% CI) | 100 1 [99,100] | 87 2 [86–89] | 87 2 [86–89] | 88 | |
2 | ROC-AUC (%) (95% CI) | 84 2 [83–86] | 81 2 [79–83] | 79 2 [76–83] | 80 |
Accuracy (%) (95% CI) | 77 2 [76–78] | 73 2 [71–76] | 75 2 [72–77] | 75 | |
Sensitivity (%) (95% CI) | 78 2 [78,79] | 74 2 [72–77] | 76 2 [69–83] | 78 | |
Specificity (%) (95% CI) | 76 2 [74–78] | 73 2 [70–76] | 74 2 [71–77] | 75 | |
PPV (%) (95% CI) | 77 2 [76–78] | 53 2 [49–57] | 54 2 [51–56] | 54 | |
NPV (%) (95% CI) | 77 2 [77,78] | 88 2 [87–89] | 89 2 [86–92] | 89 | |
3 | ROC-AUC (%) (95% CI) | 95 2 [94–96] | 62 2 [60–64] | 77 2 [73–81] | 79 |
Accuracy (%) (95% CI) | 87 2 [85–88] | 58 2 [56–61] | 71 2 [67–74] | 75 | |
Sensitivity (%) (95% CI) | 96 2 [95–98] | 57 2 [47–68] | 71 2 [60–82] | 73 | |
Specificity (%) (95% CI) | 77 2 [74–79] | 59 2 [53–64] | 71 2 [66–76] | 75 | |
PPV (%) (95% CI) | 81 2 [79–83] | 36 2 [35–37] | 49 2 [45–53] | 54 | |
NPV (%) (95% CI) | 96 2 [94–97] | 79 2 [75–82] | 86 2 [82–90] | 88 |
Metric | External Testing of Model 1 |
---|---|
Accuracy (%) (95% CI) | 90 [77–100] |
Sensitivity (%) (95% CI) | 87 [73–100] |
Specificity (%) (95% CI) | 100 [100] |
PPV (%) (95% CI) | 100 [100] |
NPV (%) (95% CI) | 75 [54–96] |
# | Feature Family | Feature Nomenclature | Median in the Benign Class (95% CI) | Median in the Malignant Class (95% CI) | Uncorrected p-Value | Corrected p-Value |
---|---|---|---|---|---|---|
1 | Neighbouring Grey Level Dependence Matrix | US_gradient_dependence Count Energy | 1.63 × 10−2 [1.56 × 10−2–1.69 × 10−2] | 1.87 × 10−2 [1.83 × 10−2–1.91 × 10−2] | <0.005 | <0.005 |
2 | Neighbourhood Grey Tone Difference Matrix | US_square_complexity | 1189.3 [1082.33–1296.26] | 1641.68 [1552.62–1730.75] | <0.005 | <0.005 |
3 | Grey-Level Co-Occurrence Matrix | US_LoG_autocorrelation | 1542.46 [1433.46–1651.45] | 1289.97 [1224.34–1355.59] | <0.005 | <0.005 |
4 | Neighbouring Grey Level Dependence Matrix | US_LoG_high Grey Level Count Emphasis | 1544.4 [1437.37–1651.44] | 1292.93 [1227.6–1358.26] | <0.005 | <0.005 |
5 | Grey-Level Run Length Matrix | US_LoG_High Grey Level Run Emphasis | 1525.45 [1419.45–1631.44] | 1289.15 [1225–1353.3] | <0.005 | <0.005 |
6 | Grey-Level Co-Occurrence Matrix | US_LoG_sum Average | 77.19 [74.38–79.99] | 70.51 [68.64–72.38] | <0.005 | <0.005 |
7 | Grey-Level Co-Occurrence Matrix | US_LoG_joint Average | 38.59 [37.19–40] | 35.25 [34.32–36.19] | <0.005 | <0.005 |
8 | Intensity Histogram | US_LoG_mean | 38.58 [37.18–39.98] | 35.24 [34.31–36.17] | <0.005 | <0.005 |
9 | Intensity-Based Statistics | US_LoG_Quartile Coefficient | 4.48 [3.47–5.48] | 9.96 [7.75–12.16] | <0.005 | <0.005 |
10 | Neighbourhood Grey Tone Difference Matrix | US_square_coarseness | 1.73 × 10−3 [1.40 × 10−3–2.06 × 10−3] | 8.66 × 10−4 [7.35 × 10−4–9.96 × 10−4] | <0.005 | <0.005 |
11 | Neighbouring Grey Level Dependence Matrix | US_squareroot_dependence Count Variance | 2.88 [2.62–3.14] | 2.32 [2.19–2.45] | <0.005 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrisi, A.; Seri, E.; Dolcetti, V.; Miseo, L.; Elia, F.; Lo Conte, G.; Del Gaudio, G.; Pacini, P.; Barbato, A.; David, E.; et al. A Machine Learning Model Based on Thyroid US Radiomics to Discriminate Between Benign and Malignant Nodules. Cancers 2024, 16, 3775. https://doi.org/10.3390/cancers16223775
Guerrisi A, Seri E, Dolcetti V, Miseo L, Elia F, Lo Conte G, Del Gaudio G, Pacini P, Barbato A, David E, et al. A Machine Learning Model Based on Thyroid US Radiomics to Discriminate Between Benign and Malignant Nodules. Cancers. 2024; 16(22):3775. https://doi.org/10.3390/cancers16223775
Chicago/Turabian StyleGuerrisi, Antonino, Elena Seri, Vincenzo Dolcetti, Ludovica Miseo, Fulvia Elia, Gianmarco Lo Conte, Giovanni Del Gaudio, Patrizia Pacini, Angelo Barbato, Emanuele David, and et al. 2024. "A Machine Learning Model Based on Thyroid US Radiomics to Discriminate Between Benign and Malignant Nodules" Cancers 16, no. 22: 3775. https://doi.org/10.3390/cancers16223775
APA StyleGuerrisi, A., Seri, E., Dolcetti, V., Miseo, L., Elia, F., Lo Conte, G., Del Gaudio, G., Pacini, P., Barbato, A., David, E., & Cantisani, V. (2024). A Machine Learning Model Based on Thyroid US Radiomics to Discriminate Between Benign and Malignant Nodules. Cancers, 16(22), 3775. https://doi.org/10.3390/cancers16223775