Robustness Assessment of Oncology Dose-Finding Trials Using the Modified Fragility Index
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dose Finding Designs
2.2. Fragility Index
- Collect data from a completed dose-finding trial, , , . At the dose level of the MTD (), the number of subjects is and the number of DLTs is .
- Start with , i.e., add one additional subject at MTD so that the total number of subjects at the MTD is . Let the DLT outcome at the MTD for this new subject be either 0 or 1, hence the total number of DLTs is either or . Use the same statistical method as used in the original study for both numbers of DLTs to see whether the resulting new MTD is different from the original MTD. If it is different, set mFI = 1; otherwise, go to the next step.
- Let . The number of subjects at the MTD is and let the number of DLTs at the MTD take any value between 0 and : , . Use the same statistical method as used in the original study for all DLT outcomes to assess whether the resulting MTD is different. If it is different, set mFI = ; otherwise, go to the next step.
- Repeat step 3 unless MTD has been changed and mFI has been set to a value, or if it reaches a prespecified large value.
- Once the mFI value is determined, we can calculate the probability of observing the number of DLTs or a more extreme case that would change the MTD decision based on the estimated toxicity probability at the original MTD level, to assess its likelihood. For example, if patients are added at the original MTD level and if or fewer DLTs are observed among those new patients, it will change the MTD; the probability of this happening is:
3. Results: Three Case Studies
3.1. Phase I Dose-Escalation Trial of AUY922
3.2. Phase I Trial of Pan-AKT Inhibitor MK-2206
3.3. The SPRINT Phase I Trial
3.4. mFI Results Summary
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Disclaimer
Conflicts of Interest
Appendix A. Overview of Commonly Used Dose Finding Designs
A.1. The Continual Reassessment Method (CRM)
A.2. The Escalation with Overdose Control (EWOC)
A.3. The Bayesian Logistic Regression Model (BLRM)
A.4. The Modified Toxicity Probability Interval (mTPI) Design
- If , escalate dose to level ;
- If , stay at the current dose level ;
- If , de-escalate dose to level .
A.5. The Keyboard Design
- If the strongest key is on the left side of the target key, escalate to the level ;
- If the strongest key is the target key, stay at the current level ;
- If the strongest key is on the right side of the target key, de-escalate to level .
A.6. The Bayesian Optimal Interval (BOIN) Design
- If , escalate to the level ;
- If , de-escalate to the level ;
- Otherwise, stay at the current level .
References
- Feinstein, A.R. The unit fragility index: An additional appraisal of “statistical significance” for a contrast of two proportions. J. Clin. Epidemiol. 1990, 43, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Walter, S. Statistical significance and fragility criteria for assessing a difference of two proportions. J. Clin. Epidemiol. 1991, 44, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.; Srinathan, S.K.; McAuley, D.F.; Mrkobrada, M.; Levine, O.; Ribic, C.; Molnar, A.O.; Dattani, N.D.; Burke, A.; Guyatt, G. The statistical significance of randomized controlled trial results is frequently fragile: A case for a Fragility Index. J. Clin. Epidemiol. 2014, 67, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Baer, B.R.; Fremes, S.E.; Gaudino, M.; Charlson, M.; Wells, M.T. On clinical trial fragility due to patients lost to follow up. BMC Med. Res. Methodol. 2021, 21, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bomze, D.; Asher, N.; Ali, O.H.; Flatz, L.; Azoulay, D.; Markel, G.; Meirson, T. Survival-inferred fragility index of phase 3 clinical trials evaluating immune checkpoint inhibitors. JAMA Netw. Open 2020, 3, e2017675. [Google Scholar] [CrossRef]
- Atal, I.; Porcher, R.; Boutron, I.; Ravaud, P. The statistical significance of meta-analyses is frequently fragile: Definition of a fragility index for meta-analyses. J. Clin. Epidemiol. 2019, 111, 32–40. [Google Scholar] [CrossRef]
- Lin, L. Factors that impact fragility index and their visualizations. J. Eval. Clin. Pract. 2021, 27, 356–364. [Google Scholar] [CrossRef]
- Lin, L.; Chu, H. Assessing and visualizing fragility of clinical results with binary outcomes in R using the fragility package. PLoS ONE 2022, 17, e0268754. [Google Scholar] [CrossRef]
- Lin, L.; Xing, A.; Chu, H.; Murad, M.H.; Xu, C.; Baer, B.R.; Wells, M.T.; Sanchez-Ramos, L. Assessing the robustness of results from clinical trials and meta-analyses with the fragility index. Am. J. Obstet. Gynecol. 2023, 228, 276–282. [Google Scholar] [CrossRef]
- Del Paggio, J.C.; Tannock, I.F. The fragility of phase 3 trials supporting FDA-approved anticancer medicines: A retrospective analysis. Lancet Oncol. 2019, 20, 1065–1069. [Google Scholar] [CrossRef]
- Sanchez-Ramos, L.; Lin, L. Cerclage placement in twin pregnancies with short or dilated cervix does not prevent preterm birth: A fragility index assessment. Am. J. Obstet. Gynecol. 2022, 227, 338–339. [Google Scholar] [CrossRef] [PubMed]
- Tignanelli, C.J.; Napolitano, L.M. The fragility index in randomized clinical trials as a means of optimizing patient care. JAMA Surg. 2019, 154, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Storer, B.E. An evaluation of phase I clinical trial designs in the continuous dose–response setting. Stat. Med. 2001, 20, 2399–2408. [Google Scholar] [CrossRef] [PubMed]
- Gezmu, M.; Flournoy, N. Group up-and-down designs for dose-finding. J. Stat. Plan. Inference 2006, 136, 1749–1764. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, S.-J. Modified toxicity probability interval design: A safer and more reliable method than the 3 + 3 design for practical phase I trials. J. Clin. Oncol. 2013, 31, 1785. [Google Scholar] [CrossRef]
- O’Quigley, J.; Pepe, M.; Fisher, L. Continual reassessment method: A practical design for phase 1 clinical trials in cancer. Biometrics 1990, 46, 33–48. [Google Scholar] [CrossRef]
- Babb, J.; Rogatko, A.; Zacks, S. Cancer phase I clinical trials: Efficient dose escalation with overdose control. Stat. Med. 1998, 17, 1103–1120. [Google Scholar] [CrossRef]
- Cheung, Y.K.; Chappell, R. Sequential designs for phase I clinical trials with late-onset toxicities. Biometrics 2000, 56, 1177–1182. [Google Scholar] [CrossRef]
- Yuan, Y.; Lee, J.J.; Hilsenbeck, S.G. Model-assisted designs for early-phase clinical trials: Simplicity meets superiority. JCO Precis. Oncol. 2019, 3, 1–12. [Google Scholar] [CrossRef]
- Guo, W.; Wang, S.-J.; Yang, S.; Lynn, H.; Ji, Y. A Bayesian interval dose-finding design addressingOckham’s razor: mTPI-2. Contemp. Clin. Trials 2017, 58, 23–33. [Google Scholar] [CrossRef]
- Yan, F.; Mandrekar, S.J.; Yuan, Y. Keyboard: A novel Bayesian toxicity probability interval design for phase I clinical trials. Clin. Cancer Res. 2017, 23, 3994–4003. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yuan, Y. Bayesian optimal interval designs for phase I clinical trials. J. R. Stat. Soc. Ser. C Appl. Stat. 2015, 64, 507–523. [Google Scholar] [CrossRef]
- Zhou, H.; Yuan, Y.; Nie, L. Accuracy, safety, and reliability of novel phase I trial designs. Clin. Cancer Res. 2018, 24, 4357–4364. [Google Scholar] [CrossRef] [PubMed]
- Sessa, C.; Shapiro, G.I.; Bhalla, K.N.; Britten, C.; Jacks, K.S.; Mita, M.; Papadimitrakopoulou, V.; Pluard, T.; Samuel, T.A.; Akimov, M. First-in-human phase I dose-escalation study of the HSP90 inhibitor AUY922 in patients with advanced solid tumors. Clin. Cancer Res. 2013, 19, 3671–3680. [Google Scholar] [CrossRef]
- Yap, T.A.; Yan, L.; Patnaik, A.; Fearen, I.; Olmos, D.; Papadopoulos, K.; Baird, R.D.; Delgado, L.; Taylor, A.; Lupinacci, L. First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J. Clin. Oncol. 2011, 29, 4688–4695. [Google Scholar] [CrossRef]
- Food and Drug Administration. NDA Multi-Disciplinary Review and Evaluation NDA 213756 for Koselugo (Selumetinib); Food and Drug Administration: Silver Spring, MD, USA, 2020. [Google Scholar]
- Shen, L.Z.; O’quigley, J. Consistency of continual reassessment method under model misspecification. Biometrika 1996, 83, 395–405. [Google Scholar] [CrossRef]
- Devlin, S.M.; Iasonos, A.; O’Quigley, J. Stopping rules for phase I clinical trials with dose expansion cohorts. Stat. Methods Med. Res. 2022, 31, 334–347. [Google Scholar] [CrossRef]
- O’quigley, J.; Reiner, E. A stopping rule for the continual reassessment method. Biometrika 1998, 85, 741–748. [Google Scholar] [CrossRef]
- Heston, T.F. The robustness index: Going beyond statistical significance by quantifying fragility. Cureus 2023, 15, e44397. [Google Scholar] [CrossRef]
- Caldwell, J.-M.E.; Youssefzadeh, K.; Limpisvasti, O. A method for calculating the fragility index of continuous outcomes. J. Clin. Epidemiol. 2021, 136, 20–25. [Google Scholar] [CrossRef]
- Baer, B.R.; Gaudino, M.; Charlson, M.; Fremes, S.E.; Wells, M.T. Fragility indices for only sufficiently likely modifications. Proc. Natl. Acad. Sci. USA 2021, 118, e2105254118. [Google Scholar] [CrossRef] [PubMed]
- Neuenschwander, B.; Branson, M.; Gsponer, T. Critical aspects of the Bayesian approach to phase I cancer trials. Stat. Med. 2008, 27, 2420–2439. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Drug Administration. Drug Development Tools: Fit-for-Purpose Initiative. In Guidance for Industry; FDA (Food and Drug Administration): Silver Spring, MD, USA, 2021. [Google Scholar]
Dose Level Index | |||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Dose level (mg/m2) | 2 | 4 | 8 | 16 | 22 | 28 | 40 | 54 | 70 |
Total # subjects treated | 3 | 3 | 4 | 6 | 11 | 8 | 16 | 18 | 24 |
# DLT | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 2 | 3 |
DLT rate (%) | 0 | 0 | 0 | 0 | 9.1 | 0 | 12.5 | 11.1 | 12.5 |
Trials | Dose-Finding Designs | |||||
---|---|---|---|---|---|---|
CRM | EWOC | BLRM | mTPI | Keyboard | BOIN | |
1. AUY922 Dose Escalation | 12 | 8 | 10 | 10 | 10 | 10 |
2. Pan-AKT Inhibitor MK-2206 | 10 | 5 | 9 | 18 | 11 | 11 |
3. SPRINT Trial | 2 | 2 | 2 | 1 | 1 | 1 |
Dose Level Index | ||||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Dose level (mg) | 30 | 60 | 75 | 90 |
Total # subjects treated | 3 | 20 | 3 | 7 |
# DLT | 0 | 1 | 3 | 4 |
DLT rate (%) | 0 | 5.0 | 100 | 57.1 |
Dose Level Index | |||
---|---|---|---|
1 | 2 | 3 | |
Dose level (mg/m2) | 20 | 25 | 30 |
Total # subjects treated | 12 | 6 | 6 |
# DLT | 2 | 1 | 2 |
DLT rate (%) | 16.7 | 16.7 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, A.X.; Zhou, H.; Nie, L.; Lin, L.; Li, H.; Chu, H. Robustness Assessment of Oncology Dose-Finding Trials Using the Modified Fragility Index. Cancers 2024, 16, 3504. https://doi.org/10.3390/cancers16203504
Shi AX, Zhou H, Nie L, Lin L, Li H, Chu H. Robustness Assessment of Oncology Dose-Finding Trials Using the Modified Fragility Index. Cancers. 2024; 16(20):3504. https://doi.org/10.3390/cancers16203504
Chicago/Turabian StyleShi, Amy X., Heng Zhou, Lei Nie, Lifeng Lin, Hongjian Li, and Haitao Chu. 2024. "Robustness Assessment of Oncology Dose-Finding Trials Using the Modified Fragility Index" Cancers 16, no. 20: 3504. https://doi.org/10.3390/cancers16203504
APA StyleShi, A. X., Zhou, H., Nie, L., Lin, L., Li, H., & Chu, H. (2024). Robustness Assessment of Oncology Dose-Finding Trials Using the Modified Fragility Index. Cancers, 16(20), 3504. https://doi.org/10.3390/cancers16203504