Update on Neoadjuvant and Adjuvant BRAF Inhibitors in Papillary Craniopharyngioma: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Müller, H.L. Craniopharyngioma. Endocr. Rev. 2014, 35, 513–543. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, E.H.; Feldt-Rasmussen, U.; Poulsgaard, L.; Kristensen, L.; Astrup, J.; Jørgensen, J.O.; Bjerre, P.; Andersen, M.; Andersen, C.; Lindholm, J.; et al. Incidence of craniopharyngioma in Denmark (n = 189) and estimated world incidence of craniopharyngioma in children and adults. J. Neuro-Oncol. 2011, 104, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, J.; Holden, N.; Hills, R.; Wheatley, K.; Clayton, R.N.; Bates, A.; Sheppard, M.; Stewart, P. Association between premature mortality and hypopituitarism. Lancet 2001, 357, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Miranda, J.C.; Gardner, P.A.; Snyderman, C.H.; Devaney, K.O.; Strojan, P.; Suárez, C.; Genden, E.M.; Rinaldo, A.; Ferlito, A. Craniopharyngioma: A pathologic, clinical, and surgical review. Head Neck 2011, 34, 1036–1044. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Hölsken, A.; Sill, M.; Merkle, J.; Schweizer, L.; Buchfelder, M.; Flitsch, J.; Fahlbusch, R.; Metzler, M.; Kool, M.; Pfister, S.M.; et al. Adamantinomatous and papillary craniopharyngiomas are characterized by distinct epigenomic as well as mutational and transcriptomic profiles. Acta Neuropathol. Commun. 2016, 4, 20. [Google Scholar] [CrossRef]
- Gritsch, D.; Santagata, S.; Brastianos, P.K. Integrating Systemic Therapies into the Multimodality Therapy of Patients with Craniopharyngioma. Curr. Treat. Options Oncol. 2024, 25, 261–273. [Google Scholar] [CrossRef]
- Brastianos, P.K.; Taylor-Weiner, A.; Manley, P.E.; Jones, R.T.; Dias-Santagata, D.; Thorner, A.R.; Lawrence, M.S.; Rodriguez, F.J.; A Bernardo, L.; Schubert, L.; et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat. Genet. 2014, 46, 161–165. [Google Scholar] [CrossRef]
- Cossu, G.; Jouanneau, E.; Cavallo, L.M.; Elbabaa, S.K.; Giammattei, L.; Starnoni, D.; Barges-Coll, J.; Cappabianca, P.; Benes, V.; Baskaya, M.K.; et al. Surgical management of craniopharyngiomas in adult patients: A systematic review and consensus statement on behalf of the EANS skull base section. Acta Neurochir. 2020, 162, 1159–1177. [Google Scholar] [CrossRef]
- Komotar, R.J.; Starke, R.M.; Raper, D.M.; Anand, V.K.; Schwartz, T.H. Endoscopic Endonasal Compared with Microscopic Transsphenoidal and Open Transcranial Resection of Craniopharyngiomas. World Neurosurg. 2011, 77, 329–341. [Google Scholar] [CrossRef]
- Messerer, M.; Maduri, R.; Daniel, R.T. Extended Endoscopic Endonasal Approach for Craniopharyngioma Removal. J. Neurol. Surg. Part B Skull Base 2018, 79, S199–S200. [Google Scholar] [CrossRef] [PubMed]
- Crowley, R.K.; Hamnvik, O.P.; O’sullivan, E.P.; Behan, L.A.; Smith, D.; Agha, A.; Thompson, C.J. Morbidity and mortality in patients with craniopharyngioma after surgery. Clin. Endocrinol. 2010, 73, 516–521. [Google Scholar] [CrossRef]
- Akinduro, O.O.; Izzo, A.; Lu, V.M.; Ricciardi, L.; Trifiletti, D.; Peterson, J.L.; Bernet, V.; Donaldson, A.; Eggenberger, E.; Olomu, O.; et al. Endocrine and Visual Outcomes Following Gross Total Resection and Subtotal Resection of Adult Craniopharyngioma: Systematic Review and Meta-Analysis. World Neurosurg. 2019, 127, e656–e668. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, A.; Pekmezci, M.; Barnes, M.J.; Tihan, T.; Gupta, N.; Lamborn, K.R.; Banerjee, A.; Mueller, S.; Chang, S.; Berger, M.S.; et al. The superiority of conservative resection and adjuvant radiation for craniopharyngiomas. J. Neuro-Oncology 2012, 108, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.-J.; et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: A multicentre, double-blind, phase 3 randomised controlled trial. Lancet 2015, 386, 444–451. [Google Scholar] [CrossRef]
- Flaherty, K.T.; Infante, J.R.; Daud, A.; Gonzalez, R.; Kefford, R.F.; Sosman, J.; Hamid, O.; Schuchter, L.; Cebon, J.; Ibrahim, N.; et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 2012, 367, 1694–1703. [Google Scholar] [CrossRef]
- Brastianos, P.K.; Shankar, G.M.; Gill, C.M.; Taylor-Weiner, A.; Nayyar, N.; Panka, D.J.; Sullivan, R.J.; Frederick, D.T.; Abedalthagafi, M.; Jones, P.S.; et al. Dramatic Response of BRAF V600E Mutant Papillary Craniopharyngioma to Targeted Therapy. JNCI J. Natl. Cancer Inst. 2015, 108, djv310. [Google Scholar] [CrossRef]
- Brastianos, P.K.; Twohy, E.; Geyer, S.; Gerstner, E.R.; Kaufmann, T.J.; Tabrizi, S.; Kabat, B.; Thierauf, J.; Ruff, M.W.; Bota, D.A.; et al. BRAF–MEK Inhibition in Newly Diagnosed Papillary Craniopharyngiomas. N. Engl. J. Med. 2023, 389, 118–126. [Google Scholar] [CrossRef]
- Jannelli, G.; Calvanese, F.; Paun, L.; Raverot, G.; Jouanneau, E. Current Advances in Papillary Craniopharyngioma: State-Of-The-Art Therapies and Overview of the Literature. Brain Sci. 2023, 13, 515. [Google Scholar] [CrossRef]
- De Alcubierre, D.; Gkasdaris, G.; Mordrel, M.; Joncour, A.; Briet, C.; Almairac, F.; Boetto, J.; Mouly, C.; Larrieu-Ciron, D.; Vasiljevic, A.; et al. BRAF and MEK inhibitor targeted therapy in papillary craniopharyngiomas: A cohort study. Eur. J. Endocrinol. 2024, 191, 251–261. [Google Scholar] [CrossRef]
- Shah, S.N.; Kaki, P.C.; Shah, S.S.; Shah, S.A. Concurrent Radiation and Targeted Therapy for Papillary Craniopharyngioma: A Case Report. Cureus 2023, 15, e40190. [Google Scholar] [CrossRef] [PubMed]
- Butt, S.-U.; Mejias, A.; Morelli, C.; Torga, G.; Happe, M.; Patrikidou, A.; Arkenau, H.-T. BRAF/MEK inhibitors for BRAF V600E-mutant cancers in non-approved setting: A case series. Cancer Chemother. Pharmacol. 2021, 87, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; A Raslan, O.; Lee, H.S.; Theeler, B.J.; Raafat, T.A.; Fragoso, R.; Shahlaie, K.; Aboud, O. Promising response to vemurafenib and cobimetinib treatment for BRAF V600E mutated craniopharyngioma: A case report and literature review. CNS Oncol. 2024, 13, CNS106. [Google Scholar] [CrossRef]
- Lin, A.L.; Tabar, V.; Young, R.J.; Geer, E.B. Dabrafenib as a diagnostic and therapeutic strategy for the non-surgical management of papillary craniopharyngioma. Pituitary 2023, 26, 482–487. [Google Scholar] [CrossRef]
- Wu, Z.-P.; Wang, Y.-L.; Wang, L.-C.; Liu, Z.-Y.; Fan, R.-R.; Zan, X.; Liang, R.-C.; Yang, J.-L.; Zhou, L.-X.; Xu, J.-G. Case Report: Successful Use of BRAF/MEK Inhibitors in Aggressive BRAF-mutant Craniopharyngioma. World Neurosurg. 2023, 180, e117–e126. [Google Scholar] [CrossRef]
- Nussbaum, P.E.; Nussbaum, L.A.; Torok, C.M.; Patel, P.D.; Yesavage, T.A.; Nussbaum, E.S. Case report and literature review of BRAF-V600 inhibitors for treatment of papillary craniopharyngiomas: A potential treatment paradigm shift. J. Clin. Pharm. Ther. 2022, 47, 826–831. [Google Scholar] [CrossRef]
- Calvanese, F.; Jacquesson, T.; Manet, R.; Vasiljevic, A.; Lasolle, H.; Ducray, F.; Raverot, G.; Jouanneau, E. Neoadjuvant B-RAF and MEK Inhibitor Targeted Therapy for Adult Papillary Craniopharyngiomas: A New Treatment Paradigm. Front. Endocrinol. (Lausanne) 2022, 13, 882381. [Google Scholar] [CrossRef]
- Chik, C.L.; van Landeghem, F.K.H.; Easaw, J.C.; Mehta, V. Aggressive Childhood-onset Papillary Craniopharyngioma Managed with Vemurafenib, a BRAF Inhibitor. J. Endocr. Soc. 2021, 5, bvab043. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, A.L.; Guyon, D.; Sejean, K.; Feuvret, L.; Villa, C.; Berzero, G.; Desforges Bullet, V.; Halimi, E.; Boulin, A.; Baussart, B.; et al. Medical debulking with BRAF/MEK inhibitors in ag-gressive BRAF-mutant craniopharyngioma. Neurooncol. Adv. 2020, 2, vdaa141. [Google Scholar] [CrossRef]
- Gopal, M.; Thakur, G.; Puduvalli, V. Initial Presentation of Papillary Craniopharyngioma with BRAF Mutation Treated with Adjuvant Chemotherapy (867). Neurology 2020, 94. [Google Scholar] [CrossRef]
- Khaddour, K.; Chicoine, M.R.; Huang, J.; Dahiya, S.; Ansstas, G. Successful Use of BRAF/MEK Inhibitors as a Neoadjuvant Approach in the Definitive Treatment of Papillary Craniopharyngioma. J. Natl. Compr. Cancer Netw. 2020, 18, 1590–1595. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.; Bhattacharjee, M.; Shepard, S.; Hsu, S. Newly diagnosed papillary craniopharyngioma with BRAF V600E mutation treated with single-agent selective BRAF inhibitor dabrafenib: A case report. Oncotarget 2019, 10, 6038–6042. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, A.; Mrowczynski, O.D.; Greene, A.; Ryan, S.; Chung, C.; Zacharia, B.E.; Glantz, M. Dual BRAF/MEK therapy in BRAF V600E-mutated primary brain tumors: A case series showing dramatic clinical and radiographic responses and a reduction in cutaneous toxicity. J. Neurosurg. 2020, 133, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Himes, B.T.; Ruff, M.W.; Van Gompel, J.J.; Park, S.S.; Galanis, E.; Kaufmann, T.J.; Uhm, J.H. Recurrent papillary craniopharyngioma with BRAF V600E mutation treated with dabrafenib: Case report. J. Neurosurg. 2019, 130, 1299–1303. [Google Scholar] [CrossRef] [PubMed]
- Juratli, T.A.; Jones, P.S.; Wang, N.; Subramanian, M.; Aylwin, S.J.B.; Odia, Y.; Rostami, E.; Gudjonsson, O.; Shaw, B.L.; Cahill, D.P.; et al. Targeted treatment of papillary craniopharyngiomas harboring BRAF V600E mutations. Cancer 2019, 125, 2910–2914. [Google Scholar] [CrossRef]
- Roque, A.; Odia, Y. BRAF-V600E mutant papillary craniopharyngioma dramatically responds to combination BRAF and MEK inhibitors. CNS Oncol. 2017, 6, 95. [Google Scholar] [CrossRef]
- Rostami, E.; Nyström, P.W.; Libard, S.; Wikström, J.; Casar-Borota, O.; Gudjonsson, O. Recurrent papillary craniopharyngioma with BRAFV600E mutation treated with neoadjuvant-targeted therapy. Acta Neurochir. 2017, 159, 2217–2221. [Google Scholar] [CrossRef]
- Aylwin, S.J.B.; Bodi, I.; Beaney, R. Pronounced response of papillary craniopharyngioma to treatment with vemurafenib, a BRAF inhibitor. Pituitary 2016, 19, 544–546. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; et al. Mutations of the BRAF gene in human cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef]
- Michaloglou, C.; Vredeveld, L.C.W.; Mooi, W.J.; Peeper, D.S. BRAFE600 in benign and malignant human tumours. Oncogene 2007, 27, 877–895. [Google Scholar] [CrossRef]
- Iglesias, P. Targeted therapies in the medical management of craniopharyngioma. Pituitary 2022, 25, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Alexandraki, K.I.; Kaltsas, G.A.; Karavitaki, N.; Grossman, A.B. The Medical Therapy of Craniopharyngiomas: The Way Ahead. J. Clin. Endocrinol. Metab. 2019, 104, 5751–5764. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Yu, Y.; Shi, Z.; Wang, Y.; Zhu, W.; Du, Z.; Yao, Z.; Chen, L.; Mao, Y. Prediction of BRAF mutation status of craniopharyngioma using magnetic resonance imaging features. J. Neurosurg. 2018, 129, 27–34. [Google Scholar] [CrossRef]
- Lee, H.-J.; Wu, C.-C.; Wu, H.-M.; Hung, S.-C.; Lirng, J.-F.; Luo, C.-B.; Chang, F.-C.; Guo, W.-Y. Pretreatment Diagnosis of Suprasellar Papillary Craniopharyngioma and Germ Cell Tumors of Adult Patients. Am. J. Neuroradiol. 2014, 36, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Tong, Y.; Shi, Z.; Chen, H.; Yang, Z.; Wang, Y.; Chen, L.; Yu, J. Noninvasive molecular diagnosis of craniopharyngioma with MRI-based radiomics approach. BMC Neurol. 2019, 19, 6. [Google Scholar] [CrossRef] [PubMed]
- Hua, F.; Asato, R.; Miki, Y.; Okumura, R.; Hashimoto, N.; Kikuchi, H.; Konishi, J. Differentiation of Suprasellar Nonneoplastic Cysts from Cystic Neoplasms by Gd-DTPA MRI. J. Comput. Assist. Tomogr. 1992, 16, 744–749. [Google Scholar] [CrossRef]
- Crowley, E.; Di Nicolantonio, F.; Loupakis, F.; Bardelli, A. Liquid biopsy: Monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 2013, 10, 472–484. [Google Scholar] [CrossRef]
- Alix-Panabières, C.; Pantel, K. Clinical Applications of Circulating Tumor Cells and Circulating Tumor DNA as Liquid Biopsy. Cancer Discov. 2016, 6, 479–491. [Google Scholar] [CrossRef]
- Study Details|Vemurafenib and Cobimetinib in Treating Patients with BRAF V600E Mutation Positive Craniopharyngioma|ClinicalTrials.gov [Internet]. Available online: https://clinicaltrials.gov/study/NCT03224767?cond=NCT03224767&rank=1 (accessed on 25 August 2024).
- Study Details|Tocilizumab in Children with ACP|ClinicalTrials.gov [Internet]. Available online: https://clinicaltrials.gov/study/NCT03970226?cond=NCT03970226&rank=1 (accessed on 25 August 2024).
- Study Details|Prospective Pilot Study Identifying Clinically Relevant Biological Targets for Medical Therapy|ClinicalTrials.gov [Internet]. Available online: https://clinicaltrials.gov/study/NCT03610906?cond=NCT03610906&rank=1#study-plan (accessed on 25 August 2024).
- Study Details|Multicenter Registry for Patients with Childhood.Onset Craniopharyngioma, Xanthogranuloma, Cysts of Rathke’s Pouch, Meningioma, Pituitary Adenoma, Arachnoid Cysts|ClinicalTrials.gov [Internet]. Available online: https://clinicaltrials.gov/study/NCT04158284?cond=NCT04158284&rank=1 (accessed on 25 August 2024).
- Grob, S.; Mirsky, D.M.; Donson, A.M.; Dahl, N.; Foreman, N.K.; Hoffman, L.M.; Hankinson, T.C.; Levy, J.M.M. Targeting IL-6 Is a Potential Treatment for Primary Cystic Craniopharyngioma. Front. Oncol. 2019, 9, 791. [Google Scholar] [CrossRef]
- Hayes, A.G.; Jonker, B.; Teng, C.; Lemech, C.; Killen, A.J.; Sim, H.-W.; McCormack, A.I. Approach to the patient: New era emerges for cranio-pharyngioma management. J. Clin. Endocrinol. Metab. 2024, dgae503. [Google Scholar] [CrossRef]
- De Rosa, A.; Calvanese, F.; Ducray, F.; Vasiljevic, A.; Manet, R.; Raverot, G.; Jouanneau, E. First evidence of anti-VEGF efficacy in an adult case of adamantinomatous craniopharyngioma: Case report and illustrative review. Ann. d’Endocrinol. 2023, 84, 727–733. [Google Scholar] [CrossRef] [PubMed]
Database | Search String |
---|---|
Scopus | TITLE-ABS-KEY (craniopharyng*) AND TITLE-ABS-KEY (mole* OR targe* OR braf OR dabrafenib OR trametini) AND TITLE-ABS-KEY (adju* OR neoadj*) |
PubMed | Craniopharyng* and (adju* or neoadj*) and (molec* or targe* or BRAF or dabrafenib or trametinib)) |
MEDLINE and Embase | (craniopharyng*) AND (targeted therapy OR molecular therapy OR BRAF OR dabrafenib OR trametinib) AND (adju* OR neoadj*) |
Inclusion | Exclusion |
---|---|
Clinical reports and conference abstracts | Pre-clinical studies |
Neoadjuvant use of BRAF inhibitors | Non-English studies |
Adjuvant use of BRAF inhibitors | Studies reporting patients with adamantinomatous craniopharyngioma |
Studies including papillary craniopharyngiomas |
Study | Age (Years) | Sex | Comorbidities | Clinical Presentation | Pituitary Hormone Deficiency | MRI Finding | Solid/Cystic Morphology |
---|---|---|---|---|---|---|---|
Brastianos 2015 [17] | 39 | M | None | Headache and confusion | None | Solid sellar and suprasellar enhancing tumour | Solid-cystic |
Aylwin 2016 [38] | 57 | F | ns | Visual impairment | Hyperprolactinaemia | Sellar and suprasellar mass with perifocal oedema | Solid |
Rostami 2017 [37] | 65 | M | Ancient history of sine materia SAH | Nausea and weight loss bitemporal hemianopia | Hypocorticism Hypothyroidism | Sellar and suprasellar lesion with cystic components | Solid-cystic |
Roque 2017 [36] | 47 | F | ns | headache Visual impairment, amenorrhea, cold intolerance | Hypogonadism and hypothyroidism | Cystic lesion with nodular enhancement, suprasellar and infiltrating the floor of 3rd ventricle | Solid-cystic |
Himes 2019 [34] | 52 | M | Non-Hodgkin lymphoma and stage III colon cancer | Visual impairment polydipsia, polyuria | DI | Suprasellar lesion | Solid-cystic |
Bernstein 2019 [33] | 60 | M | ns | ns | ns | ns | ns |
Rao 2019 [32] | 35 | M | None | Headaches, nausea, and vomiting Short-term memory loss | None | Third ventricular mass obstructing foramen of Monro with obstructive hydrocephalus | Solid-cystic |
Khaddour 2020 [31] | 39 | M | None | Headache bitemporal hemianopsia | None | Homogenous enhancing suprasellar lesion | Solid |
Gopal 2020 [30] | 44 | M | ns | Fatigue, weight gain, polydipsia, polyuria | Hypogonadism DI | Solid-cystic suprasellar mass | Solid-cystic |
Di Stefano 2020 [29] | 55 | F | None | Weight gain | Hypopituitarism | Suprasellar mass | Solid-cystic |
Chik 2021 [28] | 37 | M | Recurrent sinusitis Obesity | Visual impairment and headaches | Complete anterior hypopituitarism | Enhancing sellar and suprasellar mass | Solid |
Calvanese 2022 [27] (1) | 40 | M | None | Bitemporal inferior quadranopia | Hypogonadism | Suprasellar and tubero-infundibular lesion infiltrating the floor of the 3rd ventricle | Solid-cystic |
Nussbaum 2022 [26] | 35 | M | ns | Confusion and memory loss | ns | Suprasellar solid and cystic mass | Solid-cystic |
Wu 2023 [25] | 63 | F | ns | Visual impairment | ns | Sellar and suprasellar enhancing mass | Solid |
Wu 2023 [25] | 75 | M | ns | Headaches and dizziness | ns | Sellar and suprasellar enhancing mass with a cystic portion | Solid-cystic |
Yu 2024 [23] | 45 | M | None | Headache | None | Homogenous enhancing mass, intraventricular with hydrocephalus | Solid |
Butt 2020 [22] | 32 | F | Basal cell carcinoma | Visual impairment | ns | Suprasellar mass | ns |
Shah 2023 [21] | 57 | F | None | Visual impairment, headaches, and nausea | Hyperprolactinemia | Enhancing suprasellar mass | Solid-cystic |
De Alcubierre 2024 [20] (adjuvant: 8 patients and palliative protocol: 2 patients) | Mean 43.5 | 4 M, 6 F | 1 colorectal cancer in remission | 4 headaches 5 visual impairment | 9 anterior hypopituitarism 8 posterior hypopituitarism 7 panhypituitarism 3 hypothalamic symptoms | 4 suprasellar lesions 1 with secondary ventricular invasion 3 infundibulo-tuberal 1 intraventricular 6 lesions with hypothalamic invasion 1 calcified | 1 solid lesion 9 solid-cystic |
Study | Age (Years) | Sex | Comorbidities | Presentation | Pituitary Hormone Deficiency | MRI Finding | Solid/Cystic Morphology |
---|---|---|---|---|---|---|---|
Juratli 2019 [35] | 21 | M | ns | Headaches and fatigue Weight gain Nausea Visual field deficits | ns | Enhancing suprasellar mass | Solid-cystic |
Calvanese 2022 [27] | 69 | M | HIV | Right visual impairment and psychiatric changes | Hyperprolactinaemia | Solid infundibular lesion, invading the floor of the 3rd ventricle | Solid |
Lin 2023 [24] | 59 | M | None | Headache | None | Mixed suprasellar nodular and cystic lesion | Solid-cystic |
Brastianos 2023 [18] | Age Range 33–83 years | 7 M, 7 F | ns | ns | ns | ns | ns |
De Alcubierre 2024 [20] (neoadjuvant protocol) | Mean 60.3 | 4 M, 2 F | 1 HIV 1 multiple sclerosis | 1 headache 4 visual impairment | 5 anterior hypopituitarism 2 posterior hypopituitarism 2 panhypituitarism 3 hypothalamic symptoms | 5 infundibulo-tuberal lesions, with hypothalamic invasion 1 purely intraventricular | 2 solid, 4 solid-cystic |
Study | Surgical Approach | Extent of Resection | Adjuvant Radiation Therapy before BRAFi | Time to Recurrence | Genetic Profile | Post-Operative Deficit |
---|---|---|---|---|---|---|
Brastianos 2015 [17] | Craniotomy | STR | N (Administered after BRAFi 50.4 Gy in 28 fractions) | 7 months from 1st surgery then rapid regrowth with emergency decompressions every 2–4 weeks | BRAF V600E | DI, central hypothyroidism and secondary adrenal insufficiency |
Aylwin 2016 [38] | Endoscopic transsphenoidal | STR | Y (dose ns) | 4 years → surgery and then BRAFi | BRAF V600E | ns |
Rostami 2017 [37] | Endoscopic transsphenoidal | STR | N | 3 weeks | BRAF V600E | ns |
Roque 2017 [36] | Frontal craniotomy | STR | Y (54 Gy in 30 fractions) | 1 month → Radiation therapy 4 months after radiation therapy → BRAFi | BRAF V600E | DI and central adrenal insufficiency |
Himes 2019 [34] | Pterional craniotomy | STR | Y (36 Gy in 12 fractions) | 3 years | BRAF V600E | Panhypopituitarism |
Bernstein 2019 [33] | Endoscopic transsphenoidal | ns | Y (dose ns) | ns | BRAF V600E | ns |
Rao 2019 [32] | Craniotomy | STR | N | ns | BRAF V600E | DI, central hypothyroidism and central adrenal insufficiency |
Khaddour 2020 [31] | Endoscopic transsphenoidal | NTR | N | 5 months | BRAF V600E | None |
Gopal 2020 [30] | Craniotomy | STR | N | NS | BRAF V600E | ns |
Di Stefano 2020 [29] | Endoscopic transsphenoidal | STR | N | 3 months | BRAF V600E | ns |
Chik 2021 [28] | Endoscopic transsphenoidal | GTR | N (Administered after BRAFi 50 Gy in 30 fractions) | 6 weeks from last surgery (3 surgeries in childhood) | BRAF V600E | None |
Calvanese 2022 [27] | Endoscopic transsphenoidal | NTR | N | 8 months | BRAF V600E | DI and central hypothyroidism |
Nussbaum 2022 [26] | Bifrontal craniotomy | STR | N | ns | BRAF V600E | DI and central hypothyroidism |
Wu 2023 [25] | Bifrontal craniotomy | STR | N | 3 months | BRAF V600E | ns |
Wu 2023 [25] | Endoscopic transsphenoidal | GTR | N | 15 months from the 1st surgery and then 2 months after the 2nd | BRAF V600E | ns |
Yu 2024 [23] | Transventricular | STR | N | 4 months | BRAF V600E | None |
Butt 2020 [22] | Craniotomy | STR | Y (dose ns) | 2 months after radiation therapy | BRAF V600E | ns |
Shah 2023 [21] | Endoscopic transsphenoidal | STR | Y (54 Gy in 30 fractions) | 3 months → 2nd surgery Growth of cystic portion during radiation therapy | BRAF V600E | Anterior hypopituitarism Blindness during adjuvant radiation therapy |
De Alcubierre 2024 [20] (adjuvant and palliative protocol) | ns | ns | Only 1/8 cases | ns | BRAF V600E | ns |
Study | Initial Surgical Approach | Aim of Resection | Genetic Profile | Post-Operative Deficit |
---|---|---|---|---|
Juratli 2019 [35] | Surgery | Biopsy | BRAF V600E | Panhypopituitarism Infarction in anterior choroidal artery territory |
Calvanese 2022 [27] | Transventricular | Biopsy | BRAF V600E | None |
Lin 2023 [24] | None | Not performed | Blood sample, Negative for BRAF mutation | Not described |
Study | Timing after Surgery | Therapeutic (1) | Therapeutic (2) | Duration | Adverse Events | Tumour Reduction | Total Follow-Up | Ongoing BRAFi Therapy | Radiological Follow-Up |
---|---|---|---|---|---|---|---|---|---|
Brastianos 2015 [17] | 7 weeks after last surgery | Dabrafenib (150 mg twice daily) | Trametinib (2 mg once daily) | 52 days | None | 85% by volume | 7 months | N | Near complete response after BRAFi followed by: New surgery for removal of residual tumour Adjuvant radiation therapy |
Aylwin 2016 [38] | Some weeks after 2nd surgery | Vemurafenib (960 mg twice daily) | 3 months | CSF leak, pneumocephalus and meningitis | Near complete | 7 months | N | Initial near complete response (under BRAFi) → recurrence after 6w of pause → new response to BRAFi → new progression at 7 months (BRAFi stopped) | |
Rostami 2017 [37] | 3 weeks | Dabrafenib (150 mg twice daily) | Trametinib (2 mg once daily) | 15 weeks | Pyrexia | 91% by volume | 15 weeks | Y | Near complete response Still under treatment |
Roque 2017 [36] | 4 months after radiation therapy | Dabrafenib (150 mg twice daily) | Trametinb (2 mg once daily) | 7 months | Pyrexia | 75% by volume | 7 months | Y | Partial response Still under treatment |
Himes 2019 [34] | 5-years post-surgery | Dabrafenib (225 mg twice daily) | 12 months | Joint pain | Near complete response starting 6 months after beginning of the treatment Dose affected by AE | 24 months | N | Near complete response Stable at 1 year | |
Bernstein 2019 [33] | ns | Dabrafenib (150 mg twice daily) | Trametinib (2 mg once daily) | 28 months | Diffuse verrucal keratosis under dabrafenib alone | 100% by tumour volume | 28 months | Y | Complete response Still under treatment |
Rao 2019 [32] | ns | Dabrafenib (150 mg twice daily) | 24 months | None | Partial response at 2 months and near complete response at 1 year | 24 months | Y | Near complete response Still under treatment | |
Khaddour 2020 [31] | 1 week post recurrence | Dabrafenib (150 mg twice daily) | Trametinib (2 mg once daily) | 9 months | Pyrexia | 70% by volume | 26 months | N | Partial response Stable at 2 years GK performed during follow-up |
Gopal 2020 [30] | ns | Dabrafenib | Trametinib | ns | ns | ns | ns | ns | Partial regression |
Di Stefano 2020 [29] | 5 months post-surgery | Dabrafenib (150 mg twice daily) | Trametinib (2 mg once daily) | 30 weeks | Fatigue, cough and peripheral oedema | 95% by volume | 55 weeks | N | Near complete response Stable at 6 months PBRT performed after 30 weeks of BRAFi |
Chik 2021 [28] | 60 days post-surgery | Vemurafenib (960 mg twice daily) | 25 months | Arthralgia, myalgia, photosensitivity, and elevated liver enzymes Dose of vemurafenib was reduced | 55% by volume | 25 months | Y | Progression of cystic portion after 8 months of treatment → surgery and RTH 17 months after RTH: new growth of cystic component → GK Still under treatment | |
Calvanese 2022 [27] | 8 months post-surgery on tumour recurrence | Dabrafenib (150 mg twice daily) | Trametinib (2 mg once daily) | 5 months | None | 90% by volume | 14 months | N | Near complete response Stable at 14 months Radiation therapy at the end of BRAFi |
Nussbaum 2022 [26] | 2 months post-surgery | Dabrafenib (150 mg twice daily) | Trametinib (2 mg once daily) | 22 months | Anemia and elevated liver enzymes | 95% by volume | 22 months | Y | Near complete response Still under treatment |
Wu 2023 [25] | 3 months post-surgery | Dabrafenib (150 mg twice daily) | Trametinib (2 mg once daily) | 3 months | None | >95% by volume | 24 months | N | Progression at 2 years follow-up → new start of BRAFi with regression of the solid component |
Wu 2023 [25] | 5 months post-surgery | Dabrafenib (150 mg twice daily) | Trametinib (2 mg once daily) | 3 months | Hyperglycaemia and lower limb oedema → BRAFi stopped | 24% by volume | 6 months | N | Tumour progression → death |
Yu 2024 [23] | 3 weeks post-recurrence | Vemurafenib (960 mg twice daily) | Cobimetinib (60 mg once daily) for cycles of 21 days | 2 months | Diarrhoea, nausea and hypertension | 98% by volume | 29 months | N | Near complete response Stable at 29 months |
Butt 2020 [22] | 2 months post-recurrence | Dabrafenib (150 mg twice daily) | Trametinib (2 mg once daily) | 3 months | Pyrexia and rash Dose reduction | ns “stable disease” | 3 months | Y | Stable appearance Still under treatment |
Shah 2023 [21] | 4 months post-recurrence | Dabrafenib | Trametinib | ns 1 month probably | Rash and fatigue Prone to infectious diseases | >95% by tumour volume | 4 years | N | Near complete response Stable at 4 years |
Study | Timing | Therapeutic (1) | Therapeutic (2) | Duration | Adverse Events | Tumour Reduction | Total Follow-Up (Post-Chemotherapy) | Radiological Follow-Up |
---|---|---|---|---|---|---|---|---|
Juratli 2019 [35] | ns | Dabrafenib (150 mg twice daily) | Trametinib (2 mg once daily) | ns | ns | 85% by volume | 6 months | Near complete response |
Calvanese 2022 [27] | 3 months post-diagnosis | Dabrafenib (150 mg twice daily) | Trametinib (2 mg once daily) | 4 months | None | 90% by volume | 2 months | Near complete response |
Lin 2023 [24] | 5 months post-diagnosis | Dabrafenib (150 mg twice daily) Then maintenance dose 75 mg twice daily | Trametinib (2 mg once daily) | 6.5 months, still ongoing | Pyrexia Trametinib was stopped Atrial flutter (association not clear) | ns | On therapy | Near complete response |
Study | Age and Sex | Extent of Resection | Type of Protocol | Therapeutic (1) | Therapeutic (2) | Duration | Adverse Events | Tumour Reduction | Total Follow-Up (Post-Chemotherapy) | Radiological Follow-Up |
---|---|---|---|---|---|---|---|---|---|---|
Brastianos 2023 [18] | Age Range 33–83 years, 7 male | Biopsy or subtotal | Neoadjuvant | Vemurafenib (960 mg twice daily) | Cobimetinib (60 mg once daily) | 28-day cycles (Vemurafenib 28 days and cobimetinib 21 days), median number of 8 cycles | 12 patients experienced either a rash, dehydration, ALP rise or QTc prolongation. One asymptomatic rise in CK. One hyperglycaemia 3 discontinued TT | 91% median volume reduction 15 had complete or near complete response. 1 non-responder stopped treatment after 8 days due to adverse event | Median 22 months (95% CI 9–19) | Three disease progression once therapy was stopped 7 patients received no treatment after the protocol 6 RTH 1 RTH + surgery 1 RTH + dabrafenib 1 off-protocol vemurafenib–cobimetinib |
De Alcubierre 2024 [20] | Mean age 50.5 years, ±15; 8 male | 6 biopsy, 10 previously attempted radical surgery | 6 neoadjuvant 8 adjuvant 2 palliative | Dabrafenib (150 mg twice daily) | Trametinib (1 or 2 mg once daily) | Mean duration: 5.8 months in the neoadjuvant setting; 7.5 months in in the adjuvant setting; 18.5 months in the palliative setting | 2 patients increased liver enzymes, 1 myalgia, 1 vomiting and fever, 1 fatigue and peripheral oedema, 1 pneumopathy | 81.4% mean reduction at last follow-up: Mean reduction of 89% with the neoadjuvant protocol; 73% with the adjuvant protocol; 91% in the palliative setting | Follow-up available only for 10 patients (4 patients still ongoing TT) Neoadjuvant TT: mean 11 months Adjuvant TT: mean 9 months Mean of 11.5 months (10 patients) | 6/6 near total response in neoadjuvant protocol (>80% of tumour reduction); 5 received RTH In the adjuvant protocol: 4/8 near total, 3 partial response, 1 stable disease; 7 received RTH In the palliative protocol: 2/2 near total response |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cossu, G.; Ramsay, D.S.C.; Daniel, R.T.; El Cadhi, A.; Kerherve, L.; Morlaix, E.; Houidi, S.A.; Millot-Piccoli, C.; Chapon, R.; Le Van, T.; et al. Update on Neoadjuvant and Adjuvant BRAF Inhibitors in Papillary Craniopharyngioma: A Systematic Review. Cancers 2024, 16, 3479. https://doi.org/10.3390/cancers16203479
Cossu G, Ramsay DSC, Daniel RT, El Cadhi A, Kerherve L, Morlaix E, Houidi SA, Millot-Piccoli C, Chapon R, Le Van T, et al. Update on Neoadjuvant and Adjuvant BRAF Inhibitors in Papillary Craniopharyngioma: A Systematic Review. Cancers. 2024; 16(20):3479. https://doi.org/10.3390/cancers16203479
Chicago/Turabian StyleCossu, Giulia, Daniele S. C. Ramsay, Roy T. Daniel, Ahmed El Cadhi, Luc Kerherve, Edouard Morlaix, Sayda A. Houidi, Clément Millot-Piccoli, Renan Chapon, Tuan Le Van, and et al. 2024. "Update on Neoadjuvant and Adjuvant BRAF Inhibitors in Papillary Craniopharyngioma: A Systematic Review" Cancers 16, no. 20: 3479. https://doi.org/10.3390/cancers16203479
APA StyleCossu, G., Ramsay, D. S. C., Daniel, R. T., El Cadhi, A., Kerherve, L., Morlaix, E., Houidi, S. A., Millot-Piccoli, C., Chapon, R., Le Van, T., Cao, C., Farah, W., Lleu, M., Baland, O., Beaurain, J., Petit, J. M., Lemogne, B., Messerer, M., & Berhouma, M. (2024). Update on Neoadjuvant and Adjuvant BRAF Inhibitors in Papillary Craniopharyngioma: A Systematic Review. Cancers, 16(20), 3479. https://doi.org/10.3390/cancers16203479