Targeted Therapy in Breast Cancer: Advantages and Advancements of Antibody–Drug Conjugates, a Type of Chemo-Biologic Hybrid Drugs
Simple Summary
Abstract
1. Introduction
2. Types of Breast Cancer
2.1. HER2+ Breast Cancer
2.2. Luminal Breast Cancer
2.2.1. Luminal A
2.2.2. Luminal B
2.3. Triple-Negative Breast Cancer
2.4. Claudin-Low Breast Cancer
3. Targeted Therapy
3.1. Importance of Targeted Therapy: Why Antibody–Drug Conjugates (ADCs)?
3.2. Molecular Structure and General Mechanism of Antibody–Drug Conjugates
4. Antibody–Drug Conjugates in Treating Breast Cancer
4.1. Approved ADCs Targeting Human Epidermal Growth Factor 2 (HER2)
4.1.1. Trastuzumab-Emtansine
4.1.2. Trastuzumab-Deruxtecan
4.1.3. Sacituzumab-Govitecan
Trophoblast Cell Surface Antigen 2 (Trop-2)
Impact of Sacitizumab-Govitecan
5. Investigational Anti-Breast Cancer ADCs
5.1. Patritumab-Deruxtecan
5.2. DHES0815A-THIOMAB
5.3. Datopotamab-Deruxtecan
5.4. Dolasynthen B7-H4 Directed ADC
5.5. Trastuzumab-TLR 7 Agonist NJH395
5.6. SGN-CD228A
5.7. Trastuzumab-Duocarmazine
5.8. MORAb-202 (Farletuzumab)
5.9. MEDI4276 (Derivative of Trastuzumab)
5.10. Glembatumumab-Vedotin
5.11. PF-06650808 (Cofetuzumab)
5.12. Trastuzumab-Auristatin (PF-06804103)
5.13. Anetumab-Ravtansine
5.14. OBI-999
5.15. BAT-8001
5.16. Aprutumab-Ixadotin
5.17. Mirvetuximab-Soravtansine (MIRV)
5.18. Lu-177-Trastuzumab
5.19. MM-302-Doxorubicin Conjugate
5.20. Praluzatamab-Ravtansine (CX-2009)
5.21. Trastuzumab (LCB ADC 1 and 2)
5.22. Depatuxizumab-Mafodotin (Depatux-m)
5.23. Losatuxizumab-Vedotin
5.24. Rolinsatamab-ABBV-176
5.25. BR96-Doxorubicin Immunoconjugate
5.26. DLYE5953A
5.27. Disitamab-Vedotin
5.28. Ladiratuzumab-Vedotin
5.29. AVID100
5.30. ARX-788
5.31. XMT-1522
5.32. ALT-P7
5.33. Zanidatamab-Zovodotin
5.34. Camidanlumab-Tesirine (ADCT-301)
5.35. FS-1502
6. Demand for Next-Generation ADC
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Cancer (February 03, 2022). Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 27 July 2024).
- Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (accessed on 22 June 2024).
- Riccardi, F.; Dal Bo, M.; Macor, P.; Toffoli, G. A Comprehensive Overview on Antibody-Drug Conjugates: From Conceptualization to Cancer Therapy. Front. Pharmacol. 2023, 14, 1274088. [Google Scholar] [CrossRef]
- Lim, Y.J.; Clarissa Lau, P.S.; Low, S.X.; Ng, S.L.; Ong, M.Y.; Pang, H.M.; Lee, Z.Y.; Yow, H.Y.; Hamzah, S.B.; Sellappans, R.; et al. How Far Have We Developed Antibody–Drug Conjugate for the Treatment of Cancer? Drugs Drug Candidates 2023, 2, 377–421. [Google Scholar] [CrossRef]
- Grinda, T.; Rassy, E.; Pistilli, B. Correction to: Antibody–Drug Conjugate Revolution in Breast Cancer: The Road Ahead. Curr. Treat. Options Oncol. 2023, 24, 466–467. [Google Scholar] [CrossRef]
- Zubair, T.; Bandyopadhyay, D. Small Molecule EGFR Inhibitors as Anti-Cancer Agents: Discovery, Mechanisms of Action, and Opportunities. Int. J. Mol. Sci. 2023, 24, 2651. [Google Scholar] [CrossRef]
- Hart, V.; Gautrey, H.; Kirby, J.; Tyson-Capper, A. HER2 Splice Variants in Breast Cancer: Investigating Their Impact on Diagnosis and Treatment Outcomes. Oncotarget 2020, 11, 4338–4357. [Google Scholar] [CrossRef]
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast Cancer—Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies—An Updated Review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef]
- James, N.; Owusu, E.; Rivera, G.; Bandyopadhyay, D. Small Molecule Therapeutics in the Pipeline Targeting for Triple-Negative Breast Cancer: Origin, Challenges, Opportunities, and Mechanisms of Action. Int. J. Mol. Sci. 2024, 25, 6285. [Google Scholar] [CrossRef]
- Akshata Desai, K.A. Triple Negative Breast Cancer—An Overview. Hered. Genet. 2013, 2013, 001. [Google Scholar] [CrossRef]
- Pan, C.; Xu, A.; Ma, X.; Yao, Y.; Zhao, Y.; Wang, C.; Chen, C. Research Progress of Claudin-Low Breast Cancer. Front. Oncol. 2023, 13, 1226118. [Google Scholar] [CrossRef]
- Bandyopadhyay, D. Farmer to pharmacist: Curcumin as an anti-invasive and antimetastatic agent for the treatment of cancer. Front. Chem. 2014, 2, 113. [Google Scholar] [CrossRef]
- American Cancer Society. Ductal Carcinoma In Situ (DCIS). Available online: https://www.cancer.org/cancer/types/breast-cancer/about/types-of-breast-cancer/dcis.html (accessed on 3 August 2024).
- National Breast Cancer Foundation. Types of Breast Cancer. Available online: https://nbcf.org.au/about-breast-cancer/diagnosis/types-of-breast-cancer/ (accessed on 3 August 2024).
- National Cancer Institute. Targeted Therapy to Treat Cancer. Available online: https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies (accessed on 5 August 2024).
- Ryman, J.T.; Meibohm, B. Pharmacokinetics of Monoclonal Antibodies. CPT Pharmacomet. Syst. Pharmacol. 2017, 6, 576–588. [Google Scholar] [CrossRef]
- Jin, Y.; Schladetsch, M.A.; Huang, X.; Balunas, M.J.; Wiemer, A.J. Stepping Forward in Antibody-Drug Conjugate Development. Pharmacol. Amp; Ther. 2022, 229, 107917. [Google Scholar] [CrossRef]
- Fu, Z.; Li, S.; Han, S.; Shi, C.; Zhang, Y. Antibody Drug Conjugate: The “Biological Missile” for Targeted Cancer Therapy. Signal Transduct. Target. Ther. 2022, 7, 93. [Google Scholar] [CrossRef]
- Mark, C.; Lee, J.S.; Cui, X.; Yuan, Y. Antibody–Drug Conjugates in Breast Cancer: Current Status and Future Directions. Int. J. Mol. Sci. 2023, 24, 13726. [Google Scholar] [CrossRef]
- Cortés, J.; Kim, S.-B.; Chung, W.-P.; Im, S.-A.; Park, Y.H.; Hegg, R.; Kim, M.H.; Tseng, L.-M.; Petry, V.; Chung, C.-F.; et al. Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. N. Engl. J. Med. 2022, 386, 1143–1154. [Google Scholar] [CrossRef]
- Gupta, M.; LoRusso, P.M.; Wang, B.; Yi, J.; Burris, H.A., III; Beeram, M.; Modi, S.; Chu, Y.; Agresta, S.; Klencke, B.; et al. Clinical Implications of Pathophysiological and Demographic Covariates on the Population Pharmacokinetics of Trastuzumab Emtansine, a HER2-Targeted Antibody-Drug Conjugate, in Patients with HER2-Positive Metastatic Breast Cancer. J. Clin. Pharmacol. 2012, 52, 691–703. [Google Scholar] [CrossRef]
- Krop, I.E.; LoRusso, P.; Miller, K.D.; Modi, S.; Yardley, D.; Rodriguez, G.; Guardino, E.; Lu, M.; Zheng, M.; Girish, S.; et al. A Phase II Study of Trastuzumab Emtansine in Patients with Human Epidermal Growth Factor Receptor 2–Positive Metastatic Breast Cancer Who Were Previously Treated with Trastuzumab, Lapatinib, an Anthracycline, a Taxane, and Capecitabine. J. Clin. Oncol. 2012, 30, 3234–3241. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Huang, C.-S.; Mano, M.S.; Loibl, S.; Mamounas, E.P.; Untch, M.; Wolmark, N.; Rastogi, P.; Schneeweiss, A.; Redondo, A.; et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N. Engl. J. Med. 2019, 380, 617–628. [Google Scholar] [CrossRef]
- Bender, B.C.; Schaedeli-Stark, F.; Koch, R.; Joshi, A.; Chu, Y.-W.; Rugo, H.; Krop, I.E.; Girish, S.; Friberg, L.E.; Gupta, M. A Population Pharmacokinetic/Pharmacodynamic Model of Thrombocytopenia Characterizing the Effect of Trastuzumab Emtansine (T-DM1) on Platelet Counts in Patients with HER2-Positive Metastatic Breast Cancer. Cancer Chemother. Pharmacol. 2012, 70, 591–601. [Google Scholar] [CrossRef]
- Li, Y.; Qi, L.; Wang, Y.; Zhao, X.; Lv, S.; Feng, Y.; Liu, C.; Li, P.; Xiong, B.; Guo, Y.; et al. Safety, Tolerability, Pharmacokinetics and Immunogenicity of an Antibody–Drug Conjugate (SHR-A1201) in Patients with HER2-Positive Advanced Breast Cancer: An Open, Phase I Dose-Escalation Study. Anti-Cancer Drugs 2023, 34, 763–774. [Google Scholar] [CrossRef]
- Harbeck, N.; Nitz, U.A.; Christgen, M.; Kümmel, S.; Braun, M.; Schumacher, C.; Potenberg, J.; Tio, J.; Aktas, B.; Forstbauer, H.; et al. De-Escalated Neoadjuvant Trastuzumab-Emtansine with or without Endocrine Therapy Versus Trastuzumab with Endocrine Therapy in HR+/HER2+ Early Breast Cancer: 5-Year Survival in the WSG-ADAPT-TP Trial. J. Clin. Oncol. 2023, 41, 3796–3804. [Google Scholar] [CrossRef]
- Conte, P.; Schneeweiss, A.; Loibl, S.; Mamounas, E.P.; von Minckwitz, G.; Mano, M.S.; Untch, M.; Huang, C.; Wolmark, N.; Rastogi, P.; et al. Patient-reported Outcomes from KATHERINE: A Phase 3 Study of Adjuvant Trastuzumab Emtansine versus Trastuzumab in Patients with Residual Invasive Disease after Neoadjuvant Therapy for Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer. Cancer 2020, 126, 3132–3139. [Google Scholar] [CrossRef]
- Lewis Phillips, G.D.; Li, G.; Dugger, D.L.; Crocker, L.M.; Parsons, K.L.; Mai, E.; Blätler, W.A.; Lambert, J.M.; Chari, R.V.J.; Lutz, R.J.; et al. Targeting HER2-Positive Breast Cancer with Trastuzumab-DM1, an Antibody–Cytotoxic Drug Conjugate. Cancer Res. 2008, 68, 9280–9290. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Doi, T.; Shitara, K.; Naito, Y.; Shimomura, A.; Fujiwara, Y.; Yonemori, K.; Shimizu, C.; Shimoi, T.; Kuboki, Y.; Matsubara, N.; et al. Safety, Pharmacokinetics, and Antitumour Activity of Trastuzumab Deruxtecan (DS-8201), a HER2-Targeting Antibody–Drug Conjugate, in Patients with Advanced Breast and Gastric or Gastro-Oesophageal Tumours: A Phase 1 Dose-Escalation Study. Lancet Oncol. 2017, 18, 1512–1522. [Google Scholar] [CrossRef]
- Modi, S.; Saura, C.; Yamashita, T.; Park, Y.H.; Kim, S.-B.; Tamura, K.; Andre, F.; Iwata, H.; Ito, Y.; Tsurutani, J.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. N. Engl. J. Med. 2020, 382, 610–621. [Google Scholar] [CrossRef]
- André, F.; Hee Park, Y.; Kim, S.-B.; Takano, T.; Im, S.-A.; Borges, G.; Lima, J.P.; Aksoy, S.; Gavila Gregori, J.; De Laurentiis, M.; et al. Trastuzumab Deruxtecan versus Treatment of Physician’s Choice in Patients with HER2-Positive Metastatic Breast Cancer (DESTINY-Breast02): A Randomised, Open-Label, Multicentre, Phase 3 Trial. Lancet 2023, 401, 1773–1785. [Google Scholar] [CrossRef]
- Tsurutani, J.; Iwata, H.; Krop, I.; Jänne, P.A.; Doi, T.; Takahashi, S.; Park, H.; Redfern, C.; Tamura, K.; Wise-Draper, T.M.; et al. Targeting HER2 with Trastuzumab Deruxtecan: A Dose-Expansion, Phase I Study in Multiple Advanced Solid Tumors. Cancer Discov. 2020, 10, 688–701. [Google Scholar] [CrossRef]
- Bartsch, R.; Berghoff, A.S.; Furtner, J.; Marhold, M.; Bergen, E.S.; Roider-Schur, S.; Starzer, A.M.; Forstner, H.; Rottenmanner, B.; Dieckmann, K.; et al. Trastuzumab Deruxtecan in HER2-Positive Breast Cancer with Brain Metastases: A Single-Arm, Phase 2 Trial. Nat. Med. 2022, 28, 1840–1847. [Google Scholar] [CrossRef]
- AACR Journals. Cancer Discovery. News in Brief. T-DXd: New Standard for HER2-Low Breast Cancer. Cancer Discov. 2022, 12, 1828. [Google Scholar] [CrossRef]
- Modi, S.; Park, H.; Murthy, R.K.; Iwata, H.; Tamura, K.; Tsurutani, J.; Moreno-Aspitia, A.; Doi, T.; Sagara, Y.; Redfern, C.; et al. Antitumor Activity and Safety of Trastuzumab Deruxtecan in Patients with HER2-Low–Expressing Advanced Breast Cancer: Results from a Phase Ib Study. J. Clin. Oncol. 2020, 38, 1887–1896. [Google Scholar] [CrossRef]
- Li, B.T.; Meric-Bernstam, F.; Bardia, A.; Naito, Y.; Siena, S.; Aftimos, P.; Anderson, I.; Curigliano, G.; de Miguel, M.; Kalra, M.; et al. Trastuzumab Deruxtecan in Patients with Solid Tumours Harbouring Specific Activating HER2 Mutations (DESTINY-PanTumor01): An International, Phase 2 Study. Lancet Oncol. 2024, 25, 707–719. [Google Scholar] [CrossRef]
- Tamura, K.; Tsurutani, J.; Takahashi, S.; Iwata, H.; Krop, I.E.; Redfern, C.; Sagara, Y.; Doi, T.; Park, H.; Murthy, R.K.; et al. Trastuzumab Deruxtecan (DS-8201a) in Patients with Advanced HER2-Positive Breast Cancer Previously Treated with Trastuzumab Emtansine: A Dose-Expansion, Phase 1 Study. Lancet Oncol. 2019, 20, 816–826. [Google Scholar] [CrossRef]
- Narayan, P.; Osgood, C.L.; Singh, H.; Chiu, H.-J.; Ricks, T.K.; Chiu Yuen Chow, E.; Qiu, J.; Song, P.; Yu, J.; Namuswe, F.; et al. FDA Approval Summary: Fam-Trastuzumab Deruxtecan-Nxki for the Treatment of Unresectable or Metastatic HER2-Positive Breast Cancer. Clin. Cancer Res. 2021, 27, 4478–4485. [Google Scholar] [CrossRef]
- Shitara, K.; Iwata, H.; Takahashi, S.; Tamura, K.; Park, H.; Modi, S.; Tsurutani, J.; Kadowaki, S.; Yamaguchi, K.; Iwasa, S.; et al. Trastuzumab Deruxtecan (DS-8201a) in Patients with Advanced HER2-Positive Gastric Cancer: A Dose-Expansion, Phase 1 Study. Lancet Oncol. 2019, 20, 827–836. [Google Scholar] [CrossRef]
- Saura, C.; Modi, S.; Krop, I.; Park, Y.H.; Kim, S.-B.; Tamura, K.; Iwata, H.; Tsurutani, J.; Sohn, J.; Mathias, E.; et al. Trastuzumab Deruxtecan in Previously Treated Patients with HER2-Positive Metastatic Breast Cancer: Updated Survival Results from a Phase II Trial (DESTINY-Breast01). Ann. Oncol. 2024, 35, 302–307. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, H.; Guo, W.; Zhong, X.; Sun, J.; Zhang, T.; Wang, Z.; Ma, X. Safety and Efficacy Profile of Trastuzumab Deruxtecan in Solid Cancer: Pooled Reanalysis Based on Clinical Trials. BMC Cancer 2022, 22, 923. [Google Scholar] [CrossRef]
- Fehm, T.; Cottone, F.; Dunton, K.; André, F.; Krop, I.; Park, Y.H.; De Laurentiis, M.; Miyoshi, Y.; Armstrong, A.; Borrego, M.R.; et al. Trastuzumab Deruxtecan versus Treatment of Physician’s Choice in Patients with HER2-Positive Metastatic Breast Cancer (DESTINY-Breast02): Patient-Reported Outcomes from a Randomised, Open-Label, Multicentre, Phase 3 Trial. Lancet Oncol. 2024, 25, 614–625. [Google Scholar] [CrossRef]
- Hurvitz, S.A.; Kim, S.-B.; Chung, W.-P.; Im, S.-A.; Park, Y.H.; Hegg, R.; Kim, M.-H.; Tseng, L.-M.; Petry, V.; Chung, C.-F.; et al. Trastuzumab Deruxtecan versus Trastuzumab Emtansine in HER2-Positive Metastatic Breast Cancer Patients with Brain Metastases from the Randomized DESTINY-Breast03 Trial. ESMO Open 2024, 9, 102924. [Google Scholar] [CrossRef]
- Mosele, F.; Deluche, E.; Lusque, A.; Le Bescond, L.; Filleron, T.; Pradat, Y.; Ducoulombier, A.; Pistilli, B.; Bachelot, T.; Viret, F.; et al. Trastuzumab Deruxtecan in Metastatic Breast Cancer with Variable HER2 Expression: The Phase 2 DAISY Trial. Nat. Med. 2023, 29, 2110–2120. [Google Scholar] [CrossRef]
- Mudumba, R.; Chan, H.-H.; Cheng, Y.-Y.; Wang, C.-C.; Correia, L.; Ballreich, J.; Levy, J. Cost-Effectiveness Analysis of Trastuzumab Deruxtecan Versus Trastuzumab Emtansine for Patients with Human Epidermal Growth Factor Receptor 2 Positive Metastatic Breast Cancer in the United States. Value Health 2024, 27, 153–163. [Google Scholar] [CrossRef]
- Bardia, A.; Hurvitz, S.A.; Tolaney, S.M.; Loirat, D.; Punie, K.; Oliveira, M.; Brufsky, A.; Sardesai, S.D.; Kalinsky, K.; Zelnak, A.B.; et al. Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. N. Engl. J. Med. 2021, 384, 1529–1541. [Google Scholar] [CrossRef]
- Rugo, H.S.; Bardia, A.; Tolaney, S.M.; Arteaga, C.; Cortes, J.; Sohn, J.; Marmé, F.; Hong, Q.; Delaney, R.J.; Hafeez, A.; et al. TROPiCS-02: A Phase III Study Investigating Sacituzumab Govitecan in the Treatment of HR+/HER2- Metastatic Breast Cancer. Future Oncol. 2020, 16, 705–715. [Google Scholar] [CrossRef]
- Bardia, A.; Mayer, I.A.; Diamond, J.R.; Moroose, R.L.; Isakoff, S.J.; Starodub, A.N.; Shah, N.C.; O’Shaughnessy, J.; Kalinsky, K.; Guarino, M.; et al. Efficacy and Safety of Anti-Trop-2 Antibody Drug Conjugate Sacituzumab Govitecan (IMMU-132) in Heavily Pretreated Patients with Metastatic Triple-Negative Breast Cancer. J. Clin. Oncol. 2017, 35, 2141–2148. [Google Scholar] [CrossRef]
- Rugo, H.S.; Bardia, A.; Marmé, F.; Cortes, J.; Schmid, P.; Loirat, D.; Trédan, O.; Ciruelos, E.; Dalenc, F.; Pardo, P.G.; et al. Sacituzumab Govitecan in Hormone Receptor–Positive/Human Epidermal Growth Factor Receptor 2–Negative Metastatic Breast Cancer. J. Clin. Oncol. 2022, 40, 3365–3376. [Google Scholar] [CrossRef]
- Shastry, M.; Jacob, S.; Rugo, H.S.; Hamilton, E. Antibody-Drug Conjugates Targeting TROP-2: Clinical Development in Metastatic Breast Cancer. Breast 2022, 66, 169–177. [Google Scholar] [CrossRef]
- Ocean, A.J.; Starodub, A.N.; Bardia, A.; Vahdat, L.T.; Isakoff, S.J.; Guarino, M.; Messersmith, W.A.; Picozzi, V.J.; Mayer, I.A.; Wegener, W.A.; et al. Sacituzumab Govitecan (IMMU-132), an anti-Trop-2-SN-38 Antibody-drug Conjugate for the Treatment of Diverse Epithelial Cancers: Safety and Pharmacokinetics. Cancer 2017, 123, 3843–3854. [Google Scholar] [CrossRef]
- Bardia, A.; Tolaney, S.M.; Punie, K.; Loirat, D.; Oliveira, M.; Kalinsky, K.; Zelnak, A.; Aftimos, P.; Dalenc, F.; Sardesai, S.; et al. Biomarker Analyses in the Phase III ASCENT Study of Sacituzumab Govitecan versus Chemotherapy in Patients with Metastatic Triple-Negative Breast Cancer. Ann. Oncol. 2021, 32, 1148–1156. [Google Scholar] [CrossRef]
- O’Shaughnessy, J.; Brufsky, A.; Rugo, H.S.; Tolaney, S.M.; Punie, K.; Sardesai, S.; Hamilton, E.; Loirat, D.; Traina, T.; Leon-Ferre, R.; et al. Analysis of Patients without and with an Initial Triple-Negative Breast Cancer Diagnosis in the Phase 3 Randomized ASCENT Study of Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. Breast Cancer Res. Treat. 2022, 195, 127–139. [Google Scholar] [CrossRef]
- Starodub, A.N.; Ocean, A.J.; Shah, M.A.; Guarino, M.J.; Picozzi, V.J., Jr.; Vahdat, L.T.; Thomas, S.S.; Govindan, S.V.; Maliakal, P.P.; Wegener, W.A.; et al. First-in-Human Trial of a Novel Anti-Trop-2 Antibody-SN-38 Conjugate, Sacituzumab Govitecan, for the Treatment of Diverse Metastatic Solid Tumors. Clin. Cancer Res. 2015, 21, 3870–3878. [Google Scholar] [CrossRef]
- Kalinsky, K.; Diamond, J.R.; Vahdat, L.T.; Tolaney, S.M.; Juric, D.; O’Shaughnessy, J.; Moroose, R.L.; Mayer, I.A.; Abramson, V.G.; Goldenberg, D.M.; et al. Sacituzumab Govitecan in Previously Treated Hormone Receptor-Positive/HER2-Negative Metastatic Breast Cancer: Final Results from a Phase I/II, Single-Arm, Basket Trial. Ann. Oncol. 2020, 31, 1709–1718. [Google Scholar] [CrossRef]
- Loibl, S.; Loirat, D.; Tolaney, S.M.; Punie, K.; Oliveira, M.; Rugo, H.S.; Bardia, A.; Hurvitz, S.A.; Brufsky, A.M.; Kalinsky, K.; et al. Health-Related Quality of Life in the Phase III ASCENT Trial of Sacituzumab Govitecan versus Standard Chemotherapy in Metastatic Triple-Negative Breast Cancer. Eur. J. Cancer 2023, 178, 23–33. [Google Scholar] [CrossRef]
- Bardia, A.; Rugo, H.S.; Tolaney, S.M.; Loirat, D.; Punie, K.; Oliveira, M.; Brufsky, A.; Kalinsky, K.; Cortés, J.; Shaughnessy, J.O.; et al. Final Results from the Randomized Phase III ASCENT Clinical Trial in Metastatic Triple-Negative Breast Cancer and Association of Outcomes by Human Epidermal Growth Factor Receptor 2 and Trophoblast Cell Surface Antigen 2 Expression. J. Clin. Oncol. 2024, 42, 1738–1744. [Google Scholar] [CrossRef]
- Sathe, A.G.; Singh, I.; Singh, P.; Diderichsen, P.M.; Wang, X.; Chang, P.; Taqui, A.; Phan, S.; Girish, S.; Othman, A.A. Population Pharmacokinetics of Sacituzumab Govitecan in Patients with Metastatic Triple-Negative Breast Cancer and Other Solid Tumors. Clin. Pharmacokinet. 2024, 63, 669–681. [Google Scholar] [CrossRef]
- Wahby, S.; Fashoyin-Aje, L.; Osgood, C.L.; Cheng, J.; Fiero, M.H.; Zhang, L.; Tang, S.; Hamed, S.S.; Song, P.; Charlab, R.; et al. FDA Approval Summary: Accelerated Approval of Sacituzumab Govitecan-Hziy for Third-Line Treatment of Metastatic Triple-Negative Breast Cancer. Clin. Cancer Res. 2020, 27, 1850–1854. [Google Scholar] [CrossRef]
- Krop, I.E.; Masuda, N.; Mukohara, T.; Takahashi, S.; Nakayama, T.; Inoue, K.; Iwata, H.; Yamamoto, Y.; Alvarez, R.H.; Toyama, T.; et al. Patritumab Deruxtecan (HER3-DXd), a Human Epidermal Growth Factor Receptor 3–Directed Antibody-Drug Conjugate, in Patients with Previously Treated Human Epidermal Growth Factor Receptor 3–Expressing Metastatic Breast Cancer: A Multicenter, Phase I/II Trial. J. Clin. Oncol. 2023, 41, 5550–5560. [Google Scholar] [CrossRef]
- Lewis, G.D.; Li, G.; Guo, J.; Yu, S.-F.; Fields, C.T.; Lee, G.; Zhang, D.; Dragovich, P.S.; Pillow, T.; Wei, B.; et al. The HER2-Directed Antibody-Drug Conjugate DHES0815A in Advanced and/or Metastatic Breast Cancer: Preclinical Characterization and Phase 1 Trial Results. Nat. Commun. 2024, 15, 466. [Google Scholar] [CrossRef]
- Bardia, A.; Krop, I.E.; Kogawa, T.; Juric, D.; Tolcher, A.W.; Hamilton, E.P.; Mukohara, T.; Lisberg, A.; Shimizu, T.; Spira, A.I.; et al. Datopotamab Deruxtecan in Advanced or Metastatic HR+/HER2– and Triple-Negative Breast Cancer: Results from the Phase I TROPION-PanTumor01 Study. J. Clin. Oncol. 2024, 42, 2281–2294. [Google Scholar] [CrossRef]
- Toader, D.; Fessler, S.P.; Collins, S.D.; Conlon, P.R.; Bollu, R.; Catcott, K.C.; Chin, C.-N.; Dirksen, A.; Du, B.; Duvall, J.R.; et al. Discovery and Preclinical Characterization of XMT-1660, an Optimized B7-H4-Targeted Antibody–Drug Conjugate for the Treatment of Cancer. Mol. Cancer Ther. 2023, 22, 999–1012. [Google Scholar] [CrossRef]
- Hamilton, E.P.; Chaudhry, A.; Spira, A.I.; Adams, S.; Abuhadra, N.; Giordano, A.; Parajuli, R.; Han, H.S.; Weise, A.M.; Marchesani, A.; et al. XMT-1660: A Phase 1b Trial of a B7-H4 Targeted Antibody Drug Conjugate (ADC) in Breast, Endometrial, and Ovarian Cancers. J. Clin. Oncol. 2023, 41, TPS3154. [Google Scholar] [CrossRef]
- Janku, F.; Han, S.-W.; Doi, T.; Amatu, A.; Ajani, J.A.; Kuboki, Y.; Cortez, A.; Cellitti, S.E.; Mahling, P.C.; Subramanian, K.; et al. Preclinical Characterization and Phase I Study of an Anti–HER2-TLR7 Immune-Stimulator Antibody Conjugate in Patients with HER2+ Malignancies. Cancer Immunol. Res. 2022, 10, 1441–1461. [Google Scholar] [CrossRef]
- Mazahreh, R.; Mason, M.L.; Gosink, J.J.; Olson, D.J.; Thurman, R.; Hale, C.; Westendorf, L.; Pires, T.A.; Leiske, C.I.; Carlson, M.; et al. SGN-CD228A Is an Investigational CD228-Directed Antibody–Drug Conjugate with Potent Antitumor Activity across a Wide Spectrum of Preclinical Solid Tumor Models. Mol. Cancer Ther. 2023, 22, 421–434. [Google Scholar] [CrossRef]
- Banerji, U.; van Herpen, C.M.L.; Saura, C.; Thistlethwaite, F.; Lord, S.; Moreno, V.; Macpherson, I.R.; Boni, V.; Rolfo, C.; de Vries, E.G.E.; et al. Trastuzumab Duocarmazine in Locally Advanced and Metastatic Solid Tumours and HER2-Expressing Breast Cancer: A Phase 1 Dose-Escalation and Dose-Expansion Study. Lancet Oncol. 2019, 20, 1124–1135. [Google Scholar] [CrossRef]
- Shimizu, T.; Fujiwara, Y.; Yonemori, K.; Koyama, T.; Sato, J.; Tamura, K.; Shimomura, A.; Ikezawa, H.; Nomoto, M.; Furuuchi, K.; et al. First-in-Human Phase 1 Study of MORAb-202, an Antibody–Drug Conjugate Comprising Farletuzumab Linked to Eribulin Mesylate, in Patients with Folate Receptor-α–Positive Advanced Solid Tumors. Clin. Cancer Res. 2021, 27, 3905–3915. [Google Scholar] [CrossRef]
- Pegram, M.D.; Hamilton, E.P.; Tan, A.R.; Storniolo, A.M.; Balic, K.; Rosenbaum, A.I.; Liang, M.; He, P.; Marshall, S.; Scheuber, A.; et al. First-in-Human, Phase 1 Dose-Escalation Study of Biparatopic Anti-HER2 Antibody–Drug Conjugate MEDI4276 in Patients with HER2-Positive Advanced Breast or Gastric Cancer. Mol. Cancer Ther. 2021, 20, 1442–1453. [Google Scholar] [CrossRef]
- Yardley, D.A.; Weaver, R.; Melisko, M.E.; Saleh, M.N.; Arena, F.P.; Forero, A.; Cigler, T.; Stopeck, A.; Citrin, D.; Oliff, I.; et al. EMERGE: A Randomized Phase II Study of the Antibody-Drug Conjugate Glembatumumab Vedotin in Advanced Glycoprotein NMB–Expressing Breast Cancer. J. Clin. Oncol. 2015, 33, 1609–1619. [Google Scholar] [CrossRef]
- Bendell, J.; Saleh, M.; Rose, A.A.N.; Siegel, P.M.; Hart, L.; Sirpal, S.; Jones, S.; Green, J.; Crowley, E.; Simantov, R.; et al. Phase I/II Study of the Antibody-Drug Conjugate Glembatumumab Vedotin in Patients with Locally Advanced or Metastatic Breast Cancer. J. Clin. Oncol. 2014, 32, 3619–3625. [Google Scholar] [CrossRef]
- Rosen, L.S.; Wesolowski, R.; Baffa, R.; Liao, K.-H.; Hua, S.Y.; Gibson, B.L.; Pirie-Shepherd, S.; Tolcher, A.W. A Phase I, Dose-Escalation Study of PF-06650808, an Anti-Notch3 Antibody–Drug Conjugate, in Patients with Breast Cancer and Other Advanced Solid Tumors. Investig. New Drugs 2019, 38, 120–130. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Calvo, E.; Lee, K.S.; Moreno, V.; Park, Y.H.; Rha, S.Y.; Chalasani, P.; Zhong, W.; Zhou, L.; Pirie-Shepherd, S.; et al. Safety and Tolerability of a Novel Anti-HER2 Antibody–Drug Conjugate (PF-06804103) in Patients with HER2-Expressing Solid Tumors: A Phase 1 Dose-Escalation Study. Mol. Cancer Ther. 2023, 22, 1191–1203. [Google Scholar] [CrossRef]
- Hassan, R.; Blumenschein, G.R., Jr.; Moore, K.N.; Santin, A.D.; Kindler, H.L.; Nemunaitis, J.J.; Seward, S.M.; Thomas, A.; Kim, S.K.; Rajagopalan, P.; et al. First-in-Human, Multicenter, Phase I Dose-Escalation and Expansion Study of Anti-Mesothelin Antibody–Drug Conjugate Anetumab Ravtansine in Advanced or Metastatic Solid Tumors. J. Clin. Oncol. 2020, 38, 1824–1835. [Google Scholar] [CrossRef]
- Tsimberidou, A.M.; Vo, H.H.; Beck, J.; Shia, C.-S.; Hsu, P.; Pearce, T.E. First-in-Human Study of OBI-999, a Globo H-Targeting Antibody-Drug Conjugate, in Patients with Advanced Solid Tumors. JCO Precis. Oncol. 2023, 7, e2200496. [Google Scholar] [CrossRef]
- Hong, R.; Xia, W.; Wang, L.; Lee, K.; Lu, Q.; Jiang, K.; Li, S.; Yu, J.; Wei, J.; Tang, W.; et al. Safety, Tolerability, and Pharmacokinetics of BAT8001 in Patients with HER2-positive Breast Cancer: An Open-label, Dose-escalation, Phase I Study. Cancer Commun. 2021, 41, 171–182. [Google Scholar] [CrossRef]
- Kim, S.-B.; Meric-Bernstam, F.; Kalyan, A.; Babich, A.; Liu, R.; Tanigawa, T.; Sommer, A.; Osada, M.; Reetz, F.; Laurent, D.; et al. First-in-Human Phase I Study of Aprutumab Ixadotin, a Fibroblast Growth Factor Receptor 2 Antibody–Drug Conjugate (BAY 1187982) in Patients with Advanced Cancer. Target. Oncol. 2019, 14, 591–601. [Google Scholar] [CrossRef]
- Cristea, M.C.; Stewart, D.; Synold, T.; Ruel, N.; Mortimer, J.; Wang, E.; Jung, A.; Wilczynski, S.; Konecny, G.E.; Eng, M.; et al. A Phase I Study of Mirvetuximab Soravtansine and Gemcitabine in Patients with FRα-Positive Recurrent Ovarian, Primary Peritoneal, Fallopian Tube, or Endometrial Cancer, or Triple Negative Breast Cancer. Gynecol. Oncol. 2024, 182, 124–131. [Google Scholar] [CrossRef]
- Yam, C.; Rauch, G.M.; Rahman, T.; Karuturi, M.; Ravenberg, E.; White, J.; Clayborn, A.; McCarthy, P.; Abouharb, S.; Lim, B.; et al. A Phase II Study of Mirvetuximab Soravtansine in Triple-Negative Breast Cancer. Investig. New Drugs 2020, 39, 509–515. [Google Scholar] [CrossRef]
- Burris, H.A., III; Rugo, H.S.; Vukelja, S.J.; Vogel, C.L.; Borson, R.A.; Limentani, S.; Tan-Chiu, E.; Krop, I.E.; Michaelson, R.A.; Girish, S.; et al. Phase II Study of the Antibody Drug Conjugate Trastuzumab-DM1 for the Treatment of Human Epidermal Growth Factor Receptor 2 (HER2) –Positive Breast Cancer After Prior HER2-Directed Therapy. J. Clin. Oncol. 2011, 29, 398–405. [Google Scholar] [CrossRef]
- Bhusari, P.; Vatsa, R.; Singh, G.; Parmar, M.; Bal, A.; Dhawan, D.K.; Mittal, B.R.; Shukla, J. Development of Lu-177-trastuzumab for Radioimmunotherapy of HER2 Expressing Breast Cancer and Its Feasibility Assessment in Breast Cancer Patients. Int. J. Cancer 2016, 140, 938–947. [Google Scholar] [CrossRef]
- Munster, P.; Krop, I.E.; LoRusso, P.; Ma, C.; Siegel, B.A.; Shields, A.F.; Molnár, I.; Wickham, T.J.; Reynolds, J.; Campbell, K.; et al. Safety and Pharmacokinetics of MM-302, a HER2-Targeted Antibody–Liposomal Doxorubicin Conjugate, in Patients with Advanced HER2-Positive Breast Cancer: A Phase 1 Dose-Escalation Study. Br. J. Cancer 2018, 119, 1086–1093. [Google Scholar] [CrossRef]
- Miller, K.; Cortes, J.; Hurvitz, S.A.; Krop, I.E.; Tripathy, D.; Verma, S.; Riahi, K.; Reynolds, J.G.; Wickham, T.J.; Molnar, I.; et al. HERMIONE: A Randomized Phase 2 Trial of MM-302 plus Trastuzumab versus Chemotherapy of Physician’s Choice plus Trastuzumab in Patients with Previously Treated, Anthracycline-Naïve, HER2-Positive, Locally Advanced/Metastatic Breast Cancer. BMC Cancer 2016, 16, 352. [Google Scholar] [CrossRef]
- Boni, V.; Fidler, M.J.; Arkenau, H.-T.; Spira, A.; Meric-Bernstam, F.; Uboha, N.; Sanborn, R.E.; Sweis, R.F.; LoRusso, P.; Nagasaka, M.; et al. Praluzatamab Ravtansine, a CD166-Targeting Antibody–Drug Conjugate, in Patients with Advanced Solid Tumors: An Open-Label Phase I/II Trial. Clin. Cancer Res. 2022, 28, 2020–2029. [Google Scholar] [CrossRef]
- Shin, S.H.; Park, Y.; Park, S.S.; Ju, E.J.; Park, J.; Ko, E.J.; Bae, D.J.; Kim, S.; Chung, C.; Song, H.Y.; et al. An Elaborate New Linker System Significantly Enhances the Efficacy of an HER2-Antibody-Drug Conjugate against Refractory HER2-Positive Cancers. Adv. Sci. 2021, 8, 2102414. [Google Scholar] [CrossRef]
- Goss, G.D.; Vokes, E.E.; Gordon, M.S.; Gandhi, L.; Papadopoulos, K.P.; Rasco, D.W.; Fischer, J.S.; Chu, K.L.; Ames, W.W.; Mittapalli, R.K.; et al. Efficacy and Safety Results of Depatuxizumab Mafodotin (ABT-414) in Patients with Advanced Solid Tumors Likely to Overexpress Epidermal Growth Factor Receptor. Cancer 2018, 124, 2174–2183. [Google Scholar] [CrossRef]
- Cleary, J.M.; Calvo, E.; Moreno, V.; Juric, D.; Shapiro, G.I.; Vanderwal, C.A.; Hu, B.; Gifford, M.; Barch, D.; Roberts-Rapp, L.; et al. A Phase 1 Study Evaluating Safety and Pharmacokinetics of Losatuxizumab Vedotin (ABBV-221), an Anti-EGFR Antibody-Drug Conjugate Carrying Monomethyl Auristatin E, in Patients with Solid Tumors Likely to Overexpress EGFR. Investig. New Drugs 2020, 38, 1483–1494. [Google Scholar] [CrossRef]
- Lemech, C.; Woodward, N.; Chan, N.; Mortimer, J.; Naumovski, L.; Nuthalapati, S.; Tong, B.; Jiang, F.; Ansell, P.; Ratajczak, C.K.; et al. A First-in-Human, Phase 1, Dose-Escalation Study of ABBV-176, an Antibody-Drug Conjugate Targeting the Prolactin Receptor, in Patients with Advanced Solid Tumors. Investig. New Drugs 2020, 38, 1815–1825. [Google Scholar] [CrossRef]
- Tolcher, A.W.; Sugarman, S.; Gelmon, K.A.; Cohen, R.; Saleh, M.; Isaacs, C.; Young, L.; Healey, D.; Onetto, N.; Slichenmyer, W. Randomized Phase II Study of BR96-Doxorubicin Conjugate in Patients with Metastatic Breast Cancer. J. Clin. Oncol. 1999, 17, 478. [Google Scholar] [CrossRef]
- Saleh, M.N.; Sugarman, S.; Murray, J.; Ostroff, J.B.; Healey, D.; Jones, D.; Daniel, C.R.; LeBherz, D.; Brewer, H.; Onetto, N.; et al. Phase I Trial of the Anti–Lewis Y Drug Immunoconjugate BR96-Doxorubicin in Patients with Lewis Y–Expressing Epithelial Tumors. J. Clin. Oncol. 2000, 18, 2282–2292. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Do, K.T.; Eder, J.P.; LoRusso, P.M.; Weekes, C.D.; Chandarlapaty, S.; Chang, C.-W.; Chen, S.-C.; Nazzal, D.; Schuth, E.; et al. A Phase I Study of DLYE5953A, an Anti-LY6E Antibody Covalently Linked to Monomethyl Auristatin E, in Patients with Refractory Solid Tumors. Clin. Cancer Res. 2020, 26, 5588–5597. [Google Scholar] [CrossRef]
- Subhan, M.A.; Torchilin, V.P. Advances in Targeted Therapy of Breast Cancer with Antibody-Drug Conjugate. Pharmaceutics 2023, 15, 1242. [Google Scholar] [CrossRef]
- Barroso-Sousa, R.; Tolaney, S.M. Clinical Development of New Antibody–Drug Conjugates in Breast Cancer: To Infinity and Beyond. BioDrugs 2021, 35, 159–174. [Google Scholar] [CrossRef]
- Xu, B.; Wang, J.; Fang, J.; Chen, X.; Han, Y.; Li, Q.; Zhang, P.; Yuan, P.; Ma, F.; Luo, Y.; et al. Abstract PD4-06: Early Clinical Development of RC48-ADC in Patients with HER2 Positive Metastatic Breast Cancer. Cancer Res. 2020, 80, PD4-06. [Google Scholar] [CrossRef]
- Sussman, D.; Smith, L.M.; Anderson, M.E.; Duniho, S.; Hunter, J.H.; Kostner, H.; Miyamoto, J.B.; Nesterova, A.; Westendorf, L.; Van Epps, H.A.; et al. SGN–LIV1A: A Novel Antibody–Drug Conjugate Targeting LIV-1 for the Treatment of Metastatic Breast Cancer. Mol. Cancer Ther. 2014, 13, 2991–3000. [Google Scholar] [CrossRef]
- Thwaites, M.J.; Figueredo, R.; Tremblay, G.; Koropatnick, J.; Goldmacher, V.; O’Connor-McCourt, M. Abstract 218: AVID100 Is an Anti-EGFR ADC That Promotes DM1-Meditated Cytotoxicity on Cancer Cells but Not on Normal Cells. Cancer Res. 2019, 79, 218. [Google Scholar] [CrossRef]
- Hurvitz, S.A.; Park, H.; Frentzas, S.; Shannon, C.M.; Cuff, K.; Eek, R.W.; Budd, G.T.; McCartney, A.; O’Shaughnessy, J.; Lu, J.M.; et al. Safety and Unique Pharmacokinetic Profile of ARX788, a Site-Specific ADC, in Heavily Pretreated Patients with HER2-Overexpresing Solid Tumors: Results from Two Phase 1 Clinical Trials. J. Clin. Oncol. 2021, 39, 1038. [Google Scholar] [CrossRef]
- Le Joncour, V.; Martins, A.; Puhka, M.; Isola, J.; Salmikangas, M.; Laakkonen, P.; Joensuu, H.; Barok, M. A Novel Anti-HER2 Antibody–Drug Conjugate XMT-1522 for HER2-Positive Breast and Gastric Cancers Resistant to Trastuzumab Emtansine. Mol. Cancer Ther. 2019, 18, 1721–1730. [Google Scholar] [CrossRef]
- Park, Y.H.; Ahn, H.K.; Kim, J.-Y.; Ahn, J.S.; Im, Y.-H.; Kim, S.-H.; Lee, S.; CHUNG, H.-S.; Park, S.J. First-in-Human Phase I Study of ALT-P7, a HER2-Targeting Antibody-Drug Conjugate in Patients with HER2-Positive Advanced Breast Cancer. J. Clin. Oncol. 2020, 38, 3551. [Google Scholar] [CrossRef]
- Zimmerman, B.S.; Esteva, F.J. Next-Generation HER2-Targeted Antibody–Drug Conjugates in Breast Cancer. Cancers 2024, 16, 800. [Google Scholar] [CrossRef]
- Zammarchi, F.; Havenith, K.; Bertelli, F.; Vijayakrishnan, B.; Chivers, S.; van Berkel, P.H. CD25-targeted antibody-drug conjugate depletes regulatory T cells and eliminates established syngeneic tumors via antitumor immunity. J. Immunother. Cancer 2020, 8, e000860. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Q.; Cheng, Y.; Tong, Z.; Liu, Y.; Wang, X.; Yan, M.; Chang, J.; Wang, S.; Du, C.; Li, L.; et al. HER2-Targeting Antibody Drug Conjugate FS-1502 in HER2-Expressing Metastatic Breast Cancer: A Phase 1a/1b Trial. Nat. Commun. 2024, 15, 5158. [Google Scholar] [CrossRef]
- Schlam, I.; Moges, R.; Morganti, S.; Tolaney, S.M.; Tarantino, P. Next-Generation Antibody-Drug Conjugates for Breast Cancer: Moving beyond HER2 and TROP2. Crit. Rev. Oncol./Hematol. 2023, 190, 104090. [Google Scholar] [CrossRef]
- Yang, T.; Li, W.; Huang, T.; Zhou, J. Antibody-Drug Conjugates for Breast Cancer Treatment: Emerging Agents, Targets and Future Directions. Int. J. Mol. Sci. 2023, 24, 11903. [Google Scholar] [CrossRef]
- Dai, L.-J.; Li, Y.-W.; Ma, D.; Shao, Z.-M.; Jiang, Y.-Z. Next-Generation Antibody–Drug Conjugates Revolutionize the Precise Classification and Treatment of HER2-Expressing Breast Cancer. Cancer Biol. Med. 2023, 20, 689. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, Z.; Wang, Y. Bispecific Antibody Drug Conjugates: Making 1 + 1 > 2. Acta Pharm. Sin. B 2024, 14, 1965–1986. [Google Scholar] [CrossRef]
- Xiao, T.; Ali, S.; Mata, D.G.M.M.; Lohmann, A.E.; Blanchette, P.S. Antibody–Drug Conjugates in Breast Cancer: Ascent to Destiny and Beyond—A 2023 Review. Curr. Oncol. 2023, 30, 6447–6461. [Google Scholar] [CrossRef]
- Kapil, A.; Spitzmüller, A.; Brieu, N.; Haneder, S.; Shumilov, A.; Meier, A.; Cecchi, F.; Barkell, A.; Harder, N.; Mittermaier, K.; et al. HER2 Quantitative Continuous Scoring for Accurate Patient Selection in HER2 Negative Trastuzumab Deruxtecan Treated Breast Cancer. Sci. Rep. 2024, 14, 12129. [Google Scholar] [CrossRef]
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug Resistance in Cancer: An Overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef]
Entry | Antibody | Drug (Payload) (Figure 2) | Target | Clinical Trial Phase | Reference(s) |
---|---|---|---|---|---|
1 | Trastuzumab (herceptin) | Emtansine (mertansine) | HER2-positive breast cancer | Phase 3 (Approved) | [20,21,22,23,24,25,26,27,28] |
2 | Trastuzumab | Deruxtecan (DX-8951) | HER2-low breast cancer | Phase 3 (Approved) | [29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46] |
3 | Sacituzumab | Govitecan (SN-38) | Human trophoblast cell surface antigen-2 (Trop-2) | Phase 3 (Approved) | [47,48,49,50,51,52,53,54,55,56,57,58,59,60] |
4 | Patritumab | Deruxtecan (DX-8951) | Human epidermal growth factor receptor 3 (HER3)-positive breast cancer | Phase 1/2 | [61] |
5 | Thiomab | Pyrrolo[2,1-c][1,4] benzodiazepine (PBD) dimer | HER2-positive and HER2-low breast cancer | Phase 1 | [62] |
6 | Datopotamab | Deruxtecan (DX-8951) | Metastatic triple-negative breast cancer (TNBC) and HR+/HER2- metastatic breast cancer | Phase 3 | [63] |
7 | Trastuzumab | Auristatin hydroxypropylamide (dolasynthen) | Immune-suppressive protein B7-H4 (VTCN1) is overexpressed in endometrial, ovarian, and breast cancers | Phase 1 | [64,65] |
8 | Trastuzumab | TLR7 agonist | TLR7 agonist conjugated to anti-HER2 antibody targeted to HER2+ breast cancer | Phase 1 | [66] |
9 | hL49 | Monomethyl auristatin E (MMAE or vedotin) | Melanotransferin CD228 (cell surface protein) in TNBC | Phase 1 | [67] |
10 | Trastuzumab | Dduocarmazine (duocarmycin) | HER 2 + breast cancer | Phase 3 | [68] |
11 | Farletuzumab | Eribulin mesylate | Folate receptor α (FRα)-expressing tumor cells | Phase 1 | [69] |
12 | MEDI4276 (derivative of trastuzumab) | AZ13599185 (tubulysin analog) | Two non-overlapping epitopes in subdomains 2 and 4 of the HER2 ecto-domain | Phase 1 | [70] |
13 | Glembatumumab | Monomethyl auristatin E (MMAE or vedotin) | Glycoprotein NMB expression | Phase 2 | [71,72] |
14 | Cofetuzumab | Auristatin-0101 (Aur0101) | Notch3 expression | Phase 1 | [73] |
15 | Trastuzumab | Auristatin-0101 (Aur0101) | HER2+ breast cancer | Phase 1 | [74] |
16 | Anetumab | Ravtansine or soravtansine (DM4) | Mesothelin-expressing solid tumors | Phase 1 | [75] |
17 | Anti-Globo H antibody | Monomethyl auristatin E (MMAE or vedotin) |
Globo H, a glycosphingolipid, overexpressed in cancers of epithelial origin HER2 positive | Phase 1 | [76] |
18 | Humanized anti-HER2 antibody | Mertansine (DM1) | Breast cancer | Phase 1 | [77] |
19 | Aprutumab | Ixadotin | Fibroblast growth factor receptor type 2 (FGFR2) | Phase 1 | [78] |
20 | Mirvetuximab | Ravtansine or soravtansine (DM4) | Folate receptor alpha (FRα) in TNBC | Phase 2 | [79,80] |
21 | Trastuzumab | Mertansine (DM1) | HER2+ breast cancer | Phase 2 | [81,82] |
22 | scFv anti-HER2 | Doxorubicin (adriyamycin) | HER2+ breast cancer | Phase 1 | [83,84] |
23 | Praluzatamab | Ravtansine or soravtansine (DM4) | CD166 transmembrane type-1 glycoprotein | Phase 1/2 | [85] |
24 | Trastuzumab | Monomethyl auristatin F (MMAF) | HER2+ breast cancer | Phase 1 | [86] |
25 | Depatuxizumab | Mafodotin (MC-MMAF) | Epidermal growth factor receptor (EGFR) | Phase 1/2 | [87] |
26 | Losatuxizumab | Monomethyl auristatin E (MMAE or vedotin) | EGFR | Phase 1 | [88] |
27 | Rolinsatamab | Talirine (a crosslinked pyrrolobenzodiazepine dimer (SGD-1882)) | Prolactin receptor in solid tumor | Phase 1 | [89] |
28 | BR96 (a chimeric human/mouse monoclonal antibody) | Doxorubicin (adriyamycin) | Lewis-Y antigen, which is expressed in 75% of all types of breast cancers | Phase 2 | [90,91] |
29 | Anti-LY6E | Monomethyl auristatin E (MMAE or vedotin) | LY6E cell surface antigen in HER2-negative metastatic breast cancer | Phase 1 | [92] |
30 | Disitamab | Monomethyl auristatin E (MMAE or vedotin) RC48-ADC | HER2+ breast cancer | Phase 3 | [93,94,95] |
31 | Ladiratuzumab | Monomethyl auristatin E (MMAE or vedotin) | LIV-1 in ER+ breast cancer and TNBC | Phase 1b/2 | [94,96] |
32 | AVID100 (MAB100) | Mertansine (DM1) | Epidermal growth factor receptor (EGFR) | Phase 2 | [97] |
33 | ARX-788 mAb | Amberstatin-269 (AS269 or PEG4-aminooxy-MMAF) | HER2+ breast cancer | Phase 2 | [19,98] |
34 | XMT-1522 (HT-19) | AF-HPA auristatin derivative | HER2+ breast cancer | Phase 1 | [99] |
35 | Trastuzumab biobetter HM2 ALT-P7 | Monomethyl auristatin E (MMAE) | HER2+ BC and EGFR | Phase 1 | [100] |
36 | Zanidatamab-Zovodotin (ZW49) | Auristatin payload (ZD02044) | ErbB/HER Family of Receptor Tyrosine Kinases | Phase 1 | [101] |
37 | Camidanlumab-Tesirine (ADC T-301) CD25 targeting mAb | Pyrrolobenzodiazepine (PBD) dimer | CD25 (IL2RA—interleukin 2 receptor alpha subunit, IL-2RA, TAC, p55) | Phase 2 | [102] |
38 | Trastuzumab FS-1502 | Monomethyl zuristatin F | HER2+ breast cancer | Phase 1 | [103] |
ADC | Antibody | Payload | Representative Trials | Phase | Approval Status |
---|---|---|---|---|---|
T-DM1 | Trastuzumab | DM1 | EMILIA (NCT00829166) | III | Yes |
KATHERINE (NCT01772472) | III | ||||
KATE3 (NCT04740918) | III | ||||
T-DXd | Trastuzumab | DXd | DESTINY-Breast-03 (NCT03529110) | III | Yes |
DESTINY-Breast-09 (NCT04784715) | III | ||||
DESTINY-Breast-04 (NCT03734029) | III | ||||
DESTINY-Breast-07 (NCT04538742) | I/II | ||||
DESTINY-Breast-08 (NCT04556773) | Ib |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukherjee, A.; Bandyopadhyay, D. Targeted Therapy in Breast Cancer: Advantages and Advancements of Antibody–Drug Conjugates, a Type of Chemo-Biologic Hybrid Drugs. Cancers 2024, 16, 3517. https://doi.org/10.3390/cancers16203517
Mukherjee A, Bandyopadhyay D. Targeted Therapy in Breast Cancer: Advantages and Advancements of Antibody–Drug Conjugates, a Type of Chemo-Biologic Hybrid Drugs. Cancers. 2024; 16(20):3517. https://doi.org/10.3390/cancers16203517
Chicago/Turabian StyleMukherjee, Attrayo, and Debasish Bandyopadhyay. 2024. "Targeted Therapy in Breast Cancer: Advantages and Advancements of Antibody–Drug Conjugates, a Type of Chemo-Biologic Hybrid Drugs" Cancers 16, no. 20: 3517. https://doi.org/10.3390/cancers16203517
APA StyleMukherjee, A., & Bandyopadhyay, D. (2024). Targeted Therapy in Breast Cancer: Advantages and Advancements of Antibody–Drug Conjugates, a Type of Chemo-Biologic Hybrid Drugs. Cancers, 16(20), 3517. https://doi.org/10.3390/cancers16203517