Elasticity Values as a Predictive Modality for Response to Neoadjuvant Chemotherapy in Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Study Population
2.2. Pathologic Evaluation, Immunohistochemistry (IHC), and TIL Assessment
- λ
- Hormone-receptor-positive, HER2-negative (HR+HER2-): ER-positive and/or PR-positive, and HER2-negative.
- λ
- HER2+: HER2-positive regardless of ER and PR status.
- λ
- Triple-negative breast cancer (TNBC): ER-negative, PR-negative, and HER2-negative.
2.3. Elastography
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Relationship between the Elasticity Values and TIL Level
3.3. Pathologic Complete Response According to the Elasticity Values
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fisher, B.; Brown, A.; Mamounas, E.; Wieand, S.; Robidoux, A.; Margolese, R.G.; Cruz, A.B., Jr.; Fisher, E.R.; Wickerham, D.L.; Wolmark, N.; et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: Findings from National Surgical Adjuvant Breast and Bowel Project B-18. J. Clin. Oncol. 1997, 15, 2483–2493. [Google Scholar] [CrossRef]
- Van, J.; Hage, C.; Velde, J.J.; Tubiana-Hulin, M.; Vandervelden, C. Preoperative chemotherapy in primary operable breast cancer: Results from the European Organization for Research and Treatment of Cancer trial 10902. J. Clin. Oncol. 2001, 19, 4224–4237. [Google Scholar]
- Prowell, T.M.; Pazdur, R. Pathological complete response and accelerated drug approval in early breast cancer. N. Engl. J. Med. 2012, 366, 2438–2441. [Google Scholar] [PubMed]
- Masuda, N.; Lee, S.J.; Ohtani, S.; Im, Y.H.; Lee, E.S.; Yokota, I.; Kuroi, K.; Im, S.A.; Park, B.W.; Kim, S.B.; et al. Adjuvant Capecitabine for Breast Cancer after Preoperative Chemotherapy. N. Engl. J. Med. 2017, 376, 2147–2159. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Huang, C.S.; Mano, M.S.; Loibl, S.; Mamounas, E.P.; Untch, M.; Wolmark, N.; Rastogi, P.; Schneeweiss, A.; Redondo, A.; et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N. Engl. J. Med. 2019, 380, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Symmans, W.F.; Wei, C.; Gould, R.; Yu, X.; Zhang, Y.; Liu, M.; Walls, A.; Bousamra, A.; Ramineni, M.; Sinn, B.; et al. Long-Term Prognostic Risk After Neoadjuvant Chemotherapy Associated With Residual Cancer Burden and Breast Cancer Subtype. J. Clin. Oncol. 2017, 35, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Spring, L.M.; Fell, G.; Arfe, A.; Sharma, C.; Greenup, R.; Reynolds, K.L.; Smith, B.L.; Alexander, B.; Moy, B.; Isakoff, S.J.; et al. Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A Comprehensive Meta-analysis. Clin. Cancer Res. 2020, 26, 2838–2848. [Google Scholar] [CrossRef]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef]
- Mamounas, E.P.; Anderson, S.J.; Dignam, J.J.; Bear, H.D.; Julian, T.B.; Geyer, C.E., Jr.; Taghian, A.; Wickerham, D.L.; Wolmark, N. Predictors of locoregional recurrence after neoadjuvant chemotherapy: Results from combined analysis of National Surgical Adjuvant Breast and Bowel Project B-18 and B-27. J. Clin. Oncol. 2012, 30, 3960–3966. [Google Scholar] [CrossRef]
- Tao, M.; Chen, S.; Zhang, X.; Zhou, Q. Ki-67 labeling index is a predictive marker for a pathological complete response to neoadjuvant chemotherapy in breast cancer: A meta-analysis. Medicine 2017, 96, e9384. [Google Scholar] [CrossRef]
- Denkert, C.; von Minckwitz, G.; Darb-Esfahani, S.; Lederer, B.; Heppner, B.I.; Weber, K.E.; Budczies, J.; Huober, J.; Klauschen, F.; Furlanetto, J.; et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018, 19, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tan, X.; Zhang, X.; Kang, Y.; Li, J.; Ren, W.; Ma, Y. Efficacy of shear-wave elastography versus dynamic optical breast imaging for predicting the pathological response to neoadjuvant chemotherapy in breast cancer. Eur. J. Radiol. 2020, 129, 109098. [Google Scholar] [CrossRef] [PubMed]
- Vriens, B.E.; de Vries, B.; Lobbes, M.B.; van Gastel, S.M.; van den Berkmortel, F.W.; Smilde, T.J.; van Warmerdam, L.J.; de Boer, M.; van Spronsen, D.J.; Smidt, M.L.; et al. Ultrasound is at least as good as magnetic resonance imaging in predicting tumour size post-neoadjuvant chemotherapy in breast cancer. Eur. J. Cancer 2016, 52, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Youk, J.H.; Gweon, H.M.; Son, E.J. Shear-wave elastography in breast ultrasonography: The state of the art. Ultrasonography 2017, 36, 300–309. [Google Scholar] [CrossRef]
- Bae, J.S.; Chang, J.M.; Lee, S.H.; Shin, S.U.; Moon, W.K. Prediction of invasive breast cancer using shear-wave elastography in patients with biopsy-confirmed ductal carcinoma in situ. Eur. Radiol. 2017, 27, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.; Rauchhaus, P.; Whelehan, P.; Thomson, K.; Purdie, C.A.; Jordan, L.B.; Michie, C.O.; Thompson, A.; Vinnicombe, S. Does shear wave ultrasound independently predict axillary lymph node metastasis in women with invasive breast cancer? Breast Cancer Res. Treat. 2014, 143, 153–157. [Google Scholar] [CrossRef]
- Bae, S.J.; Park, J.T.; Park, A.Y.; Youk, J.H.; Lim, J.W.; Lee, H.W.; Lee, H.M.; Ahn, S.G.; Son, E.J.; Jeong, J. Ex Vivo Shear-Wave Elastography of Axillary Lymph Nodes to Predict Nodal Metastasis in Patients with Primary Breast Cancer. J. Breast Cancer 2018, 21, 190–196. [Google Scholar] [CrossRef]
- Bae, S.J.; Youk, J.H.; Yoon, C.I.; Park, S.; Cha, C.H.; Lee, H.W.; Ahn, S.G.; Lee, S.A.; Son, E.J.; Jeong, J. A nomogram constructed using intraoperative ex vivo shear-wave elastography precisely predicts metastasis of sentinel lymph nodes in breast cancer. Eur. Radiol. 2020, 30, 789–797. [Google Scholar] [CrossRef]
- Harvey, J.M.; Clark, G.M.; Osborne, C.K.; Allred, D.C. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J. Clin. Oncol. 1999, 17, 1474–1481. [Google Scholar]
- Hammond, M.E.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.; Francis, G.; Goldstein, N.S.; Hayes, M.; et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 2010, 28, 2784–2795. [Google Scholar] [CrossRef]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. Arch. Pathol. Lab. Med. 2018, 142, 1364–1382. [Google Scholar] [CrossRef]
- Salgado, R.; Denkert, C.; Demaria, S.; Sirtaine, N.; Klauschen, F.; Pruneri, G.; Wienert, S.; Van den Eynden, G.; Baehner, F.L.; Penault-Llorca, F.; et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: Recommendations by an International TILs Working Group 2014. Ann. Oncol. 2015, 26, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Cha, Y.J.; Ahn, S.G.; Bae, S.J.; Yoon, C.I.; Seo, J.; Jung, W.H.; Son, E.J.; Jeong, J. Comparison of tumor-infiltrating lymphocytes of breast cancer in core needle biopsies and resected specimens: A retrospective analysis. Breast Cancer Res. Treat. 2018, 171, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Abuhadra, N.; Hess, K.R.; Litton, J.K.; Rauch, G.M.; Thompson, A.M.; Lim, B.; Adrada, B.E.; Mittendorf, E.A.; Damodaran, S.; Candelaria, R.P.; et al. Beyond TILs: Predictors of pathologic complete response (pCR) in triple-negative breast cancer (TNBC) patients with moderate tumor-infiltrating lymphocytes (TIL) receiving neoadjuvant therapy. J. Clin. Oncol. 2019, 37, 572. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Untch, M.; Blohmer, J.U.; Costa, S.D.; Eidtmann, H.; Fasching, P.A.; Gerber, B.; Eiermann, W.; Hilfrich, J.; Huober, J.; et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 2012, 30, 1796–1804. [Google Scholar] [CrossRef] [PubMed]
- Valkenburg, K.C.; de Groot, A.E.; Pienta, K.J. Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 2018, 15, 366–381. [Google Scholar] [CrossRef]
- Alexander, J.; Cukierman, E. Stromal dynamic reciprocity in cancer: Intricacies of fibroblastic-ECM interactions. Curr. Opin. Cell Biol. 2016, 42, 80–93. [Google Scholar] [CrossRef]
- Dvorak, H.F. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 1986, 315, 1650–1659. [Google Scholar]
- Franzen, A.S.; Raftery, M.J.; Pecher, G. Implications for Immunotherapy of Breast Cancer by Understanding the Microenvironment of a Solid Tumor. Cancers 2022, 14, 3178. [Google Scholar] [CrossRef]
- Evans, A.; Armstrong, S.; Whelehan, P.; Thomson, K.; Rauchhaus, P.; Purdie, C.; Jordan, L.; Jones, L.; Thompson, A.; Vinnicombe, S. Can shear-wave elastography predict response to neoadjuvant chemotherapy in women with invasive breast cancer? Br. J. Cancer 2013, 109, 2798–2802. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, S.; Zang, L.; Li, J.; Li, J.; Kang, Y.; Ren, W. Combination of shear wave elastography and Ki-67 index as a novel predictive modality for the pathological response to neoadjuvant chemotherapy in patients with invasive breast cancer. Eur. J. Cancer 2016, 69, 86–101. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Song, X.; Guan, L.; Wang, W.; Song, B.; Kang, Y.; Jia, Y.; Zhu, Y.; Nie, F. Comparative study of pathological response evaluation systems after neoadjuvant chemotherapy for breast cancer: Developing predictive models of multimodal ultrasound features including shear wave elastography combined with puncture pathology. Quant. Imaging Med. Surg. 2023, 13, 3013–3028. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.X.; Shi, J.; Ding, S.S.; Zhang, H.L.; Wang, X.Y.; Lin, S.Y.; Xu, Y.F.; Wei, M.J.; Liu, L.Z.; Pei, X.Q. Deep Learning Model Based on Dual-Modal Ultrasound and Molecular Data for Predicting Response to Neoadjuvant Chemotherapy in Breast Cancer. Acad. Radiol. 2023, 30 (Suppl. S2), S50–S61. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Wang, C.; Ma, Y.; Wang, J.; Yang, G.; Wu, Y.; Wang, H.; Mi, C. The potential role of combined shear wave elastography and superb microvascular imaging for early prediction the pathological response to neoadjuvant chemotherapy in breast cancer. Front. Oncol. 2023, 13, 1176141. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Shao, H.; Na, Z.; Kong, M.; Cheng, W. Value of shear wave elasticity in predicting the efficacy of neoadjuvant chemotherapy in different molecular types. Clin. Imaging 2022, 89, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Bae, S.J.; Eun, N.L.; Ahn, S.G.; Jeong, J.; Cha, Y.J. Correlation of Yes-Associated Protein 1 with Stroma Type and Tumor Stiffness in Hormone-Receptor Positive Breast Cancer. Cancers 2022, 14, 4971. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Zhou, L.; Jin, Y.; Li, F.; Wang, L.; Yin, W.; Wang, Y.; Li, H.; Jiang, L.; Lu, J. Strain ultrasonic elastography imaging features of locally advanced breast cancer: Association with response to neoadjuvant chemotherapy and recurrence-free survival. BMC Med. Imaging 2023, 23, 216. [Google Scholar] [CrossRef]
- Perez-Garcia, J.M.; Gebhart, G.; Ruiz Borrego, M.; Stradella, A.; Bermejo, B.; Schmid, P.; Marme, F.; Escriva-de-Romani, S.; Calvo, L.; Ribelles, N.; et al. Chemotherapy de-escalation using an (18)F-FDG-PET-based pathological response-adapted strategy in patients with HER2-positive early breast cancer (PHERGain): A multicentre, randomised, open-label, non-comparative, phase 2 trial. Lancet Oncol. 2021, 22, 858–871. [Google Scholar] [CrossRef]
- Connolly, R.M.; Leal, J.P.; Solnes, L.; Huang, C.Y.; Carpenter, A.; Gaffney, K.; Abramson, V.; Carey, L.A.; Liu, M.C.; Rimawi, M.; et al. Updated Results of TBCRC026: Phase II Trial Correlating Standardized Uptake Value With Pathological Complete Response to Pertuzumab and Trastuzumab in Breast Cancer. J. Clin. Oncol. 2021, 39, 2247–2256. [Google Scholar] [CrossRef]
- Cohen, I.J.; Blasberg, R. Impact of the Tumor Microenvironment on Tumor-Infiltrating Lymphocytes: Focus on Breast Cancer. Breast Cancer 2017, 11, 1178223417731565. [Google Scholar] [CrossRef]
- Khan, A.M.; Yuan, Y. Biopsy variability of lymphocytic infiltration in breast cancer subtypes and the ImmunoSkew score. Sci. Rep. 2016, 6, 36231. [Google Scholar] [CrossRef] [PubMed]
- Kurozumi, S.; Inoue, K.; Takei, H.; Matsumoto, H.; Kurosumi, M.; Horiguchi, J.; Takeyoshi, I.; Oyama, T. ER, PgR, Ki67, p27(Kip1), and histological grade as predictors of pathological complete response in patients with HER2-positive breast cancer receiving neoadjuvant chemotherapy using taxanes followed by fluorouracil, epirubicin, and cyclophosphamide concomitant with trastuzumab. BMC Cancer 2015, 15, 622. [Google Scholar] [CrossRef]
HR+HER2- (n = 258) | HER2+ (n = 312) | TNBC (n = 260) | Total (n = 830) | p-Value | |
---|---|---|---|---|---|
Age, median [range] | 47 [29–78] | 49 [31–78] | 48 [21–80] | 48 [21–80] | 0.112 |
HG *, n (%) | <0.001 | ||||
1 or 2 | 215 (91.1) | 222 (82.5) | 110 (47.4) | 547 (74.2) | |
3 | 21 (8.9) | 47 (17.5) | 122 (52.6) | 190 (25.8) | |
TILs *, n (%) | <0.001 | ||||
<30% | 191 (80.3) | 159 (59.3) | 126 (55.8) | 476 (65.0) | |
≥30% | 47 (19.7) | 109 (40.7) | 100 (44.2) | 256 (35.0) | |
Clinical T stage, n (%) | <0.001 | ||||
1 or 2 | 172 (66.7) | 190 (60.9) | 204 (78.5) | 566 (68.2) | |
3 | 86 (33.3) | 122 (39.1) | 56 (21.5) | 264 (31.8) | |
Clinical nodal status, n (%) | <0.001 | ||||
negative | 17 (6.6) | 63 (20.2) | 49 (18.8) | 129 (15.5) | |
positive | 241 (93.4) | 249 (79.8) | 211 (81.2) | 701 (84.5) | |
Breast pCR | <0.001 | ||||
Yes | 23 (8.9) | 207 (66.3) | 126 (48.5) | 356 (42.9) | |
No | 235 (91.1) | 105 (33.7) | 134 (51.5) | 474 (57.1) | |
pCR | <0.001 | ||||
Yes | 11 (4.3) | 196 (62.8) | 117 (45.0) | 324 (39.0) | |
No | 247 (95.7) | 116 (37.2) | 143 (55.0) | 506 (61.0) | |
E-mean (mean, SD (kPa)) | 188.47 ± 66.55 | 174.76 ± 65.23 | 178.22 ± 61.99 | 180.11 ± 64.84 | 0.036 |
E-max (mean, SD (kPa)) | 216.17 ± 71.58 | 200.23 ± 71.93 | 203.60 ± 69.15 | 206.24 ± 71.20 | 0.022 |
E-Mean | E-Max | |||||||
---|---|---|---|---|---|---|---|---|
All Patients | Breast pCR | Total (n = 830) | Low (n = 459) | High (n = 371) | p-Value | Low (n = 471) | High (n = 359) | p-Value |
yes, n (%) | 356 (42.9) | 224 (48.8) | 132 (35.6) | <0.001 | 230 (48.8) | 126 (35.1) | <0.001 | |
no, n (%) | 474 (57.1) | 235 (51.2) | 239 (64.4) | 241 (51.2) | 233 (64.9) | |||
HR+HER2- | Breast pCR | Total (n = 258) | Low (n = 114) | High (n = 144) | p-Value | Low (n = 109) | High (n = 149) | p-Value |
yes, n (%) | 23 (8.9) | 17 (14.9) | 6 (4.2) | 0.003 | 17 (18.3) | 6 (4.0) | 0.001 | |
no, n (%) | 235 (91.1) | 97 (85.1) | 138 (95.8) | 92 (81.7) | 143 (96.0) | |||
HER2+ | Breast pCR | Total (n = 312) | Low (n = 60) | High (n = 252) | p-Value | Low (n = 70) | High (n = 242) | p-Value |
yes, n (%) | 207 (66.3) | 46 (76.7) | 161 (63.9) | 0.060 | 54 (77.1) | 153 (63.2) | 0.030 | |
no, n (%) | 105 (33.7) | 14 (23.3) | 91 (36.1) | 16 (22.9) | 89 (36.8) | |||
TNBC | Breast pCR | Total (n = 260) | Low (n = 146) | High (n = 114) | p-Value | Low (n = 151) | High (n = 109) | p-Value |
yes, n (%) | 126 (48.5) | 84 (57.5) | 42 (36.8) | 0.001 | 83 (55.0) | 43 (39.4) | 0.013 | |
no, n (%) | 134 (51.5) | 62 (42.5) | 72 (63.2) | 68 (45.0) | 66 (60.6) | |||
E-mean | E-max | |||||||
All Patients | pCR | Total (n = 830) | Low (n = 459) | High (n = 371) | p-Value | Low (n = 471) | High (n = 359) | p-Value |
yes, n (%) | 324 (39.0) | 200 (43.6) | 124 (33.4) | 0.003 | 205 (43.5) | 119 (33.1) | 0.002 | |
no, n (%) | 506 (61.0) | 259 (56.4) | 247 (66.6) | 266 (56.5) | 240 (66.9) | |||
HR+HER2- | pCR | Total (n = 258) | Low (n = 114) | High (n = 144) | p-Value | Low (n = 109) | High (n = 149) | p-Value |
yes, n (%) | 11 (4.3) | 8 (7.0) | 3 (2.1) | 0.065 * | 8 (7.3) | 3 (2.0) | 0.058 * | |
no, n (%) | 247 (95.7) | 106 (93.0) | 141 (97.9) | 101 (92.7) | 146 (98.0) | |||
HER2+ | pCR | Total (n = 312) | Low (n = 60) | High (n = 252) | p-Value | Low (n = 70) | High (n = 242) | p-Value |
yes, n (%) | 196 (62.8) | 42 (70.0) | 154 (61.1) | 0.200 | 49 (70.0) | 147 (60.7) | 0.158 | |
no, n (%) | 116 (37.2) | 18 (30.0) | 98 (38.9) | 21 (30.0) | 95 (39.3) | |||
TNBC | pCR | Total (n = 260) | Low (n = 146) | High (n = 114) | p-Value | Low (n = 151) | High (n = 109) | p-Value |
yes, n (%) | 117 (45.0) | 78 (53.4) | 39 (34.2) | 0.002 | 76 (50.3) | 41 (37.6) | 0.042 | |
no, n (%) | 143 (55.0) | 68 (46.6) | 75 (65.8) | 75 (49.7) | 68 (62.4) |
Breast pCR | All Patients | HR+HER2- | HER2+ | TNBC | ||||
---|---|---|---|---|---|---|---|---|
Odds Ratio (95% CI) * | p-Value * | Odds Ratio (95% CI) † | p-Value † | Odds Ratio (95% CI) † | p-Value † | Odds Ratio (95% CI) † | p-Value † | |
E-mean | ||||||||
low | Ref | Ref | Ref | Ref | ||||
high | 0.620 (0.437–0.878) | 0.007 | 0.333 (0.120–0.926) | 0.035 | 0.585 (0.282–1.216) | 0.151 | 0.394 (0.226–0.688) | 0.001 |
E-max | ||||||||
low | Ref | Ref | Ref | Ref | ||||
high | 0.701 (0.494−0.996) | 0.047 | 0.322 (0.116−0.893) | 0.030 | 0.554 (0.279−1.101) | 0.092 | 0.512 (0.295−0.891) | 0.018 |
pCR | All Patients | HR+HER2- | HER2+ | TNBC | ||||
Odds Ratio (95% CI) * | p-Value * | Odds Ratio (95% CI) † | p-Value † | Odds Ratio (95% CI) † | p-Value † | Odds Ratio (95% CI) † | p-Value † | |
E-mean | ||||||||
low | Ref | Ref | Ref | Ref | ||||
high | 0.733 (0.512−1.051) | 0.091 | 0.423 (0.099−1.800) | 0.244 | 0.762 (0.381−1.525) | 0.589 | 0.440 (0.251−0.772) | 0.004 |
E-max | ||||||||
low | Ref | Ref | Ref | Ref | ||||
high | 0.827 (0.575−1.189) | 0.305 | 0.392 (0.092−1.675) | 0.607 | 0.688 (0.357−1.324) | 0.262 | 0.570 (0.326−0.997) | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.J.; Eun, N.L.; Ahn, S.G.; Kim, J.H.; Youk, J.H.; Son, E.J.; Jeong, J.; Cha, Y.J.; Bae, S.J. Elasticity Values as a Predictive Modality for Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancers 2024, 16, 377. https://doi.org/10.3390/cancers16020377
Kim MJ, Eun NL, Ahn SG, Kim JH, Youk JH, Son EJ, Jeong J, Cha YJ, Bae SJ. Elasticity Values as a Predictive Modality for Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancers. 2024; 16(2):377. https://doi.org/10.3390/cancers16020377
Chicago/Turabian StyleKim, Min Ji, Na Lae Eun, Sung Gwe Ahn, Jee Hung Kim, Ji Hyun Youk, Eun Ju Son, Joon Jeong, Yoon Jin Cha, and Soong June Bae. 2024. "Elasticity Values as a Predictive Modality for Response to Neoadjuvant Chemotherapy in Breast Cancer" Cancers 16, no. 2: 377. https://doi.org/10.3390/cancers16020377
APA StyleKim, M. J., Eun, N. L., Ahn, S. G., Kim, J. H., Youk, J. H., Son, E. J., Jeong, J., Cha, Y. J., & Bae, S. J. (2024). Elasticity Values as a Predictive Modality for Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancers, 16(2), 377. https://doi.org/10.3390/cancers16020377