Trends and Age-Period-Cohort Effect on Incidence of Male Breast Cancer from 1980 to 2019 in Taiwan and the USA
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MBC | Male Breast Cancer |
SEER | Surveillance, Epidemiology, and End Results |
AAPC | Average Annual Percentage Change |
TCR | Taiwan Cancer Registry |
ICD-O-FT | International Classification of Diseases for Oncology Field Trial Edition |
ICD-O-3 | International Classification of Diseases for Oncology |
WHO | World Health Organization |
ASR | Age-Standardized Incidence Rates |
APC | Annual Percentage Change |
ER−/+ | Estrogen Receptor-Negative/Positive |
PR−/+ | Progesterone Receptor-Negative/Positive |
APEOs | Alkylphenol Polyethoxylates |
NP | Nonylphenol |
OP | Octylphenol |
FBC | Female Breast Cancer |
Appendix A
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Giordano, S.H.; Buzdar, A.U.; Hortobagyi, G.N. Breast cancer in men. Ann. Intern. Med. 2002, 137, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.R.; Moysich, K.B.; Swede, H. Epidemiology of male breast cancer. Cancer Epidemiol. Biomark. Prev. 2005, 14, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Sipetic-Grujicic, S.; Murtezani, Z.; Ratkov, I.; Grgurevic, A.; Marinkovic, J.; Bjekic, M.; Miljus, D. Comparison of male and female breast cancer incidence and mortality trends in central Serbia. Asian Pac. J. Cancer Prev. 2013, 14, 5681–5685. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xu, L.; Shi, W.; Zeng, F.; Zhuo, R.; Hao, X.; Fan, P. Trends of female and male breast cancer incidence at the global, regional, and national levels, 1990–2017. Breast Cancer Res. Treat. 2020, 180, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Ly, D.; Forman, D.; Ferlay, J.; Brinton, L.A.; Cook, M.B. An international comparison of male and female breast cancer incidence rates. Int. J. Cancer 2013, 132, 1918–1926. [Google Scholar] [CrossRef] [PubMed]
- Hsing, A.W.; McLaughlin, J.K.; Cocco, P.; Co Chien, H.T.; Fraumeni, J.F., Jr. Risk factors for male breast cancer (United States). Cancer Causes Control 1998, 9, 269–275. [Google Scholar] [CrossRef]
- Agrawal, A.; Ayantunde, A.A.; Rampaul, R.; Robertson, J.F. Male breast cancer: A review of clinical management. Breast Cancer Res. Treat. 2007, 103, 11–21. [Google Scholar] [CrossRef]
- Hultborn, R.; Hanson, C.; Köpf, I.; Verbiené, I.; Warnhammar, E.; Weimarck, A. Prevalence of klinefelter’s syndrome in male breast cancer patients. Anticancer Res. 1997, 17, 4293–4297. [Google Scholar]
- Contractor, K.B.; Kaur, K.; Rodrigues, G.S.; Kulkarni, D.M.; Singhal, H. Male breast cancer: Is the scenario changing. World J. Surg. Oncol. 2008, 6, 58. [Google Scholar] [CrossRef]
- Levy-Lahad, E.; Friedman, E. Cancer risks among brca1 and brca2 mutation carriers. Br. J. Cancer 2007, 96, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Liede, A.; Karlan, B.Y.; Narod, S.A. Cancer risks for male carriers of germline mutations in brca1 or brca2: A review of the literature. J. Clin. Oncol. 2004, 22, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.C.; Domchek, S.; Parmigiani, G.; Chen, S. Breast cancer risk among male brca1 and brca2 mutation carriers. J. Natl. Cancer Inst. 2007, 99, 1811–1814. [Google Scholar] [CrossRef] [PubMed]
- William, F.A.; Michelle, D.A.; Louise, A.B.; Susan, S.D. Is male breast cancer similar or different from female breast cancer? Br. Cancer Res. Treat. 2004, 83, 77–86. [Google Scholar]
- Shen, Y.C.; Chang, C.J.; Hsu, C.; Cheng, C.C.; Chiu, C.F.; Cheng, A.L. Significant difference in the trends of female breast cancer incidence between Taiwanese and Caucasian Americans: Implications from age-period-cohort analysis. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1986–1990. [Google Scholar] [CrossRef] [PubMed]
- Yap, Y.S.; Lu, Y.S.; Tamura, K.; Lee, J.E.; Ko, E.Y.; Park, Y.H.; Cao, A.Y.; Lin, C.H.; Toi, M.; Wu, J.; et al. Insights Into Breast Cancer in the East vs the West: A Review. JAMA Oncol. 2019, 10, 1489–1496. [Google Scholar] [CrossRef]
- Lin, C.H.; Yap, Y.S.; Lee, K.H.; Im, S.A.; Naito, Y.; Yeo, W.; Ueno, T.; Kwong, A.; Li, H.; Huang, S.M.; et al. Contrasting Epidemiology and Clinicopathology of Female Breast Cancer in Asians vs the US Population. J. Natl. Cancer Inst. 2019, 111, 1298–1306. [Google Scholar] [CrossRef]
- Chiang, C.J.; Wang, Y.W.; Lee, W.C. Taiwan’s nationwide cancer registry system of 40 years: Past, present, and future. J. Formos. Med. Assoc. 2019, 118, 856–858. [Google Scholar] [CrossRef]
- Chiang, C.J.; You, S.L.; Chen, C.J.; Yang, Y.W.; Lo, W.C.; Lai, M.S. Quality assessment and improvement of nationwide cancer registration system in Taiwan: A review. Jpn. J. Clin. Oncol. 2015, 45, 291–296. [Google Scholar] [CrossRef]
- Taiwan Cancer Registry. Taiwan Cancer Registry Reporting Manual; Taiwan Cancer Registry: Taipei City, Taiwan.
- Ahmad, O.B.; Boschi-Pinto, C.; Lopez, A.D.; Murray, C.J.; Lozano, R.; Inoue, M. Age standardization of rates: A new WHO standard. WHO Document EIP/GPE/FAR 2001, 31, 10–12. [Google Scholar]
- Rosenberg, P.S.; Check, D.P.; Anderson, W.F. A web tool for age-period-cohort analysis of cancer incidence and mortality rates. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2296–2302. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, A.; Nagahashi, M.; Kumamaru, H.; Aogi, K.; Asaga, S.; Hayashi, N.; Iijima, K.; Kadoya, T.; Kojima, Y.; Kubo, M.; et al. Clinicopathological features of male patients with breast cancer based on a nationwide registry database in Japan. Breast Cancer 2022, 29, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Yim, S.H.; Won, Y.J.; Jung, K.W.; Son, B.H.; Lee, H.D.; Lee, E.S.; Yoo, K.Y.; Ahn, S.H.; Shin, H.R. Population-based Breast Cancer Statistics in Korea during 1993–2002: Incidence, Mortality, and Survival. J. Korean Med. Sci. 2007, 22, S11–S16. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.G.; Jung, S.Y.; Lim, M.C.; Lim, J.; Kang, H.S.; Lee, S.; Han, J.H.; Jo, H.; Won, Y.J.; Lee, E.S. Comparing the Characteristics and Outcomes of Male and Female Breast Cancer Patients in Korea: Korea Central Cancer Registry. Cancer Res. Treat. 2020, 52, 739–746. [Google Scholar] [CrossRef]
- Taisuke, I.; Eriko, N.; Tomone, W.; Takahiro, H. Epidemiology and practice patterns for male breast cancer compared with female breast cancer in Japan. Cancer Med. 2020, 9, 6069–6075. [Google Scholar]
- Reis, L.O.; Dias, F.G.; Castro, M.A.; Ferreira, U. Male breast cancer. Aging Male 2011, 14, 99–109. [Google Scholar] [CrossRef]
- Fentiman, I.S.; Fourquet, A.; Hortobagyi, G.N. Male breast cancer. Lancet 2006, 367, 595–604. [Google Scholar] [CrossRef]
- Ewertz, M.; Holmberg, L.; Tretli, S.; Pedersen, B.V.; Kristensen, A. Risk factors for male breast cancer—A case-control study from Scandinavia. Acta Oncol. 2001, 40, 467–471. [Google Scholar] [CrossRef]
- Brinton, L.A.; Carreon, J.D.; Gierach, G.L.; McGlynn, K.A.; Gridley, G. Etiologic factors for male breast cancer in the U.S. Veterans affairs medical care system database. Breast Cancer Res. Treat. 2010, 119, 185–192. [Google Scholar] [CrossRef]
- Cowen, S.; McLaughlin, S.L.; Hobbs, G.; Coad, J.; Martin, K.H.; Olfert, I.M.; Vona-Davis, L. High-fat, high-calorie diet enhances mammary carcinogenesis and local inflammation in MMTV-PyMT mouse model of breast cancer. Cancers 2015, 7, 1125–1142. [Google Scholar] [CrossRef]
- Vona-Davis, L.; Rose, D.P. The obesity-inflammation-eicosanoid axis in breast cancer. J. Mammary Gland. Biol. Neoplasia 2013, 18, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, T.; Howard, O.Z.; Ito, T.; Kuwabara, M.; Matsukawa, A.; Chen, K.; Liu, Y.; Liu, M.; Oppenheim, J.J.; Wang, J.M. Monocyte chemoattractant protein-1/CCL2 produced by stromal cells promotes lung metastasis of 4T1 murine breast cancer cells. PLoS ONE 2013, 8, e58791. [Google Scholar] [CrossRef] [PubMed]
- Thiébaut, A.C.; Rosenberg, P.S.; Thompson, F.E.; Hollenbeck, A.R. Dietary fat intake and breast cancer risk in the NIH-AARP diet and health study. Am. J. Epidemiol. 2006, 163, S96. [Google Scholar] [CrossRef]
- Fung, T.T.; Hu, F.B.; Hankinson, S.E.; Willett, W.C.; Holmes, M.D. Low-carbohydrate diets, dietary approaches to stop hypertension-style diets, and the risk of postmenopausal breast cancer. Am. J. Epidemiol. 2011, 174, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Evbayekha, E.O.; Okobi, O.E.; Okobi, T. The evolution of hypertension guidelines over the last 20+ years: A comprehensive review. Cureus 2022, 14, e31437. [Google Scholar] [CrossRef]
- Janet, G.; Nancy, E.; Brynn, T.; Jeanne, R.; Marisa, W. State of the Evidence: The Connection Between Breast Cancer and the Environment. Int. J. Occup. Environ. Health 2009, 15, 43–78. [Google Scholar]
- Lin, Y.C.; Yen, L.L.; Chen, S.Y.; Kao, M.D.; Tzeng, M.S.; Huang, P.C.; Pan, W.H. Prevalence of overweight and obesity and its associated factors: Findings from National Nutrition and Health Survey in Taiwan, 1993–1996. Prev. Med. 2003, 37, 233–241. [Google Scholar] [CrossRef]
- Kristensen, V.N.; Borresen-Dale, A.L. Molecular epidemiology of breast cancer: Genetic variation in steroid hormone metabolism. Mutat. Res. 2000, 462, 323–333. [Google Scholar] [CrossRef]
- Chuang, S.C.; Chen, H.C.; Sun, C.W.; Chen, Y.A.; Wang, Y.H.; Chiang, C.J.; Chen, C.C.; Wang, S.L.; Chen, C.J.; Hsiung, C.A. Phthalate exposure and prostate cancer in a population-based nested case-control study. Environ. Res. 2020, 181, 108902. [Google Scholar] [CrossRef]
- López-Carrillo, L.; Hernández-Ramírez, R.U.; Calafat, A.M.; Torres-Sánchez, L.; Galván-Portillo, M.; Needham, L.L.; Ruiz-Ramos, R.; Cebrián, M.E. Exposure to phthalates and breast cancer risk in northern Mexico. Environ. Health Perspect. 2010, 118, 539–544. [Google Scholar] [CrossRef]
- Ying, G.G. Fate, behavior and effects of surfactants and their degradation products in the environment. Environ. Int. 2006, 32, 417–431. [Google Scholar] [CrossRef]
- Guenther, K.; Heinke, V.; Thiele, B.; Kleist, E.; Prast, H.; Raecker, T. Endocrine disrupting nonylphenols are ubiquitous in food. Environ. Sci. Technol. 2002, 36, 1676–1680. [Google Scholar] [CrossRef] [PubMed]
- Renner, R. European bans on surfactant trigger transatlantic debate. Environ. Sci. Technol. 1997, 31, 316a–320a. [Google Scholar] [CrossRef] [PubMed]
- Porte, C.; Biosca, X.; Pastor, D.; Solé, M.; Albaigés, J. The aegean sea oil spill. 2. Temporal study of the hydrocarbons accumulation in bivalves. Environ. Sci. Technol. 2000, 34, 21–26. [Google Scholar] [CrossRef]
- Jonkers, N.; Knepper, T.P.; de Voogt, P. Aerobic biodegradation studies of nonylphenol ethoxylates in river water using liquid chromatography-electrospray tandem mass spectrometry. Environ. Sci. Technol. 2001, 35, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.R. Survey of surfactant industries in Taiwan. Chem. Technol. 1997, 5, 112–117. [Google Scholar]
- Cheng, C.Y.; Ding, W.H. Determination of nonylphenol polyethoxylates in household detergents by high-performance liquid chromatography. J. Chromatogr. A 2002, 968, 143–150. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Wu, C.Y.; Wang, C.H.; Ding, W.H. Determination and distribution characteristics of degradation products of nonylphenol polyethoxylates in the rivers of Taiwan. Chemosphere 2006, 65, 2275–2281. [Google Scholar] [CrossRef]
- Peremiquel-Trillas, P.; Benavente, Y.; Martín-Bustamante, M.; Casabonne, D.; Pérez-Gómez, B.; Gómez-Acebo, I.; Oliete-Canela, A.; Diéguez-Rodríguez, M.; Tusquets, I.; Amiano, P.; et al. Alkylphenolic compounds and risk of breast and prostate cancer in the MCC-Spain study. Environ. Int. 2019, 122, 389–399. [Google Scholar] [CrossRef]
- Villeneuve, S.; Cyr, D.; Lynge, E.; Orsi, L.; Sabroe, S.; Merletti, F.; Gorini, G.; Morales-Suarez-Varela, M.; Ahrens, W.; Baumgardt-Elms, C.; et al. Occupation and occupational exposure to endocrine disrupting chemicals in male breast cancer: A case-control study in Europe. Occup. Environ. Med. 2010, 67, 837–844. [Google Scholar] [CrossRef]
- Foroozani, E.; Akbari, A.; Amanat, S.; Rashidi, N.; Bastam, D.; Ataee, S.; Sharifnia, G.; Faraouei, M.; Dianatinasab, M.; Safdari, H. Ad-herence to a western dietary pattern and risk of invasive ductal and lobular breast carcinomas: A case-control study. Sci. Rep. 2022, 12, 5859. [Google Scholar] [CrossRef] [PubMed]
- Castelló, A.; Boldo, E.; Pérez-Gómez, B.; Lope, V.; Altzibar, J.M.; Martín, V.; Castaño-Vinyals, G.; Guevara, M.; Dierssen-Sotos, T.; Tardón, A.; et al. Adherence to the Western, Prudent and Mediterranean dietary patterns and breast cancer risk: MCC-Spain study. Maturitas 2017, 103, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Raquel, M.; Richard, W.; Irma, H.R.; Coral, A.L.; Julia, P.; Jose, R. Effect of prenatal exposure to the endocrine disruptor bisphenol A on mammary gland morphology and gene expression signature. J. Endocrinol. 2008, 196, 101–112. [Google Scholar]
- Monica, M.T.; Caroline, M.M.; Perinaaz, R.L.; Beverly, S.R.; Carlos, S.; Ana, M.S. Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. Endocrinology 2005, 146, 4138–4147. [Google Scholar]
- Robertson, C.; Perone, C.; Primic-Zakelj, M.; Kirn, V.P.; Boyle, P. Breast cancer incidence rates in Slovenia 1971–1993. Int. J. Epidemiol. 2000, 29, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Chia, K.S.; Reilly, M.; Tan, C.S.; Lee, J.; Pawitan, Y.; Adami, H.O.; Hall, P.; Mow, B. Profound changes in breast cancer incidence may reflect changes into a westernized lifestyle: A comparative population-based study in Singapore and Sweden. Int. J. Cancer 2005, 113, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, A.C.; Easton, D.F. Models of genetic susceptibility to breast cancer. Oncogene 2006, 25, 5898–5905. [Google Scholar] [CrossRef]
- Evans, D.; Susnerwala, I.; Dawson, J.; Woodward, E.; Maher, E.R.; Lalloo, F. Risk of breast cancer in male BRCA2 carriers. J. Med. Genet. 2010, 47, 710–711. [Google Scholar] [CrossRef]
- Besic, N.; Cernivc, B.; de Greve, J.; Lokar, K.; Krajc, M.; Novakovic, S.; Zgajnar, J.; Teugels, E. BRCA2 gene mutations in Slovenian male breast cancer patients. Genet. Test. 2008, 12, 203–209. [Google Scholar] [CrossRef]
- Diez, O.; Cortes, J.; Domenech, M.; Pericay, C.; Brunet, J.; Alonso, C.; Baiget, M. BRCA2 germ-line mutations in Spanish male breast cancer patients. Ann. Oncol. 2000, 11, 81–84. [Google Scholar] [CrossRef]
- Kwiatkowska, E.; Teresiak, M.; Filas, V.; Karczewska, A.; Breborowicz, D.; Mackiewicz, A. BRCA2 mutations and androgen receptor expression as independent predictors of outcome of male breast cancer patients. Clin. Cancer Res. 2003, 9, 4452–4459. [Google Scholar] [PubMed]
- Thorlacius, S.; Sigurdsson, S.; Bjarnadottir, H.; Olafsdottir, G.; Jonasson, J.G.; Tryggvadottir, L.; Tulinius, H.; Eyfjord, J.E. Study of a single BRCA2 mutation with high carrier frequency in a small population. Am. J. Hum. Genet. 1997, 60, 1079–1084. [Google Scholar] [PubMed]
- Yuan, C.D.; Linda, S.; Kuan, C.J.; Scott, G.; Susan, L.N. Mutations in BRCA2 and PALB2 in male breast cancer cases from the United State. Breast Cancer Res. Treat. 2011, 126, 771–778. [Google Scholar]
- Chen, F.M.; Hou, M.F.; Chang, M.Y.; Wang, J.Y.; Hsieh, J.S.; Fu, O.Y.; Huang, T.J.; Lin, S.R. High frequency of somatic missense mutation of BRCA2 in female breast cancer from Taiwan. Cancer Lett. 2005, 20, 177–184. [Google Scholar] [CrossRef]
Taiwan | SEER | ||||||
---|---|---|---|---|---|---|---|
% | 95% CI | % | 95% CI | ||||
AAPC | 2.59 | 1.64 | 3.54 | 0.64 | 0.20 | 1.08 | |
APC | 30–39 years | 1.86 | –0.56 | 4.34 | 1.61 | 0.06 | 3.19 |
40–49 years | 3.30 | 1.49 | 4.60 | 0.62 | –0.16 | 1.39 | |
50–59 years | 3.16 | 1.93 | 4.41 | 0.10 | –0.43 | 0.63 | |
60–69 years | 2.03 | 0.98 | 3.09 | 0.51 | 0.09 | 0.94 | |
70–79 years | 2.89 | 1.25 | 4.57 | 0.69 | 0.15 | 1.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.-Y.; Lee, Y.-K.; Pham, R.-Q.; Shen, X.-H.; Chen, I.-H.; Chen, Y.-C.; Fan, H.-S. Trends and Age-Period-Cohort Effect on Incidence of Male Breast Cancer from 1980 to 2019 in Taiwan and the USA. Cancers 2024, 16, 444. https://doi.org/10.3390/cancers16020444
Peng J-Y, Lee Y-K, Pham R-Q, Shen X-H, Chen I-H, Chen Y-C, Fan H-S. Trends and Age-Period-Cohort Effect on Incidence of Male Breast Cancer from 1980 to 2019 in Taiwan and the USA. Cancers. 2024; 16(2):444. https://doi.org/10.3390/cancers16020444
Chicago/Turabian StylePeng, Jhao-Yang, Yu-Kwang Lee, Rong-Qi Pham, Xiao-Han Shen, I-Hui Chen, Yong-Chen Chen, and Hung-Shu Fan. 2024. "Trends and Age-Period-Cohort Effect on Incidence of Male Breast Cancer from 1980 to 2019 in Taiwan and the USA" Cancers 16, no. 2: 444. https://doi.org/10.3390/cancers16020444
APA StylePeng, J. -Y., Lee, Y. -K., Pham, R. -Q., Shen, X. -H., Chen, I. -H., Chen, Y. -C., & Fan, H. -S. (2024). Trends and Age-Period-Cohort Effect on Incidence of Male Breast Cancer from 1980 to 2019 in Taiwan and the USA. Cancers, 16(2), 444. https://doi.org/10.3390/cancers16020444