COVID-19 Outcomes in Patients with Hematologic Malignancies in the Era of COVID-19 Vaccination and the Omicron Variant
Abstract
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Study Outcomes and Data Collection
2.3. Statistical Analysis
3. Results
3.1. Characteristics of HM Patients with COVID-19 across Time Periods
3.2. Factors Associated with COVID-19 Severity
3.3. Factors Associated with COVID-19 Hospitalization
3.4. Factors Associated with COVID-19 Mortality
3.5. Factors Associated with COVID-19 Mortality in Hospitalized HM Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 24 April 2023).
- Vijenthira, A.; Gong, I.Y.; Fox, T.A.; Booth, S.; Cook, G.; Fattizzo, B.; Martín-Moro, F.; Razanamahery, J.; Riches, J.C.; Zwicker, J.; et al. Outcomes of patients with hematologic malignancies and COVID-19: A systematic review and meta-analysis of 3377 patients. Blood 2020, 136, 2881–2892. [Google Scholar] [CrossRef] [PubMed]
- Aries, J.A.; Davies, J.K.; Auer, R.L.; Hallam, S.L.; Montoto, S.; Smith, M.; Sevillano, B.; Foggo, V.; Wrench, B.; Zegocki, K.; et al. Clinical outcome of coronavirus disease 2019 in haemato-oncology patients. Br. J. Haematol. 2020, 190, e64–e67. [Google Scholar] [CrossRef] [PubMed]
- Fox, T.A.; Troy-Barnes, E.; Kirkwood, A.A.; Chan, W.Y.; Day, J.W.; Chavda, S.J.; Kumar, E.A.; David, K.; Tomkins, O.; Sanchez, E.; et al. Clinical outcomes and risk factors for severe COVID-19 in patients with haematological disorders receiving chemo- or immunotherapy. Br. J. Haematol. 2020, 191, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Suarez, J.; de la Cruz, J.; Cedillo, A.; Llamas, P.; Duarte, R.; Jiménez-Yuste, V.; Hernández-Rivas, J.A.; Gil-Manso, R.; Kwon, M.; Sánchez-Godoy, P.; et al. Impact of hematologic malignancy and type of cancer therapy on COVID-19 severity and mortality: Lessons from a large population-based registry study. J. Hematol. Oncol. 2020, 13, 133. [Google Scholar] [CrossRef]
- Pagano, L.; Salmanton-Garcia, J.; Marchesi, F.; Busca, A.; Corradini, P.; Hoenigl, M.; Klimko, N.; Koehler, P.; Pagliuca, A.; Passamonti, F.; et al. COVID-19 infection in adult patients with hematological malignancies: A European Hematology Association Survey (EPICOVIDEHA). J. Hematol. Oncol. 2021, 14, 168. [Google Scholar] [CrossRef] [PubMed]
- Passamonti, F.; Cattaneo, C.; Arcaini, L.; Burna, R.; Cavo, M.; Merli, F.; Angelucci, E.; Krampera, M.; Cairoli, R.; Giovanni Della Porta, M.; et al. Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: A retrospective, multicentre, cohort study. Lancet Haematol. 2020, 7, e737–e745. [Google Scholar] [CrossRef] [PubMed]
- Pinana, J.L.; Martino, R.; Garcia-Garcia, I.; Parody, R.; Morales, M.D.; Benzo, G.; Gómez-Catalan, I.; Coll, R.; de la Fuente, I.; Luna, A.; et al. Risk factors and outcome of COVID-19 in patients with hematological malignancies. Exp. Hematol. Oncol. 2020, 9, 21. [Google Scholar] [CrossRef]
- Langerbeins, P.; Hallek, M. COVID-19 in patients with hematologic malignancy. Blood 2022, 140, 236–252. [Google Scholar] [CrossRef]
- Lin, W.L.; Nguyen, T.H.; Wu, L.M.; Huang, W.T.; Su, S.B. Anticancer Therapy and Mortality of Adult Patients with Hematologic Malignancy and COVID-19: A Systematic Review and Meta-Analysis. Life 2023, 13, 381. [Google Scholar] [CrossRef]
- Martinez-Lopez, J.; De la Cruz, J.; Gil-Manso, R.; Alegre, A.; Ortiz, J.; Llamas, P.; Martinez, Y.; Hernandez-Rivas, J.A.; Gonzalez-Gascon, I.; Benavente, C.; et al. COVID-19 Severity and Survival over Time in Patients with Hematologic Malignancies: A Population-Based Registry Study. Cancers 2023, 15, 1497. [Google Scholar] [CrossRef]
- Kumari, M.; Lu, R.M.; Li, M.C.; Hunang, J.L.; Hsu, F.F.; Ko, S.H.; Ke, F.Y.; Su, S.C.; Liang, K.H.; Yuan, J.P.Y.; et al. A critical overview of current progress for COVID-19: Development of vaccines, antiviral drugs, and therapeutic antibodies. J. Biomed. Sci. 2022, 29, 68. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gao, M.; You, H.; Zhang, P.; Pan, Y.; Li, N.; Qin, L.; Wang, H.; Li, D.; Li, Y.; et al. Association of Nirmatrelvir/Ritonavir Treatment on Upper Respiratory Severe Acute Respiratory Syndrome Coronavirus 2 Reverse Transcription-Polymerase Chain Reaction (SARS-CoV-2 RT-PCR) Negative Conversion Rates among High-Risk Patients With Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 2023, 76, e148–e154. [Google Scholar] [PubMed]
- Lui, G.; Guaraldi, G. Drug treatment of COVID-19 infection. Curr. Opin. Pulm. Med. 2023, 29, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Miljanovic, D.; Cirkovic, A.; Lazarevic, I.; Knezevic, A.; Cupic, M.; Banko, A. Clinical efficacy of anti-SARS-CoV-2 monoclonal antibodies in preventing hospitalisation and mortality among patients infected with Omicron variants: A systematic review and meta-analysis. Rev. Med. Virol. 2023, 33, e2439. [Google Scholar] [CrossRef] [PubMed]
- United States National Institutes of Health. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 28 March 2023).
- Vangeel, L.; Chiu, W.; De Jonghe, S.; Maes, P.; Slechten, B.; Raymenants, J.; Andre, E.; Leyssen, P.; Neyts, J.; Jochmans, D. Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antivir. Res. 2022, 198, 105252. [Google Scholar] [CrossRef] [PubMed]
- WHO Solidarity Trial Consortium. Remdesivir and three other drugs for hospitalised patients with COVID-19: Final results of the WHO Solidarity randomised trial and updated meta-analyses. Lancet 2022, 399, 1941–1953. [Google Scholar] [CrossRef] [PubMed]
- Accorsi, E.K.; Britton, A.; Fleming-Dutra, K.E.; Smith, Z.R.; Shang, N.; Derado, G.; Miller, J.; Schrag, S.J.; Verani, J.R. Association between 3 Doses of mRNA COVID-19 Vaccine and Symptomatic Infection Caused by the SARS-CoV-2 Omicron and Delta Variants. JAMA 2022, 327, 639–651. [Google Scholar] [CrossRef]
- Barda, N.; Dagan, N.; Cohen, C.; Hernan, M.A.; Lipsitch, M.; Kohane, I.S.; Reis, B.Y.; Balicer, R.D. Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: An observational study. Lancet 2021, 398, 2093–2100. [Google Scholar] [CrossRef]
- Feikin, D.R.; Higdon, M.M.; Abu-Raddad, L.J.; Andrews, N.; Araos, R.; Goldberg, Y.; Groome, M.J.; Huppert, A.; O’Brien, K.L.; Smith, P.G.; et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: Results of a systematic review and meta-regression. Lancet 2022, 399, 924–944. [Google Scholar] [CrossRef]
- Lauring, A.S.; Tenforde, M.W.; Chappell, J.D.; Gaglani, M.; Ginde, A.A.; McNeal, T.; Ghamande, S.; Douin, D.J.; Talbot, H.K.; Casey, J.D.; et al. Clinical severity of, and effectiveness of mRNA vaccines against, COVID-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: Prospective observational study. BMJ 2022, 376, e069761. [Google Scholar] [CrossRef]
- United States Centers for Disease Control and Prevention. COVID Data Tracker. Available online: https://covid.cdc.gov/covid-data-tracker (accessed on 28 March 2023).
- Wang, L.; Kainulainen, M.H.; Jiang, N.; Di, H.; Bonenfant, G.; Mills, L.; Currier, M.; Shrivastava-Ranjan, P.; Calderon, B.M.; Sheth, M.; et al. Differential neutralization and inhibition of SARS-CoV-2 variants by antibodies elicited by COVID-19 mRNA vaccines. Nat. Commun. 2022, 13, 4350. [Google Scholar] [CrossRef] [PubMed]
- Niemann, C.U.; da Cunha-Bang, C.; Helleberg, M.; Ostrowski, S.R.; Brieghel, C. Patients with CLL have a lower risk of death from COVID-19 in the Omicron era. Blood 2022, 140, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Pagano, L.; Salmanton-Garcia, J.; Marchesi, F.; Lopez-Garcia, A.; Lamure, S.; Itri, F.; Gomes-Silva, M.; Dragonetti, G.; Falces-Romero, I.; van Doesum, J.; et al. COVID-19 in vaccinated adult patients with hematological malignancies: Preliminary results from EPICOVIDEHA. Blood 2022, 139, 1588–1592. [Google Scholar] [CrossRef] [PubMed]
- Blennow, O.; Salmanton-Garcia, J.; Nowak, P.; Itri, F.; van Doesum, J.; Lopez-Garcia, A.; Farina, F.; Jaksic, O.; Pinczes, L.I.; Bilgin, Y.M.; et al. Outcome of infection with omicron SARS-CoV-2 variant in patients with hematological malignancies: An EPICOVIDEHA survey report. Am. J. Hematol. 2022, 97, E312–E317. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, P.; Ballin, M.; Nordstrom, A. Risk of infection, hospitalisation, and death up to 9 months after a second dose of COVID-19 vaccine: A retrospective, total population cohort study in Sweden. Lancet 2022, 399, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.W.; Schmitz, J.E.; Persing, D.H.; Stratton, C.W. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. J. Clin. Microbiol. 2020, 58, e00512-20. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (nCoV) Infection Is Suspected. Available online: https://www.who.int/publications/i/item/10665-332299 (accessed on 28 March 2023).
- Centro de Coordinación de Alertas y Emergencias Sanitarias. Circulación de VOC 202012/01 (B.1.1.7) y Otras Variantes de SARS-CoV-2 de Interés Para la Salud Pública en España. Available online: https://www.sanidad.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/documentos/20210120-EER.pdf (accessed on 28 March 2023).
- Centro de Coordinación de Alertas y Emergencias Sanitarias. Variantes de SARS-CoV-2 en España: Linajes BA.2.12.1, BA.4 y BA.5 de Ómicron. Available online: https://www.sanidad.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/documentos/20220628-ERR.pdf (accessed on 28 March 2023).
- Ciuffreda, L.; Lorenzo-Salazar, J.M.; de Artola, D.G.; Gil-Campesino, H.; Alcoba-Florez, J.; Rodriguez-Perez, H.; Iñigo-Campos, A.; Salas-Hernandez, J.; Rodriguez-Nuñez, J.; Muñoz-Barrera, A.; et al. Reinfection rate and disease severity of the BA.5 Omicron SARS-CoV-2 lineage compared to previously circulating variants of concern in the Canary Islands (Spain). Emerg. Microbes Infect. 2023, 12, 2202281. [Google Scholar] [CrossRef]
- Pagano, L.; Salmanton-Garcia, J.; Marchesi, F.; Blennow, O.; Gomes da Silva, M.; Glenthøj, A.; van Doesum, J.; Bilgin, Y.M.; Lopez-Garcia, A.; Itri, F.; et al. Breakthrough COVID-19 in vaccinated patients with hematologic malignancies: Results from the EPICOVIDEHA survey. Blood 2022, 140, 2773–2787. [Google Scholar] [CrossRef]
- Roeker, L.E.; Eyre, T.A.; Thompson, M.C.; Lamanna, N.; Coltoff, A.R.; Davids, M.S.; Baker, P.O.; Leslie, L.; Rogers, K.A.; Allan, J.N.; et al. COVID-19 in patients with CLL: Improved survival outcomes and update on management strategies. Blood 2021, 138, 1768–1773. [Google Scholar] [CrossRef]
- Arora, K.; Panda, P.K. Steroid harms if given early in COVID-19 viraemia. BMJ Case Rep. 2021, 14, e241105. [Google Scholar] [CrossRef]
Overall Population, n = 1818 | Inpatient Population, n = 1154 | |||||
---|---|---|---|---|---|---|
Time Period (by Dominant SARS-CoV-2 Variant) | Time Period (by Dominant SARS-CoV-2 Variant) | |||||
Pre-Omicron, n = 1281 | Omicron, n = 537 | p-Value * | Pre-Omicron, n = 963 | Omicron, n = 191 | p-Value * | |
Age, y | n = 1281 | n = 536 | n = 963 | n = 191 | ||
Median (IQR) | 70.0 (59–79) | 67.0 (55–77) | <0.001 | 72.0 (62–80) | 73.0 (64–80) | 0.7 |
Age <60 y, n (%) | 333 (26.0) | 175 (32.6) | 197 (20.5) | 34 (17.8) | ||
Age 60–70 y, n (%) | 258 (20.1) | 125 (23.3) | 190 (19.7) | 43 (22.5) | ||
Age 70–80 y, n (%) | 398 (31.1) | 152 (28.4) | 325 (33.7) | 64 (33.5) | ||
Age >80 y, n (%) | 292 (22.8) | 84 (15.7) | 251 (26.1) | 50 (26.2) | ||
Sex, n (%) | n = 1267 | n = 536 | n = 951 | n = 190 | ||
Male | 751 (59.3) | 285 (53.2) | 0.017 | 575 (60.5) | 115 (60.5) | >0.9 |
Female | 516 (40.7) | 251 (46.8) | 376 (39.5) | 75 (39.5) | ||
Comorbidities, n (%) | n = 1281 | n = 537 | n = 963 | n = 191 | ||
0 | 392 (30.6) | 313 (58.3) | <0.001 | 251 (26.1) | 88 (46.1) | <0.001 |
1 | 507 (39.6) | 143 (26.6) | 388 (40.3) | 63 (33.0) | ||
>1 | 382 (29.8) | 81 (15.1) | 324 (33.6) | 40 (20.9) | ||
Hematologic malignancy, n (%) | n = 1281 | n = 536 | n = 963 | n = 191 | ||
Lymphoid malignancy | 929 (72.5) | 422 (78.7) | 0.006 | 686 (71.2) | 149 (78.0) | 0.057 |
Type of lymphoid malignancy | n = 929 | n = 422 | n = 686 | n = 149 | ||
NHL | 366 (39.4) | 188 (44.5) | 277 (40.4) | 84 (56.4) | ||
ALL | 29 (3.1) | 24 (5.7) | 20 (2.9) | 6 (4.0) | ||
CLL | 187 (20.1) | 61 (14.5) | 148 (21.6) | 28 (18.8) | ||
HL | 54 (5.8) | 22 (5.2) | 34 (5.0) | 0 (0) | ||
MM | 293 (31.5) | 127 (30.1) | 207 (30.2) | 31 (20.8) | ||
Myeloid malignancy | 352 (27.5) | 114 (21.3) | 277 (28.8) | 42 (22.0) | ||
Type of myeloid malignancy | n = 352 | n = 114 | n = 277 | n = 42 | ||
AML | 97 (27.6) | 51 (44.7) | 77 (27.8) | 24 (57.1) | ||
CML | 36 (10.2) | 8 (7.0) | 20 (7.2) | 2 (4.8) | ||
MDS | 118 (33.5) | 27 (23.7) | 103 (37.2) | 11 (26.2) | ||
MPN | 101 (28.7) | 28 (24.6) | 77 (27.8) | 5 (11.9) | ||
Cancer therapy, within 30 d, n (%) | n = 1267 | n = 517 | n = 954 | n = 178 | ||
No active therapy | 497 (39.2) | 47 (9.1) | <0.001 | 368 (38.6) | 14 (7.9) | <0.001 |
Active therapy | 770 (60.8) | 470 (90.9) | 586 (61.4) | 164 (92.1) | ||
Type of active therapy | n = 770 | n = 470 | n = 586 | n = 164 | ||
Conventional chemotherapy | 293 (38.1) | 120 (25.5) | 216 (36.9) | 43 (26.2) | ||
Low-intensity chemotherapy | 74 (9.6) | 6 (1.3) | 59 (10.1) | 1 (0.6) | ||
Molecular-targeted therapy | 142 (18.4) | 95 (20.2) | 113 (19.3) | 39 (23.8) | ||
Immunotherapy | 77 (10.0) | 147 (31.3) | 59 (10.1) | 53 (32.3) | ||
Immunomodulatory drugs | 78 (10.1) | 39 (8.3) | 56 (9.6) | 9 (5.5) | ||
Hypomethylating agents | 50 (6.5) | 20 (4.3) | 41 (7.0) | 8 (4.9) | ||
Supportive therapy | 38 (4.9) | 10 (2.1) | 32 (5.5) | 3 (1.8) | ||
Active, not detailed | 18 (2.3) | 33 (7.0) | 10 (1.7) | 8 (4.9) | ||
Cellular therapy, n (%) | n = 1241 | n = 517 | n = 936 | n = 181 | ||
No | 1055 (85.0) | 407 (78.7) | 0.001 | 811 (86.6) | 147 (81.2) | 0.057 |
Yes | 186 (15.0) | 110 (21.3) | 125 (13.4) | 34 (18.8) | ||
Type of cellular therapy | n = 186 | n = 110 | n = 125 | n = 34 | ||
Allogenic | 62 (33.3) | 36 (32.7) | 47 (37.6) | 13 (38.2) | ||
Autologous | 118 (63.4) | 58 (52.7) | 73 (58.4) | 15 (44.1) | ||
CAR T cell | 6 (3.2) | 16 (14.5) | 5 (4.0) | 6 (17.6) | ||
Vaccination, n (%) | n = 1273 | n = 481 | n = 959 | n = 169 | ||
0 | 1200 (94.3) | 28 (5.8) | <0.001 | 914 (95.3) | 11 (6.5) | <0.001 |
1–2 | 50 (3.9) | 107 (22.2) | 32 (3.3) | 40 (23.7) | ||
3–4 | 23 (1.8) | 346 (71.9) | 13 (1.4) | 118 (69.8) | ||
Pharmacologic therapies for COVID-19, n (%) | n = 1281 | n = 537 | n = 963 | n = 191 | ||
Nirmatrelvir/ritonavir | 0 (0) | 97 (18.1) | >0.9 | 0 (0) | 10 (5.2) | >0.9 |
Remdesivir | 94 (7.3) | 159 (29.6) | <0.001 | 94 (9.8) | 104 (54.5) | <0.001 |
Tocilizumab | 195 (15.2) | 25 (4.7) | <0.001 | 195 (20.2) | 25 (13.1) | 0.02 |
Monoclonal antibodies | 2 (0.2) | 32 (6.0) | <0.001 | 2 (0.2) | 27 (14.1) | <0.001 |
Corticosteroids | 680 (53.1) | 119 (22.2) | <0.001 | 633 (65.7) | 114 (59.7) | 0.1 |
Care setting of COVID-19 treatment, n(%) | n = 1279 | n = 535 | n = 963 | n = 191 | ||
Outpatient | 316 (24.7) | 344 (64.3) | <0.001 | 0 (0) | 0 (0) | n/a |
Hospitalized | 963 (75.3) | 191 (35.7) | <0.001 | 963 (100) | 191 (100) | <0.001 |
Intensive care unit | 289 (22.6) | 28 (5.2) | 289 (30.0) | 28 (14.7) | ||
Maximum clinical severity of COVID-19, n (%) | n = 1246 | n = 535 | n = 963 | n = 191 | ||
Mild/Moderate | 579 (46.5) | 441 (82.4) | <0.001 | 286 (29.7) | 100 (52.4) | <0.001 |
Severe/Critical | 667 (53.5) | 94 (17.6) | 667 (69.3) | 91 (47.6) |
Overall Population | Pre-Omicron Time Period | Omicron Time Period | |||||||
---|---|---|---|---|---|---|---|---|---|
Survival Estimate, % (95% CI) | p-Value * | Survival Estimate, % (95% CI) | p-Value * | Survival Estimate, % (95% CI) | p-Value * | ||||
30 Days | 60 Days | 30 Days | 60 Days | 30 Days | 60 Days | ||||
Overall | 67 (65–70) | 57 (53–60) | 64 (60–67) | 52 (48–56) | 87 (82–93) | 79 (72–86) | |||
Age | <0.001 | <0.001 | 0.3 | ||||||
<60 y | 87 (82–92) | 76 (69–83) | 85 (80–91) | 74 (67–82) | 96 (89–100) | 88 (76–100) | |||
60–70 y | 77 (72–83) | 66 (59–73) | 73 (66–80) | 61 (53–70) | 95 (88–100) | 83 (71–96) | |||
70–80 y | 66 (61–71) | 54 (48–60) | 62 (56–68) | 48 (42–56) | 84 (74–94) | 77 (66–89) | |||
>80 y | 48 (42–55) | 39 (33–46) | 43 (37–50) | 33 (27–41) | 78 (66–93) | 71 (57–88) | |||
Sex | 0.7 | 0.7 | 0.7 | ||||||
Male | 67 (63–71) | 56 (51–60) | 63 (59–68) | 51 (46–56) | 86 (79–93) | 77 (69–86) | |||
Female | 68 (64–73) | 58 (53–64) | 64 (59–69) | 53 (48–60) | 90 (83–98) | 81 (71–93) | |||
Comorbidities | <0.001 | <0.001 | 0.1 | ||||||
0 | 79 (75–84) | 70 (64–76) | 74 (69–81) | 65 (58–72) | 93 (87–99) | 83 (75–93) | |||
1 | 67 (63–72) | 54 (49–60) | 66 (61–71) | 51 (45–57) | 78 (67–90) | 73 (62–86) | |||
>1 | 57 (51–63) | 47 (41–53) | 53 (47–59) | 43 (37–50) | 91 (81–100) | 78 (64–96) | |||
Hematologic malignancy | 0.2 | 0.4 | 0.8 | ||||||
Lymphoid malignancy | 67 (64–71) | 57 (53–61) | 63 (59–67) | 51 (47–56) | 88 (82–94) | 80 (73–88) | |||
NHL | 71 (66–76) | 60 (54–66) | 65 (59–72) | 53 (46–60) | 87 (79–95) | 80 (72–90) | |||
ALL | 82 (67–100) | 45 (25–80) | 76 (58–100) | 48 (27–87) | 100 (100–100) | 50 (19–100) | |||
CLL | 61 (54–70) | 56 (48–65) | 56 (48–65) | 49 (40–60) | 91 (80–100) | 91 (80–100) | |||
HL | 67 (53–86) | 63 (47–83) | 67 (53–86) | 63 (47–83) | NE (NE-NE) | NE (NE-NE) | |||
MM | 66 (60–73) | 54 (47–62) | 63 (57–71) | 51 (43–59) | 85 (73–100) | 75 (59–95) | |||
Myeloid malignancy | 68 (62–73) | 56 (50–63) | 65 (59–71) | 53 (47–61) | 86 (75–100) | 74 (60–93) | |||
AML | 65 (56–76) | 57 (48–69) | 59 (48–72) | 50 (39–64) | 89 (76–100) | 83 (68–100) | |||
CML | 84 (69–100) | 84 (69–100) | 82 (66–100) | 82 (66–100) | 100 (100–100) | 100 (100–100) | |||
MDS | 58 (48–68) | 45 (35–58) | 56 (47–68) | 44 (34–58) | 75 (50–100) | 56 (28–100) | |||
MPN | 82 (73–92) | 62 (49–79) | 81 (72–92) | 64 (51–81) | 100 (100–100) | NE (NE-NE) | |||
Cancer therapy, within 30 d | 0.2 | >0.9 | 0.8 | ||||||
No active therapy | 63 (58–68) | 53 (47–60) | 62 (56–67) | 52 (46–59) | 100 (100–100) | 88 (67–100) | |||
Active therapy | 69 (65–73) | 58 (54–62) | 64 (60–69) | 52 (47–57) | 86 (80–92) | 78 (71–85) | |||
Conventional chemotherapy | 63 (57–69) | 49 (42–56) | 61 (54–68) | 46 (39–55) | 75 (62–90) | 61 (47–80) | |||
Low-intensity chemotherapy | 72 (61–86) | 55 (39–76) | 74 (62–88) | 56 (40–78) | NE (NE-NE) | NE (NE-NE) | |||
Molecular-targeted therapy | 73 (65–81) | 65 (57–75) | 67 (58–77) | 60 (50–72) | 90 (79–100) | 81 (68–98) | |||
Immunotherapy | 81 (73–89) | 72 (64–82) | 68 (57–82) | 56 (44–72) | 94 (87–100) | 89 (81–99) | |||
Immunomodulator drugs | 62 (50–76) | 51 (39–68) | 62 (50–77) | 49 (35–68) | 58 (31–100) | 58 (31–100) | |||
Hypomethylating agents | 66 (53–82) | 62 (48–80) | 60 (45–79) | 54 (39–76) | 100 (100–100) | 100 (100–100) | |||
Supportive therapy | 62 (47–83) | 43 (27–69) | 61 (46–82) | 43 (27–68) | NE (NE-NE) | NE (NE-NE) | |||
Active, not detailed | 92 (79–100) | 69 (44–100) | 89 (71–100) | 76 (52–100) | 100 (100–100) | 67 (30–100) | |||
Cellular therapy | <0.001 | <0.001 | 0.2 | ||||||
No | 64 (61–68) | 54 (51–58) | 61 (57–64) | 50 (46–54) | 86 (80–92) | 79 (71–87) | |||
Yes | 85 (79–91) | 72 (64–81) | 82 (74–90) | 69 (59–80) | 97 (91–100) | 84 (71–100) | |||
Allogenic | 89 (81–98) | 72 (59–86) | 86 (76–97) | 70 (56–87) | 100 (100–100) | 80 (59–100) | |||
Autologous | 80 (72–90) | 74 (64–86) | 77 (67–89) | 72 (60–86) | 93 (80–100) | 84 (65–100) | |||
CAR T cell | 100 (100–100) | 60 (29–100) | 100 (100–100) | NE (NE-NE) | 100 (100–100) | 100 (100–100) | |||
Vaccinations | <0.001 | 0.003 | 0.6 | ||||||
0 | 63 (60–67) | 51 (47–55) | 63 (60–67) | 51 (47–55) | 88 (67–100) | 88 (67–100) | |||
1–2 | 82 (73–92) | 74 (64–86) | 74 (60–91) | 65 (50–84) | 89 (80–100) | 83 (71–96) | |||
3–4 | 85 (79–92) | 77 (69–86) | 85 (67–100) | 85 (67–100) | 85 (79–93) | 76 (67–86) | |||
COVID-19 therapies | |||||||||
Nirmatrelvir/ritonavir | 0.3 | n/a | 0.8 | ||||||
No | 67 (64–70) | 56 (53–60) | NE (NE-NE) | NE (NE-NE) | 87 (82–93) | 79 (73–86) | |||
Yes | 89 (71–100) | 71 (43–100) | NE (NE-NE) | NE (NE-NE) | 89 (71–100) | 71 (43–100) | |||
Remdesivir | <0.001 | 0.002 | 0.6 | ||||||
No | 64 (60–67) | 54 (50–58) | 62 (58–65) | 51 (47–55) | 83 (75–92) | 80 (71–89) | |||
Yes | 87 (82–92) | 71 (64–80) | 82 (73–91) | 65 (54–77) | 92 (86–98) | 78 (69–88) | |||
Tocilizumab | 0.5 | 0.14 | 0.3 | ||||||
No | 67 (64–71) | 56 (53–60) | 63 (59–66) | 51 (47–56) | 89 (84–94) | 80 (73–87) | |||
Yes | 69 (63–76) | 58 (51–65) | 68 (61–75) | 55 (48–64) | 78 (63–97) | 73 (57–94) | |||
Monoclonal antibodies | 0.02 | n/a | 0.7 | ||||||
No | 67 (64–70) | 56 (53–60) | NE (NE-NE) | NE (NE-NE) | 87 (81–93) | 80 (73–87) | |||
Yes | 92 (81–100) | 77 (61–97) | NE (NE-NE) | NE (NE-NE) | 92 (81–100) | 77 (61–97) | |||
Corticosteroids | <0.001 | <0.001 | 0.2 | ||||||
No | 76 (72–81) | 68 (63–73) | 72 (67–78) | 64 (58–71) | 92 (86–99) | 83 (73–93) | |||
Yes | 63 (59–67) | 51 (47–55) | 60 (56–64) | 46 (42–51) | 84 (77–92) | 76 (68–86) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-López, J.; de la Cruz, J.; Gil-Manso, R.; Yuste, V.J.; Aspa-Cilleruelo, J.M.; Escobar, C.E.; López-Jiménez, J.; Duarte, R.; Yerovi, C.J.; Hernández-Rivas, J.-Á.; et al. COVID-19 Outcomes in Patients with Hematologic Malignancies in the Era of COVID-19 Vaccination and the Omicron Variant. Cancers 2024, 16, 379. https://doi.org/10.3390/cancers16020379
Martínez-López J, de la Cruz J, Gil-Manso R, Yuste VJ, Aspa-Cilleruelo JM, Escobar CE, López-Jiménez J, Duarte R, Yerovi CJ, Hernández-Rivas J-Á, et al. COVID-19 Outcomes in Patients with Hematologic Malignancies in the Era of COVID-19 Vaccination and the Omicron Variant. Cancers. 2024; 16(2):379. https://doi.org/10.3390/cancers16020379
Chicago/Turabian StyleMartínez-López, Joaquín, Javier de la Cruz, Rodrigo Gil-Manso, Víctor Jiménez Yuste, José María Aspa-Cilleruelo, Cristian Escolano Escobar, Javier López-Jiménez, Rafael Duarte, Cristina Jacome Yerovi, José-Ángel Hernández-Rivas, and et al. 2024. "COVID-19 Outcomes in Patients with Hematologic Malignancies in the Era of COVID-19 Vaccination and the Omicron Variant" Cancers 16, no. 2: 379. https://doi.org/10.3390/cancers16020379
APA StyleMartínez-López, J., de la Cruz, J., Gil-Manso, R., Yuste, V. J., Aspa-Cilleruelo, J. M., Escobar, C. E., López-Jiménez, J., Duarte, R., Yerovi, C. J., Hernández-Rivas, J.-Á., Herráez, R., Quiroz-Cervantes, K., Bustelos-Rodriguez, R., Benavente, C., Martínez Barranco, P., Bastos Oteiro, M., Alegre, A., Pérez-Oteyza, J., Ruiz, E., ... García-Suárez, J., on behalf of the Asociación Madrileña de Hematología y Hemoterapia (AMHH). (2024). COVID-19 Outcomes in Patients with Hematologic Malignancies in the Era of COVID-19 Vaccination and the Omicron Variant. Cancers, 16(2), 379. https://doi.org/10.3390/cancers16020379