Optimizing Niclosamide for Cancer Therapy: Improving Bioavailability via Structural Modification and Nanotechnology
Simple Summary
Abstract
1. Introduction
2. Niclosamide’s Mechanisms of Actions
2.1. Mitochondrial Dysfunction
2.2. STAT3 Signaling Pathway
2.3. mTOR Pathway
2.4. Wnt/β-Catenin Pathway Inhibition
2.5. NF-κB Pathway
3. Brief Comparison of Niclosamide with Other Cancer Therapeutics Targeting Similar Pathways
3.1. Niclosamide v. CCCP and FCCP (Mitochondrial Uncoupling)
3.2. Niclosamide v. WP1006 (STAT3 Inhibitor)
3.3. Niclosamide v. IKK Inhibitors (NF-kB Inhibition)
4. Optimizing Niclosamide’s Bioavailability
4.1. Structural Optimization of Niclosamide for Enhanced Uncoupling Activity
- An acid-dissociable group: An acid-dissociable group on an uncoupler allows it to alternate between a protonated (neutral) form and a deprotonated (negatively charged) form. Once inside the matrix, where the pH is relatively higher (less acidic) than in the intermembrane space, the acid-dissociable group releases the proton (H+). This action converts the uncoupler into its deprotonated, negatively charged form. The study notes a weak acidic group, such as a phenolic hydroxyl (OH), or a carboxylic acid (COOH), may serve as one.
- A large hydrophobic moiety: A large hydrophobic group is necessary for integrating the uncoupler into the lipid bilayer of the mitochondrial membrane. This moiety enhances the lipophilicity of the uncoupler, allowing it to reside within the hydrophobic environment of the membrane. It helps stabilize the uncoupler within the membrane, ensuring effective interaction with the lipid bilayer and facilitating its function in transporting protons across the membrane. Examples are tert-butyl groups or long alkyl chains.
- A strong electron-withdrawing group: The presence of a strong electron-withdrawing group is essential to stabilize the negative charge that forms on the uncoupler when it dissociates to release a proton. This stabilization is important for maintaining the uncoupler in a form that can continue to shuttle protons across the membrane. Electron-withdrawing groups increase the acidity of the dissociable group, making it easier for the uncoupler to release a proton and participate in the proton transport process. Functional groups like nitro (NO2), trifluoromethyl (CF3), or cyano (CN) may fulfill this role.
- Uncoupling is due to its action as protonophores (allowing protons to flow freely across the membrane without being coupled to ATP synthesis).
- The stability of uncoupler anions in the hydrophobic membrane is crucial.
- High stability is achieved through mechanisms specific to each uncoupler, involving delocalization of the polar ionic charge.
4.2. Overcoming Niclosamide’s First-Pass Metabolism Challenges
5. Niclosamide with Modified Structures
5.1. Niclosamide Ethanolamine Salt
5.2. Niclosamide Piperazine Salt
5.3. Niclosamide Derivatives and Their Structure-Activity Relationship (SAR) Studies
6. Nanoparticle-Based Delivery Systems for Niclosamide
6.1. Targeting
6.2. PEGylation
6.3. Electrospray Technique
6.4. Supercritical Technologies
7. Ongoing Clinical Trials of Niclosamide
7.1. Reformulated Niclosamide with Abiraterone/Prednisone with Castration-Resistant Prostate Cancer: NCT02519582
7.2. Niclosamide on Colon Cancer, Post-Primary Tumor Resection: ClinicalTrials.gov Identifier: NCT02687009
7.3. Combination Therapy of Niclosamide and Enzalutamide with Castration-Resistant Prostate Cancer: ClinicalTrials.gov Identifier: NCT04296851
8. Future Directions and Challenges
8.1. Bioavailability and Solubility Challenges
8.2. Mechanisms of Resistance
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jiang, H.; Li, A.M.; Ye, J. The Magic Bullet: Niclosamide. Front. Oncol. 2022, 12, 1004978. [Google Scholar] [CrossRef] [PubMed]
- Kadri, H.; Lambourne, O.A.; Mehellou, Y. Niclosamide, a Drug with Many (Re)purposes. ChemMedChem 2018, 13, 1088–1091. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, J.B.; Bhatia, R.; Kanchan, R.K.; Raut, P.; Mallapragada, S.; Ly, Q.P.; Batra, S.K.; Rachagani, S. Repurposing Niclosamide for Targeting Pancreatic Cancer by Inhibiting Hh/Gli Non-Canonical Axis of Gsk3β. Cancers 2021, 13, 3105. [Google Scholar] [CrossRef] [PubMed]
- Arend, R.C.; Londoño-Joshi, A.I.; Gangrade, A.; Katre, A.A.; Kurpad, C.; Li, Y.; Samant, R.S.; Li, P.K.; Landen, C.N.; Yang, E.S.; et al. Niclosamide and Its Analogs Are Potent Inhibitors of Wnt/β-Catenin, mTOR, and STAT3 Signaling in Ovarian Cancer. Oncotarget 2016, 7, 86803–86815. [Google Scholar] [CrossRef]
- Alasadi, A.; Chen, M. Effect of Mitochondrial Uncouplers Niclosamide Ethanolamine (NEN) and Oxyclozanide on Hepatic Metastasis of Colon Cancer. Cancer Chemother. Pharmacol. 2019, 84, 91–101. [Google Scholar] [CrossRef]
- Kumar, R.; Coronel, L.; Somalanka, B.; Raju, A.; Aning, O.A.; An, O.; Ho, Y.S.; Chen, S.; Mak, S.Y.; Hor, P.Y.; et al. Mitochondrial Uncoupling Reveals a Novel Therapeutic Opportunity for p53-Defective Cancers. Nat. Commun. 2018, 9, 3931. [Google Scholar] [CrossRef]
- Fan, X.; Li, H.; Ding, X.; Zhang, Q.Y. Contributions of Hepatic and Intestinal Metabolism to the Disposition of Niclosamide, a Repurposed Drug with Poor Bioavailability. Drug Metab. Dispos. 2019, 47, 756–763. [Google Scholar] [CrossRef]
- Bhalani, D.V.; Nutan, B.; Kumar, A.; Singh Chandel, A.K. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022, 10, 2055. [Google Scholar] [CrossRef]
- DrugBank. Solubility of Niclosamide. Available online: https://www.jfda-online.com/cgi/viewcontent.cgi?article=2464&context=journal (accessed on 1 October 2024).
- Kapale, S.S.; Chaudhari, H.K. Niclosamide & Challenges in Chemical Modifications: A Broad Review on Enhancement of Solubility. Pharmaceutics 2024, 16, 1341. [Google Scholar]
- Ray, E.; Vaghasiya, K.; Sharma, A.; Shukla, R.; Khan, R.; Kumar, A.; Verma, R.K. Autophagy-Inducing Inhalable Co-crystal Formulation of Niclosamide-Nicotinamide for Lung Cancer Therapy. AAPS PharmSciTech 2020, 21, 260. [Google Scholar] [CrossRef]
- Xie, Y.; Yao, Y. Octenylsuccinate Hydroxypropyl Phytoglycogen Enhances the Solubility and In-Vitro Antitumor Efficacy of Niclosamide. Pharmaceutics 2023, 15, 2043. [Google Scholar] [CrossRef] [PubMed]
- Jonckheere, A.I.; Smeitink, J.A.; Rodenburg, R.J. Mitochondrial ATP Synthase: Architecture, Function, and Pathology. J. Inherit. Metab. Dis. 2012, 35, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.; Moyle, J. Chemiosmotic Hypothesis of Oxidative Phosphorylation. Nature 1967, 213, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Jastroch, M.; Divakaruni, A.S.; Mookerjee, S.; Treberg, J.R.; Brand, M.D. Mitochondrial Proton and Electron Leaks. Essays Biochem. 2010, 47, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Samartsev, V.N.; Semenova, A.A.; Dubinin, M.V. A Comparative Study of the Action of Protonophore Uncouplers and Decoupling Agents as Inducers of Free Respiration in Mitochondria in States 3 and 4: Theoretical and Experimental Approaches. Cell Biochem. Biophys. 2020, 78, 203–216. [Google Scholar] [CrossRef]
- Berry, B.J.; Trewin, A.J.; Amitrano, A.M.; Kim, M.; Wojtovich, A.P. Use the Protonmotive Force: Mitochondrial Uncoupling and Reactive Oxygen Species. J. Mol. Biol. 2018, 430, 3873–3891. [Google Scholar] [CrossRef]
- Ricquier, D.; Bouillaud, F. Mitochondrial Uncoupling Proteins: From Mitochondria to the Regulation of Energy Balance. Biosci. Rep. 2000, 20, 33–45. [Google Scholar] [CrossRef]
- Rawling, T. Aryl Urea Substituted Fatty Acids: A New Class of Protonophoric Mitochondrial Uncoupler That Utilizes a Synthetic Anion Transporter. Chem. Sci. 2020, 11, 47. [Google Scholar] [CrossRef]
- Shrestha, R.; Johnson, E.; Byrne, F.L. Exploring the Therapeutic Potential of Mitochondrial Uncouplers in Cancer. Mol. Metab. 2021, 51, 101222. [Google Scholar] [CrossRef]
- Demine, S. Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019, 8, 795. [Google Scholar] [CrossRef]
- Ng, M.Y.; Song, Z.J.; Tan, C.H.; Bassetto, M.; Hagen, T. Structural Investigations on the Mitochondrial Uncouplers Niclosamide and FCCP. J. Bioenerg. Biomembr. 2021, 53, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Kauerová, T.; Pérez-Pérez, M.J.; Kollar, P. Salicylanilides and Their Anticancer Properties. Int. J. Mol. Sci. 2023, 24, 1728. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.; Shaw, R.J. AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Mol. Cell 2017, 66, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.H.; Li, Y.R.; Lin, S.H.; Chao, Y.H.; Chen, C.H.; Chan, P.C.; Lin, C.H. Antihelminthic Niclosamide Induces Autophagy and Delayed Apoptosis in Human Non-small Lung Cancer Cells In Vitro and In Vivo. Anticancer Res. 2020, 40, 1405–1417. [Google Scholar] [CrossRef]
- Gottlieb, E.; Armour, S.M.; Harris, M.H.; Thompson, C.B. Mitochondrial Membrane Potential Regulates Matrix Configuration and Cytochrome c Release During Apoptosis. Cell Death Differ. 2003, 10, 709–717. [Google Scholar] [CrossRef]
- Green, D.R. Apoptotic Pathways: Ten Minutes to Dead. Cell 2005, 121, 671–674. [Google Scholar] [CrossRef]
- Yuan, S.; Akey, C.W. Apoptosome Structure, Assembly, and Procaspase Activation. Structure 2013, 21, 501–515. [Google Scholar] [CrossRef]
- Harrison, D.A. The Jak/STAT Pathway. Cold Spring Harb. Perspect. Biol. 2012, 4, a011205. [Google Scholar] [CrossRef]
- Hirano, T.; Ishihara, K.; Hibi, M. Roles of STAT3 in Mediating the Cell Growth, Differentiation, and Survival Signals Relayed Through the IL-6 Family of Cytokine Receptors. Oncogene 2000, 19, 2548–2556. [Google Scholar] [CrossRef]
- Siveen, K.S.; Sikka, S.; Surana, R.; Dai, X.; Zhang, J.; Kumar, A.P.; Tan, B.K.; Sethi, G.; Bishayee, A. Targeting the STAT3 Signaling Pathway in Cancer: Role of Synthetic and Natural Inhibitors. Biochim. Biophys. Acta 2014, 1845, 136–154. [Google Scholar] [CrossRef]
- Li, Y.; Li, P.K.; Roberts, M.J.; Arend, R.C.; Samant, R.S.; Buchsbaum, D.J. Multi-targeted Therapy of Cancer by Niclosamide: A New Application for an Old Drug. Cancer Lett. 2014, 349, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Laplante, M.; Sabatini, D.M. mTOR Signaling in Growth Control and Disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [PubMed]
- Verstovsek, S.; Manshouri, T.; Quintás-Cardama, A.; Harris, D.; Cortes, J.; Giles, F.J.; Kantarjian, H.; Priebe, W.; Estrov, Z. WP1066, a Novel JAK2 Inhibitor, Suppresses Proliferation and Induces Apoptosis in Erythroid Human Cells Carrying the JAK2 V617F Mutation. Clin. Cancer Res. 2008, 14, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Groot, J.; Ott, M.; Wei, J.; Kassab, C.; Fang, D.; Najem, H.; O’Brien, B.; Weathers, S.P.; Matsouka, C.K.; Majd, N.K.; et al. A First-in-Human Phase I Trial of the Oral p-STAT3 Inhibitor WP1066 in Patients with Recurrent Malignant Glioma. CNS Oncol. 2022, 11, CNS87. [Google Scholar] [CrossRef]
- Fonseca, B.D.; Diering, G.H.; Bidinosti, M.A.; Dalal, K.; Alain, T.; Balgi, A.D.; Forestieri, R.; Nodwell, M.; Rajadurai, C.V.; Gunaratnam, C.; et al. Structure-Activity Analysis of Niclosamide Reveals Potential Role for Cytoplasmic pH in Control of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling. J. Biol. Chem. 2012, 287, 17530–17545. [Google Scholar] [CrossRef]
- Niyomdecha, N.; Suptawiwat, O.; Boonarkart, C.; Jitobaom, K.; Auewarakul, P. Inhibition of Human Immunodeficiency Virus Type 1 by Niclosamide Through mTORC1 Inhibition. Heliyon 2020, 6, e04050. [Google Scholar] [CrossRef]
- Wei, W.; Liu, H.; Yuan, J.; Yao, Y. Targeting Wnt/β-Catenin by Anthelmintic Drug Niclosamide Overcomes Paclitaxel Resistance in Esophageal Cancer. Fundam. Clin. Pharmacol. 2021, 35, 165–173. [Google Scholar] [CrossRef]
- Song, P.; Gao, Z.; Bao, Y.; Chen, L.; Huang, Y.; Liu, Y.; Dong, Q.; Wei, X. Wnt/β-Catenin Signaling Pathway in Carcinogenesis and Cancer Therapy. J. Hematol. Oncol. 2024, 17, 46. [Google Scholar] [CrossRef]
- Ranes, M.; Zaleska, M.; Sakalas, S.; Knight, R.; Guettler, S. Reconstitution of the Destruction Complex Defines Roles of AXIN Polymers and APC in β-Catenin Capture, Phosphorylation, and Ubiquitylation. Mol. Cell 2021, 81, 3246–3261.e11. [Google Scholar] [CrossRef]
- Lu, W.; Lin, C.; Roberts, M.J.; Waud, W.R.; Piazza, G.A.; Li, Y. Niclosamide Suppresses Cancer Cell Growth by Inducing Wnt Co-receptor LRP6 Degradation and Inhibiting the Wnt/β-Catenin Pathway. PLoS ONE 2011, 6, e29290. [Google Scholar] [CrossRef]
- Arend, R.C.; Londoño-Joshi, A.I.; Samant, R.S.; Li, Y.; Conner, M.; Hidalgo, B.; Alvarez, R.D.; Landen, C.N.; Straughn, J.M.; Buchsbaum, D.J. Inhibition of Wnt/β-Catenin Pathway by Niclosamide: A Therapeutic Target for Ovarian Cancer. Gynecol. Oncol. 2014, 134, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Gao, Y.; Zhang, X.; Wang, J.; Ding, D.; Zhang, Y.; Zhang, J.; Chen, H. Niclosamide Sensitizes Triple-Negative Breast Cancer Cells to Ionizing Radiation in Association with the Inhibition of Wnt/β-Catenin Signaling. Oncotarget 2016, 7, 42126–42138. [Google Scholar] [CrossRef] [PubMed]
- DiDonato, J.A.; Mercurio, F.; Karin, M. NF-κB and the Link Between Inflammation and Cancer. Immunol. Rev. 2012, 246, 379–400. [Google Scholar] [CrossRef] [PubMed]
- Tojima, Y.; Fujimoto, A.; Delhase, M.; Chen, Y.; Hatakeyama, S.; Nakayama, K.; Kaneko, Y.; Nimura, Y.; Motoyama, N.; Ikeda, K.; et al. NAK is an IkappaB kinase-activating kinase. Nature 2000, 404, 778–782. [Google Scholar] [CrossRef]
- Jin, Y.; Lu, Z.; Ding, K.; Li, J.; Du, X.; Chen, C.; Sun, X.; Wu, Y.; Zhou, J.; Pan, J. Antineoplastic Mechanisms of Niclosamide in Acute Myelogenous Leukemia Stem Cells: Inactivation of the NF-kappaB Pathway and Generation of Reactive Oxygen Species. Cancer Res. 2010, 70, 2516–2527. [Google Scholar] [CrossRef]
- Liu, F.L.; Chen, C.L.; Lee, C.C.; Wu, C.C.; Hsu, T.H.; Tsai, C.Y.; Huang, H.S.; Chang, D.M. The Simultaneous Inhibitory Effect of Niclosamide on RANKL-Induced Osteoclast Formation and Osteoblast Differentiation. Int. J. Med. Sci. 2017, 14, 840–852. [Google Scholar] [CrossRef]
- Iaubasarova, I.R.; Khailova, L.S.; Firsov, A.M.; Grivennikova, V.G.; Kirsanov, R.S.; Korshunova, G.A.; Kotova, E.A.; Antonenko, Y.N. The Mitochondria-Targeted Derivative of the Classical Uncoupler of Oxidative Phosphorylation Carbonyl Cyanide m-Chlorophenylhydrazone Is an Effective Mitochondrial Recoupler. PLoS ONE 2020, 15, e0244499. [Google Scholar] [CrossRef]
- Mohiuddin, S.G.; Ghosh, S.; Kavousi, P.; Orman, M.A. Proton Motive Force Inhibitors Are Detrimental to Methicillin-Resistant Staphylococcus aureus Strains. Microbiol. Spectr. 2022, 10, e0202422. [Google Scholar] [CrossRef]
- Han, Y.H.; Kim, S.H.; Kim, S.Z.; Park, W.H. Carbonyl Cyanide p-(Trifluoromethoxy) Phenylhydrazone (FCCP) as an O2(*-) Generator Induces Apoptosis via the Depletion of Intracellular GSH Contents in Calu-6 Cells. Lung Cancer 2009, 63, 201–209. [Google Scholar] [CrossRef]
- Han, Y.H.; Moon, H.J.; You, B.R.; Kim, S.Z.; Kim, S.H.; Park, W.H. Effects of Carbonyl Cyanide p-(Trifluoromethoxy) Phenylhydrazone on the Growth Inhibition in Human Pulmonary Adenocarcinoma Calu-6 Cells. Toxicology 2009, 265, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.H.; Yang, Y.M.; Park, W.H. Carbonyl Cyanide p-(Trifluoromethoxy) Phenylhydroazone Induces Caspase-Independent Apoptosis in As4.1 Juxtaglomerular Cells. Anticancer Res. 2010, 30, 2863–2868. [Google Scholar] [PubMed]
- Han, Y.H.; Park, W.H. Intracellular Glutathione Levels Are Involved in Carbonyl Cyanide p-(Trifluoromethoxy) Phenylhydrazone-Induced Apoptosis in As4.1 Juxtaglomerular Cells. Int. J. Mol. Med. 2011, 27, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.X.; Ding, K.; Wang, C.Y. Niclosamide, an Old Antihelminthic Agent, Demonstrates Antitumor Activity by Blocking Multiple Signaling Pathways of Cancer Stem Cells. Chin. J. Cancer 2012, 31, 178–184. [Google Scholar] [CrossRef]
- Tsujita, Y.; Horiguchi, A.; Tasaki, S.; Isono, M.; Asano, T.; Ito, K.; Asano, T.; Mayumi, Y.; Kushibiki, T. STAT3 Inhibition by WP1066 Suppresses the Growth and Invasiveness of Bladder Cancer Cells. Oncol. Rep. 2017, 38, 2197–2204. [Google Scholar] [CrossRef]
- Judd, L.M.; Menheniott, T.R.; Ling, H.; Jackson, C.B.; Howlett, M.; Kalantzis, A.; Priebe, W.; Giraud, A.S. Inhibition of the JAK2/STAT3 Pathway Reduces Gastric Cancer Growth In Vitro and In Vivo. PLoS ONE 2014, 9, e95993. [Google Scholar] [CrossRef]
- Qiu, Y.; Pei, D.; Wang, M.; Wang, Q.; Duan, W.; Wang, L.; Liu, K.; Guo, Y.; Luo, L.; Guo, Z.; et al. Nuclear autoantigenic sperm protein facilitates glioblastoma progression and radioresistance by regulating the ANXA2/STAT3 axis. CNS Neurosci. Ther. 2024, 30, e14709. [Google Scholar] [CrossRef]
- Ren, X.; Duan, L.; He, Q.; Zhang, Z.; Zhou, Y.; Wu, D.; Pan, J.; Pei, D.; Ding, K. Identification of Niclosamide as a New Small-Molecule Inhibitor of the STAT3 Signaling Pathway. ACS Med. Chem. Lett. 2010, 1, 454–459. [Google Scholar] [CrossRef]
- Ye, T.; Xiong, Y.; Yan, Y.; Xia, Y.; Song, X.; Liu, L.; Li, D.; Wang, N.; Zhang, L.; Zhu, Y.; et al. The Anthelmintic Drug Niclosamide Induces Apoptosis, Impairs Metastasis, and Reduces Immunosuppressive Cells in Breast Cancer Model. PLoS ONE 2014, 9, e85887. [Google Scholar] [CrossRef]
- Gyamfi, J.; Lee, Y.H.; Min, B.S.; Choi, J. Niclosamide Reverses Adipocyte-Induced Epithelial-Mesenchymal Transition in Breast Cancer Cells via Suppression of the Interleukin-6/STAT3 Signalling Axis. Sci. Rep. 2019, 9, 11336. [Google Scholar] [CrossRef]
- Chen, D.; Frezza, M.; Schmitt, S.; Kanwar, J.; Dou, Q.P. Bortezomib as the First Proteasome Inhibitor Anticancer Drug: Current Status and Future Perspectives. Curr. Cancer Drug Targets 2011, 11, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Zajączkowska, R.; Kocot-Kępska, M.; Leppert, W.; Wrzosek, A.; Mika, J.; Wordliczek, J. Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int. J. Mol. Sci. 2019, 20, 1451. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Egashira, N. Pathological Mechanisms of Bortezomib-Induced Peripheral Neuropathy. Int. J. Mol. Sci. 2021, 22, 888. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Tao, H.; Alasadi, A.; Huang, Q.; Jin, S. Niclosamide Piperazine Prevents High-Fat Diet-Induced Obesity and Diabetic Symptoms in Mice. Eat. Weight Disord. 2019, 24, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wei, W.; Ma, L.; Yang, B.; Gill, R.M.; Chua, M.S.; Butte, A.J.; So, S. Computational Discovery of Niclosamide Ethanolamine, a Repurposed Drug Candidate That Reduces Growth of Hepatocellular Carcinoma Cells In Vitro and in Mice by Inhibiting Cell Division Cycle 37 Signaling. Gastroenterology 2017, 152, 2022–2036. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, J.; Du, J.; Wang, H.; Liu, J.; Wang, G. Niclosamide as a Promising Therapeutic Player in Human Cancer and Other Diseases. Int. J. Mol. Sci. 2022, 23, 16116. [Google Scholar] [CrossRef]
- Terada, H. Uncouplers of Oxidative Phosphorylation. Environ. Health Perspect. 1990, 87, 213–218. [Google Scholar] [CrossRef]
- Douch, P.G.; Gahagan, H.M. The Metabolism of Niclosamide and Related Compounds by Moniezia Expansa, Ascaris Lumbricoides var Suum, and Mouse- and Sheep-Liver Enzymes. Xenobiotica 1977, 7, 301–307. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, Y.; Liu, X.; Yue, R.; Wang, T.; Wang, Y.; Wang, M. Study on the Mechanism of Niclosamide Ethanolamine Salt-Hydroxypropyl-Β-Cyclodextrin in the Treatment of Colon Cancer Based on Metabolomics and 16s rRNA Technology. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4834305 (accessed on 1 October 2024).
- Alagga, A.A.; Pellegrini, M.V.; Gupta, V. Drug Absorption. [Updated 2024 Feb 27]. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557405/ (accessed on 1 October 2024).
- Stoitsova, S.R.; Gorchilova, L.N.; Daněk, J. Effects of Three Anthelmintics on the Tegument of Hymenolepis fraterna (Cestoda). Parasitology 1992, 104 Pt 1, 143–152. [Google Scholar] [CrossRef]
- Woo, J.; Cisneros, F.; Mito, S.; Valdivia, B. Therapeutic Potential of Niclosamide Piperazine and Niclosamide Ethanolamine o-Alkyl Tethered Derivatives in Cancer Treatment. Res. Colloq. 2024, 95. Available online: https://scholarworks.utrgv.edu/colloquium/2024/posters/95/ (accessed on 1 October 2024).
- Mito, S.; Cheng, B.; Garcia, B.; Gonzalez, D.; Ooi, X.; Ruiz, T.; Elisarraras, F.; Tsin, A.; Chew, S.A.; Arriaga, M. SAR Study of Niclosamide Derivatives in the Human Glioblastoma U-87 MG Cells. Med. Chem. Res. 2022, 31, 1313–1322. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Z.; Ding, C.; Chu, L.; Zhang, Y.; Terry, K.; Liu, H.; Shen, Q.; Zhou, J. Discovery of O-Alkylamino Tethered Niclosamide Derivatives as Potent and Orally Bioavailable Anticancer Agents. ACS Med. Chem. Lett. 2013, 4, 180–185. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Li, M.; Ye, W.; Zhou, W. Discovery of Degradable Niclosamide Derivatives Able to Specially Inhibit Small Cell Lung Cancer (SCLC). Bioorg. Chem. 2021, 107, 104574. [Google Scholar] [CrossRef] [PubMed]
- Mook, R.A., Jr.; Chen, M.; Lu, J.; Barak, L.S.; Lyerly, H.K.; Chen, W. Small Molecule Modulators of Wnt/β-Catenin Signaling. Bioorg. Med. Chem. Lett. 2013, 23, 2187–2191. [Google Scholar] [CrossRef]
- Yetisgin, A.A.; Cetinel, S.; Zuvin, M.; Kosar, A.; Kutlu, O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 2020, 25, 2193. [Google Scholar] [CrossRef]
- Rizvi, S.A.A.; Saleh, A.M. Applications of Nanoparticle Systems in Drug Delivery Technology. Saudi Pharm. J. 2018, 26, 64–70. [Google Scholar] [CrossRef]
- Barbosa, E.J.; Löbenberg, R.; de Araujo, G.L.B.; Bou-Chacra, N.A. Niclosamide Repositioning for Treating Cancer: Challenges and Nano-Based Drug Delivery Opportunities. Eur. J. Pharm. Biopharm. 2019, 141, 58–69. [Google Scholar] [CrossRef]
- Bhattacharyya, J.; Ren, X.R.; Mook, R.A.; Wang, J.; Spasojevic, I.; Premont, R.T.; Li, X.; Chilkoti, A.; Chen, W. Niclosamide-Conjugated Polypeptide Nanoparticles Inhibit Wnt Signaling and Colon Cancer Growth. Nanoscale 2017, 9, 12709–12717. [Google Scholar] [CrossRef]
- Jose, S.; Cinu, T.A.; Sebastian, R.; Shoja, M.H.; Aleykutty, N.A.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B. Transferrin-Conjugated Docetaxel-PLGA Nanoparticles for Tumor Targeting: Influence on MCF-7 Cell Cycle. Polymers 2019, 11, 1905. [Google Scholar] [CrossRef]
- Hoppenz, P.; Els-Heindl, S.; Beck-Sickinger, A.G. Peptide-Drug Conjugates and Their Targets in Advanced Cancer Therapies. Front. Chem. 2020, 8, 571. [Google Scholar] [CrossRef]
- Yan, S.; Na, J.; Liu, X.; Wu, P. Different Targeting Ligands-Mediated Drug Delivery Systems for Tumor Therapy. Pharmaceutics 2024, 16, 248. [Google Scholar] [CrossRef] [PubMed]
- Manjappa, A.S.; Goel, P.N.; Gude, R.P.; Ramachandra Murthy, R.S. Anti-Neuropilin 1 Antibody Fab’ Fragment Conjugated Liposomal Docetaxel for Active Targeting of Tumours. J. Drug Target. 2014, 22, 698–711. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Wang, B.; Wu, Q.; Wang, G. Combination of Niclosamide and Current Therapies to Overcome Resistance for Cancer: New Frontiers for an Old Drug. Biomed. Pharmacother. 2022, 155, 113789. [Google Scholar] [CrossRef] [PubMed]
- Feola, S.; Chiaro, J.; Martins, B.; Cerullo, V. Uncovering the Tumor Antigen Landscape: What to Know about the Discovery Process. Cancers 2020, 12, 1660. [Google Scholar] [CrossRef]
- Dubey, P.; Gopinath, P. Fabrication of Electrospun Poly(ethylene oxide)-Poly(capro lactone) Composite Nanofibers for Co-Delivery of Niclosamide and Silver Nanoparticles Exhibits Enhanced Anti-Cancer Effects In Vitro. J. Mater. Chem. B 2016, 4, 726–742. [Google Scholar] [CrossRef]
- Russo, A.; Pellosi, D.S.; Pagliara, V.; Milone, M.R.; Pucci, B.; Caetano, W.; Hioka, N.; Budillon, A.; Ungaro, F.; Russo, G.; et al. Biotin-Targeted Pluronic(®) P123/F127 Mixed Micelles Delivering Niclosamide: A Repositioning Strategy to Treat Drug-Resistant Lung Cancer Cells. Int. J. Pharm. 2016, 511, 127–139. [Google Scholar] [CrossRef]
- Mhatre, O.; Reddy, B.P.K.; Patnaik, C.; Chakrabarty, S.; Ingle, A.; De, A.; Srivastava, R. pH-Responsive Delivery of Anti-Metastatic Niclosamide Using Mussel Inspired Polydopamine Nanoparticles. Int. J. Pharm. 2021, 597, 120278. [Google Scholar] [CrossRef]
- Ostadhossein, F.; Misra, S.K.; Mukherjee, P.; Ostadhossein, A.; Daza, E.; Tiwari, S.; Mittal, S.; Gryka, M.C.; Bhargava, R.; Pan, D. Defined Host-Guest Chemistry on Nanocarbon for Sustained Inhibition of Cancer. Small 2016, 12, 5845–5861. [Google Scholar] [CrossRef]
- Reddy, G.B.; Kerr, D.L.; Spasojevic, I.; Tovmasyan, A.; Hsu, D.S.; Brigman, B.E.; Somarelli, J.A.; Needham, D.; Eward, W.C. Preclinical Testing of a Novel Niclosamide Stearate Prodrug Therapeutic (NSPT) Shows Efficacy Against Osteosarcoma. Mol. Cancer Ther. 2020, 19, 1448–1461. [Google Scholar] [CrossRef]
- Naqvi, S.; Mohiyuddin, S.; Gopinath, P. Niclosamide Loaded Biodegradable Chitosan Nanocargoes: An In Vitro Study for Potential Application in Cancer Therapy. R. Soc. Open Sci. 2017, 4, 170611. [Google Scholar] [CrossRef]
- Bajracharya, R.; Song, J.G.; Patil, B.R.; Lee, S.H.; Noh, H.M.; Kim, D.H.; Kim, G.L.; Seo, S.H.; Park, J.W.; Jeong, S.H.; et al. Functional Ligands for Improving Anticancer Drug Therapy: Current Status and Applications to Drug Delivery Systems. Drug Deliv. 2022, 29, 1959–1970. [Google Scholar] [CrossRef] [PubMed]
- Lamers, C.H.; Sleijfer, S.; van Steenbergen, S.; van Elzakker, P.; van Krimpen, B.; Groot, C.; Vulto, A.; den Bakker, M.; Oosterwijk, E.; Debets, R.; et al. Treatment of Metastatic Renal Cell Carcinoma with CAIX CAR-Engineered T Cells: Clinical Evaluation and Management of On-Target Toxicity. Mol. Ther. 2013, 21, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Deliv. Rev. 2016, 99 Pt A, 28–51. [Google Scholar] [CrossRef]
- Eskandani, M.; Mohabbat, A.; Karimiyan, A.; Dadashi, H.; Adibkia, K.; Sanaat, Z.; Vandghanooni, S. MUC1 Aptamer-Conjugated Niclosamide-Loaded PLGA-PEG Nanoparticle Attenuates HIF-1 Stabilization upon Hypoxia in MCF7 Breast Cancer Cells. J. Drug Deliv. Sci. Technol. 2023, 92, 105278. [Google Scholar] [CrossRef]
- Boda, S.K.; Li, X.; Xie, J. Electrospraying: An Enabling Technology for Pharmaceutical and Biomedical Applications: A Review. J. Aerosol Sci. 2018, 125, 164–181. [Google Scholar] [CrossRef]
- Lin, C.K.; Bai, M.Y.; Hu, T.M.; Wang, Y.C.; Chao, T.K.; Weng, S.J.; Huang, R.L.; Su, P.H.; Lai, H.C. Preclinical Evaluation of a Nanoformulated Antihelminthic, Niclosamide, in Ovarian Cancer. Oncotarget 2016, 7, 8993–9006. [Google Scholar] [CrossRef]
- Pantić, M.; Andrejč, D.C.; Marevci, M.K.; Novak, Z.; Knez, Ž. Supercritical Fluids for the Treatment of Bioactive Components; University of Maribor Press: Maribor, Slovenia, 2022. [Google Scholar] [CrossRef]
- Liu, H.; Liang, X.; Peng, Y.; Liu, G.; Cheng, H. Supercritical Fluids: An Innovative Strategy for Drug Development. Bioengineering 2024, 11, 788. [Google Scholar] [CrossRef]
- Kankala, R.K.; Zhang, Y.S.; Wang, S.B.; Lee, C.H.; Chen, A.Z. Supercritical Fluid Technology: An Emphasis on Drug Delivery and Related Biomedical Applications. Adv. Healthc. Mater. 2017, 6, 433. [Google Scholar] [CrossRef]
- Smirnova, I.; Suttiruengwong, S.; Arlt, W. Feasibility Study of Hydrophilic and Hydrophobic Silica Aerogels as Drug Delivery Systems. J. Non-Cryst. Solids 2004, 350, 54–60. [Google Scholar] [CrossRef]
- Parikh, M.; Liu, C.; Wu, C.Y.; Evans, C.P.; Dall’Era, M.; Robles, D.; Pan, C.X. Phase Ib Trial of Reformulated Niclosamide with Abiraterone/Prednisone in Men with Castration-Resistant Prostate Cancer. Sci. Rep. 2021, 11, 6377. [Google Scholar] [CrossRef]
- National Cancer Institute. Clinical Trial: WP1066 in Treating Patients with Recurrent Malignant Glioma. 2016. Available online: https://www.cancer.gov/research/participate/clinical-trials-search/v?id=NCI-2016-01245 (accessed on 1 October 2024).
- Schweizer, M.T.; Haugk, K.; McKiernan, J.S.; Gulati, R.; Cheng, H.H.; Maes, J.L.; Dumpit, R.F.; Nelson, P.S.; Montgomery, B.; McCune, J.S.; et al. A Phase I Study of Niclosamide in Combination with Enzalutamide in Men with Castration-Resistant Prostate Cancer. PLoS ONE 2018, 13, e0198389. [Google Scholar] [CrossRef]
Niclosamide and Derivatives | Solubility in Water, 20~25 °C |
---|---|
Niclosamide | 0.0016 g/L [9] |
Niclosamide Ethanolamine Salt | ~21 g/L [10] |
Niclosamide Piperazine Salt | ~30 g/L [10] |
Niclosamide Nicotinamide Co-crystals | ~0.009 g/L [11] |
Niclosamide Octenylsuccinate Hydroxypropyl Phytoglycogen (OHPP) | 0.133 g/L [12] |
Compound | R1 | R2 | R3 | R4 | IC50 (µM) |
---|---|---|---|---|---|
Niclosamide | OH | Cl | Cl | NO2 | 1.54 |
2 | OH | Cl | H | NO2 | 1.58 |
5 | OH | Cl | H | NH2 | 12.77 |
6 | OH | Cl | Cl | N3 | 1.52 |
7 | OH | Cl | Cl | CF3 | 1.55 |
13 | OH | H | Cl | NO2 | 1.88 |
Compound | R1 | IC50 (μM) | |||
---|---|---|---|---|---|
Breast Cancer | Pancreatic Cancer | ||||
MCF-7 | MDA-MB-231 | AsPC1 | Panc-1 | ||
Niclosamide | 1.06 | 0.79 | 1.47 | 1.73 | |
10 | 0.25 | 0.29 | 2.76 | 0.54 | |
11 | 0.91 | 1.64 | 1.9 | 1.08 |
Compound | R1 | IC50(μM) | |||
---|---|---|---|---|---|
A549 | NCl-H446 | Jurkat | HBE (Normal Cell Line) | ||
1 | H | 7.70 | 0.96 | 1.8 | 6.42 |
2 | COCH3 | 4.13 | 0.92 | 1.5 | 5.76 |
Compound | R1 | R2 | R3 | R4 | IC50 (µM) |
---|---|---|---|---|---|
Niclosamide | OH | Cl | Cl | NO2 | 0.4 |
4 | OH | Br | Cl | NO2 | 0.26 |
5 | OH | Br | H | CF3 | 1.2 |
6 | OH | Cl | H | NO2 | 1.2 |
7 | OH | Cl | OCH3 | NO2 | 0.44 |
Nanoparticle | Target Cells | IC50 (μM) Nano-Niclosamide | IC50 (μM) Niclosamide | Nanoparticle Size (nm) |
---|---|---|---|---|
Elastin-like polypeptide | Colon cancer (HCT116) | 0.94 µM [80] | 0.85 | ~74 nm |
PEO, Ag poly(e-caprolactone) | Lung cancer (A549) Breast cancer (MCF-7) | 1.24 µM [87] 1.21 µM [87] | 1.45 µM 6.5 µg/mL | 632 nm |
Pluronic®, biotin | Lung cancer (A549) | <0.3 µM [88] | 0.9 µM | 25–35 nm |
Polydopamine Nanoparticles | Breast Cancer (MDA-MB-231) | 2.73 µM [89] | 1.88 µM | 146.3 nm |
Nanocarbon | Breast Cancer (MCF-7) | 21 µM [90] | 45 µM | ~55 nm |
Stearate Prodrug | Osteosarcoma (143B, MG63, U2OS, and SaOS2) | 1.27 µM [91] | 1.16 μM | ~100 nm |
Chitosan Nanoparticles | Lung Cancer (A549), Breast Cancer (MCF-7) | 8.75 µM, 7.5 µM [92] | Not provided | 100–120 nm |
Polypeptide Nanoparticles | Colorectal Cancer (HCT116) | 0.94 µM [93] | 0.85 | <100 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiggins, R.; Woo, J.; Mito, S. Optimizing Niclosamide for Cancer Therapy: Improving Bioavailability via Structural Modification and Nanotechnology. Cancers 2024, 16, 3548. https://doi.org/10.3390/cancers16203548
Wiggins R, Woo J, Mito S. Optimizing Niclosamide for Cancer Therapy: Improving Bioavailability via Structural Modification and Nanotechnology. Cancers. 2024; 16(20):3548. https://doi.org/10.3390/cancers16203548
Chicago/Turabian StyleWiggins, Russell, Jihoo Woo, and Shizue Mito. 2024. "Optimizing Niclosamide for Cancer Therapy: Improving Bioavailability via Structural Modification and Nanotechnology" Cancers 16, no. 20: 3548. https://doi.org/10.3390/cancers16203548
APA StyleWiggins, R., Woo, J., & Mito, S. (2024). Optimizing Niclosamide for Cancer Therapy: Improving Bioavailability via Structural Modification and Nanotechnology. Cancers, 16(20), 3548. https://doi.org/10.3390/cancers16203548