The Role of Hepcidin in Myelodysplastic Syndromes (MDS): A Systematic Review of Observational Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Methodology
2.2. Study Selection
2.3. Inclusion Criteria
2.4. Exclusion Criteria
2.5. Data Extraction
2.6. Quality Assessment
3. Results
3.1. Literature Search Results
3.2. Quality of the Included Studies
3.3. Description of Case–Control Studies
3.4. Hepcidin Levels in MDS Patients—Data from Case–Control Studies
3.5. Description of Cohort Studies
3.6. Hepcidin Levels in MDS Patients—Data from Cohort Studies
3.7. Description of Cross-Sectional Studies and Data on Hepcidin
3.8. Relationship between Hepcidin Levels in MDS and Transfusions
3.9. Relationship between Hepcidin Levels and Ferritin Levels in MDS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Vallelonga, V.; Gandolfi, F.; Ficara, F.; Della Porta, M.G.; Ghisletti, S. Emerging Insights into Molecular Mechanisms of Inflammation in Myelodysplastic Syndromes. Biomedicines 2023, 11, 2613. [Google Scholar] [CrossRef]
- Putnam, C.M.; Kondeti, L.; Kesler, M.B.A.; Varney, M.E. Modulating the immune system as a therapeutic target for myelodysplastic syndromes and acute myeloid leukemia. Biochem. Cell. Biol. 2023, 101, 481–495. [Google Scholar] [CrossRef]
- Rotter, L.K.; Shimony, S.; Ling, K.; Chen, E.; Shallis, R.M.; Zeidan, A.M.; Stahl, M. Epidemiology and Pathogenesis of Myelodysplastic Syndrome. Cancer J. 2023, 29, 111–121. [Google Scholar] [CrossRef]
- Bejar, R.; Steensma, D.P. Recent developments in myelodysplastic syndromes. Blood 2014, 124, 2793–2803. [Google Scholar] [CrossRef] [PubMed]
- Fenaux, P.; Haase, D.; Santini, V.; Sanz, G.F.; Platzbecker, U.; Mey, U. Myelodysplastic syndromes: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 142–156. [Google Scholar] [CrossRef] [PubMed]
- Ma, X. Epidemiology of myelodysplastic syndromes. Am. J. Med. 2012, 125, S2–S5. [Google Scholar] [CrossRef]
- Garcia-Manero, G.; Chien, K.S.; Montalban-Bravo, G. Myelodysplastic syndromes: 2021 update on diagnosis, risk stratification and management. Am. J. Hematol. 2020, 95, 1399–1420. [Google Scholar] [CrossRef]
- Shenoy, N.; Vallumsetla, N.; Rachmilewitz, E.; Verma, A.; Ginzburg, Y. Impact of iron overload and potential benefit from iron chelation in low-risk myelodysplastic syndrome. Blood 2014, 124, 873–881. [Google Scholar] [CrossRef]
- Gattermann, N. Iron overload in myelodysplastic syndromes (MDS). Int. J. Hematol. 2018, 107, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Moukalled, N.M.; El Rassi, F.A.; Temraz, S.N.; Taher, A.T. Iron overload in patients with myelodysplastic syndromes: An updated overview. Cancer 2018, 124, 3979–3989. [Google Scholar] [CrossRef]
- Weber, S.; Parmon, A.; Kurrle, N.; Schnütgen, F.; Serve, H. The Clinical Significance of Iron Overload and Iron Metabolism in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Front. Immunol. 2020, 11, 627662. [Google Scholar] [CrossRef] [PubMed]
- Malcovati, L.; Porta, M.G.; Pascutto, C.; Invernizzi, R.; Boni, M.; Travaglino, E.; Passamonti, F.; Arcaini, L.; Maffioli, M.; Bernasconi, P.; et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: A basis for clinical decision making. J. Clin. Oncol. 2005, 23, 7594–7603. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, S.; Kobune, M.; Iyama, S.; Sato, T.; Murase, K.; Kawano, Y.; Takada, K.; Ono, K.; Hayashi, T.; Miyanishi, K.; et al. Prognostic significance of serum ferritin level at diagnosis in myelodysplastic syndrome. Int. J. Hematol. 2012, 95, 527–534. [Google Scholar] [CrossRef]
- Rose, C.; Brechignac, S.; Vassilief, D.; Pascal, L.; Stamatoullas, A.; Guerci, A.; Larbaa, D.; Dreyfus, F.; Beyne-Rauzy, O.; Chaury, M.P.; et al. Does iron chelation therapy improve survival in regularly transfused lower risk MDS patients? A multicenter study by the GFM (Groupe Francophone des Myélodysplasies). Leuk. Res. 2010, 34, 864–870. [Google Scholar] [CrossRef]
- Neukirchen, J.; Fox, F.; Kündgen, A.; Nachtkamp, K.; Strupp, C.; Haas, R.; Germing, U.; Gattermann, N. Improved survival in MDS patients receiving iron chelation therapy—A matched pair analysis of 188 patients from the Düsseldorf MDS registry. Leuk. Res. 2012, 36, 1067–1070. [Google Scholar] [CrossRef]
- Mainous, A.G.; Tanner, R.J.; Hulihan, M.M.; Amaya, M.; Coates, T.D. The impact of chelation therapy on survival in transfusional iron overload: A meta-analysis of myelodysplastic syndrome. Br. J. Haematol. 2014, 167, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Styczyński, J.; Słomka, A.; Łęcka, M.; Albrecht, K.; Romiszewski, M.; Pogorzała, M.; Kubicka, M.; Kuryło-Rafińska, B.; Tejza, B.; Gadomska, G.; et al. Soluble Hemojuvelin and Ferritin: Potential Prognostic Markers in Pediatric Hematopoietic Cell Transplantation. Cancers 2023, 15, 1041. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.; Ganz, T. Hepcidin-Ferroportin Interaction Controls Systemic Iron Homeostasis. Int. J. Mol. Sci. 2021, 22, 6493. [Google Scholar] [CrossRef]
- Nemeth, E.; Ganz, T. Hepcidin and Iron in Health and Disease. Annu. Rev. Med. 2023, 74, 261–277. [Google Scholar] [CrossRef]
- Santini, V.; Girelli, D.; Sanna, A.; Martinelli, N.; Duca, L.; Campostrini, N.; Cortelezzi, A.; Corbella, M.; Bosi, A.; Reda, G.; et al. Hepcidin levels and their determinants in different types of myelodysplastic syndromes. PLoS ONE 2011, 6, e23109. [Google Scholar] [CrossRef]
- Gu, S.; Song, X.; Zhao, Y.; Guo, J.; Fei, C.; Xu, F.; Wu, L.; Zhang, X.; Zhao, J.; Chang, C.; et al. The evaluation of iron overload through hepcidin level and its related factors in myelodysplastic syndromes. Hematology 2013, 18, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Gale, R.P.; Zhu, G.; Xu, Z.; Qin, T.; Zhang, Y.; Huang, G.; Li, B.; Fang, L.; Zhang, H.; et al. Serum iron metabolism and erythropoiesis in patients with myelodysplastic syndrome not receiving RBC transfusions. Leuk. Res. 2014, 38, 545–550. [Google Scholar] [CrossRef]
- El Husseiny, N.M.; Mehaney, D.A.; El Kader Morad, M.A. New insights on iron study in myelodysplasia. Turk. J. Haematol. 2014, 31, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Ghoti, H.; Fibach, E.; Westerman, M.; Gordana, O.; Ganz, T.; Rachmilewitz, E.A. Increased serum hepcidin levels during treatment with deferasirox in iron-overloaded patients with myelodysplastic syndrome. Br. J. Haematol. 2011, 153, 118–120. [Google Scholar] [CrossRef]
- Zipperer, E.; Post, J.G.; Herkert, M.; Kündgen, A.; Fox, F.; Haas, R.; Gattermann, N.; Germing, U. Serum hepcidin measured with an improved ELISA correlates with parameters of iron metabolism in patients with myelodysplastic syndrome. Ann. Hematol. 2013, 92, 1617–1623. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, X.; Chang, C.; Xu, F.; He, Q.; Guo, J.; Tao, Y.; Liu, Y.; Liu, L.; Shi, W. SF3B1-mutated myelodysplastic syndrome with ring sideroblasts harbors more severe iron overload and corresponding over-erythropoiesis. Leuk. Res. 2016, 44, 8–16. [Google Scholar] [CrossRef]
- Gu, S.; Xv, Y.; Fei, C.; Xiao, C.; Guo, J.; Zhao, Y.; Xv, F.; Li, X.; Chang, C. Labile plasma iron, more practical and more sensitive to iron overload in myelodysplastic syndromes. Hematology 2017, 22, 9–15. [Google Scholar] [CrossRef]
- De Swart, L.; Reiniers, C.; Bagguley, T.; van Marrewijk, C.; Bowen, D.; Hellström-Lindberg, E.; Tatic, A.; Symeonidis, A.; Huls, G.; Cermak, J.; et al. Labile plasma iron levels predict survival in patients with lower-risk myelodysplastic syndromes. Haematologica 2018, 103, 69–79. [Google Scholar] [CrossRef]
- Hoeks, M.; Bagguley, T.; van Marrewijk, C.; Smith, A.; Bowen, D.; Culligan, D.; Kolade, S.; Symeonidis, A.; Garelius, H.; Spanoudakis, M.; et al. Toxic iron species in lower-risk myelodysplastic syndrome patients: Course of disease and effects on outcome. Leukemia 2021, 35, 1745–1750. [Google Scholar] [CrossRef]
- Ambaglio, I.; Malcovati, L.; Papaemmanuil, E.; Laarakkers, C.M.; Della Porta, M.G.; Gallì, A.; Da Vià, M.C.; Bono, E.; Ubezio, M.; Travaglino, E.; et al. Inappropriately low hepcidin levels in patients with myelodysplastic syndrome carrying a somatic mutation of SF3B1. Haematologica 2013, 98, 420–423. [Google Scholar] [CrossRef]
- De Montalembert, M.; Ribeil, J.A.; Brousse, V.; Guerci-Bresler, A.; Stamatoullas, A.; Vannier, J.P.; Dumesnil, C.; Lahary, A.; Touati, M.; Bouabdallah, K.; et al. Cardiac iron overload in chronically transfused patients with thalassemia, sickle cell anemia, or myelodysplastic syndrome. PLoS ONE 2017, 12, e0172147. [Google Scholar] [CrossRef]
- Słomka, A.; Łęcka, M.; Styczyński, J. Hepcidin in Children and Adults with Acute Leukemia or Undergoing Hematopoietic Cell Transplantation: A Systematic Review. Cancers 2022, 14, 4936. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Pieper, D.; Rombey, T. Where to prospectively register a systematic review. Syst. Rev. 2022, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Ewald, H.; Klerings, I.; Wagner, G.; Heise, T.L.; Stratil, J.M.; Lhachimi, S.K.; Hemkens, L.G.; Gartlehner, G.; Armijo-Olivo, S.; Nussbaumer-Streit, B. Searching two or more databases decreased the risk of missing relevant studies: A metaresearch study. J. Clin. Epidemiol. 2022, 149, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Song, J.W.; Chung, K.C. Observational studies: Cohort and case-control studies. Plast. Reconstr. Surg. 2010, 126, 2234–2242. [Google Scholar] [CrossRef]
- Kanda, J.; Mizumoto, C.; Kawabata, H.; Tsuchida, H.; Tomosugi, N.; Matsuo, K.; Uchiyama, T. Serum hepcidin level and erythropoietic activity after hematopoietic stem cell transplantation. Haematologica 2008, 93, 1550–1554. [Google Scholar] [CrossRef]
- Kanda, J.; Mizumoto, C.; Kawabata, H.; Ichinohe, T.; Tsuchida, H.; Tomosugi, N.; Matsuo, K.; Yamashita, K.; Kondo, T.; Ishikawa, T.; et al. Clinical significance of serum hepcidin levels on early infectious complications in allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2009, 15, 956–962. [Google Scholar] [CrossRef]
- Armand, P.; Kim, H.T.; Rhodes, J.; Sainvil, M.M.; Cutler, C.; Ho, V.T.; Koreth, J.; Alyea, E.P.; Hearsey, D.; Neufeld, E.J.; et al. Iron overload in patients with acute leukemia or MDS undergoing myeloablative stem cell transplantation. Biol. Blood Marrow Transplant. 2011, 17, 852–860. [Google Scholar] [CrossRef]
- Wermke, M.; Eckoldt, J.; Götze, K.S.; Klein, S.A.; Bug, G.; de Wreede, L.C.; Kramer, M.; Stölzel, F.; von Bonin, M.; Schetelig, J.; et al. Enhanced labile plasma iron and outcome in acute myeloid leukaemia and myelodysplastic syndrome after allogeneic haemopoietic cell transplantation (ALLIVE): A prospective, multicentre, observational trial. Lancet Haematol. 2018, 5, e201–e210. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 6 November 2023).
- Zeng, X.; Zhang, Y.; Kwong, J.S.; Zhang, C.; Li, S.; Sun, F.; Niu, Y.; Du, L. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: A systematic review. J. Evid. Based Med. 2015, 8, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Herzog, R.; Álvarez-Pasquin, M.J.; Díaz, C.; Del Barrio, J.L.; Estrada, J.M.; Gil, Á. Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. BMC Public. Health 2013, 13, 154. [Google Scholar] [CrossRef] [PubMed]
- Słomka, A.; Kowalewski, M.; Żekanowska, E.; Suwalski, P.; Lorusso, R.; Eikelboom, J.W. Plasma Levels of Protein Z in Ischemic Stroke: A Systematic Review and Meta-Analysis. Thromb. Haemost. 2020, 120, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Vardiman, J.W.; Harris, N.L.; Brunning, R.D. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002, 100, 2292–2302. [Google Scholar] [CrossRef] [PubMed]
- Vardiman, J.W.; Thiele, J.; Arber, D.A.; Brunning, R.D.; Borowitz, M.J.; Porwit, A.; Harris, N.L.; Le Beau, M.M.; Hellström-Lindberg, E.; Tefferi, A.; et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood 2009, 114, 937–951. [Google Scholar] [CrossRef] [PubMed]
- Fattizzo, B.; Serpenti, F.; Barcellini, W.; Caprioli, C. Hypoplastic Myelodysplastic Syndromes: Just an Overlap Syndrome. Cancers 2021, 13, 132. [Google Scholar] [CrossRef] [PubMed]
- Calabretto, G.; Attardi, E.; Teramo, A.; Trimarco, V.; Carraro, S.; Mossuto, S.; Barilà, G.; Vicenzetto, C.; Gasparini, V.R.; Crugnola, M.; et al. Hypocellular myelodysplastic syndromes (h-MDS): From clinical description to immunological characterization in the Italian multi-center experience. Leukemia 2022, 36, 1947–1950. [Google Scholar] [CrossRef]
- Greenberg, P.; Cox, C.; LeBeau, M.M.; Fenaux, P.; Morel, P.; Sanz, G.; Sanz, M.; Vallespi, T.; Hamblin, T.; Oscier, D.; et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997, 89, 2079–2088. [Google Scholar] [CrossRef]
- Galesloot, T.E.; Vermeulen, S.H.; Geurts-Moespot, A.J.; Klaver, S.M.; Kroot, J.J.; van Tienoven, D.; Wetzels, J.F.; Kiemeney, L.A.; Sweep, F.C.; den Heijer, M.; et al. Serum hepcidin: Reference ranges and biochemical correlates in the general population. Blood 2011, 117, e218–e225. [Google Scholar] [CrossRef]
- Kroot, J.J.; Kemna, E.H.; Bansal, S.S.; Busbridge, M.; Campostrini, N.; Girelli, D.; Hider, R.C.; Koliaraki, V.; Mamalaki, A.; Olbina, G.; et al. Results of the first international round robin for the quantification of urinary and plasma hepcidin assays: Need for standardization. Haematologica 2009, 94, 1748–1752. [Google Scholar] [CrossRef]
- Aune, E.T.; Diepeveen, L.E.; Laarakkers, C.M.; Klaver, S.; Armitage, A.E.; Bansal, S.; Chen, M.; Fillet, M.; Han, H.; Herkert, M.; et al. Optimizing hepcidin measurement with a proficiency test framework and standardization improvement. Clin. Chem. Lab. Med. 2020, 59, 315–323. [Google Scholar] [CrossRef]
- Kotla, N.K.; Dutta, P.; Parimi, S.; Das, N.K. The Role of Ferritin in Health and Disease: Recent Advances and Understandings. Metabolites 2022, 12, 609. [Google Scholar] [CrossRef]
- Angelucci, E.; Cianciulli, P.; Finelli, C.; Mecucci, C.; Voso, M.T.; Tura, S. Unraveling the mechanisms behind iron overload and ineffective hematopoiesis in myelodysplastic syndromes. Leuk. Res. 2017, 62, 108–115. [Google Scholar] [CrossRef]
- Shammo, J.M.; Komrokji, R.S. Clinical consequences of iron overload in patients with myelodysplastic syndromes: The case for iron chelation therapy. Expert. Rev. Hematol. 2018, 11, 577–586. [Google Scholar] [CrossRef]
- Girelli, D.; Nemeth, E.; Swinkels, D.W. Hepcidin in the diagnosis of iron disorders. Blood 2016, 127, 2809–2813. [Google Scholar] [CrossRef]
- Sangkhae, V.; Nemeth, E. Regulation of the Iron Homeostatic Hormone Hepcidin. Adv. Nutr. 2017, 8, 126–136. [Google Scholar] [CrossRef]
- Rana, S.; Prabhakar, N. Iron disorders and hepcidin. Clin. Chim. Acta 2021, 523, 454–468. [Google Scholar] [CrossRef]
- Bondu, S.; Alary, A.S.; Lefèvre, C.; Houy, A.; Jung, G.; Lefebvre, T.; Rombaut, D.; Boussaid, I.; Bousta, A.; Guillonneau, F.; et al. A variant erythroferrone disrupts iron homeostasis in SF3B1-mutated myelodysplastic syndrome. Sci. Transl. Med. 2019, 11, eaav5467. [Google Scholar] [CrossRef]
- Casu, C.; Nemeth, E.; Rivella, S. Hepcidin agonists as therapeutic tools. Blood 2018, 131, 1790–1794. [Google Scholar] [CrossRef]
- Camaschella, C.; Nai, A.; Silvestri, L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica 2020, 105, 260–272. [Google Scholar] [CrossRef]
- Vinchi, F.; Hell, S.; Platzbecker, U. Controversies on the Consequences of Iron Overload and Chelation in MDS. Hemasphere 2020, 4, e357. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M. Ineffective erythropoiesis and its treatment. Blood 2022, 139, 2460–2470. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Taher, A.T.; Verma, A.; Shah, F.; Hermine, O. Erythropoiesis in lower-risk myelodysplastic syndromes and beta-thalassemia. Blood Rev. 2023, 59, 101039. [Google Scholar] [CrossRef]
First Author, Year | Study Period | Region of Origin | Number of Patients | Mean or Median Age of Patients [Years] | MDS Subtypes | IPSS | Number of Controls | Mean or Median Age of Controls [Years] | Control Group Selection |
---|---|---|---|---|---|---|---|---|---|
Santini, V., 2011 [20] | ND | Europe (Italy) | 113 (W: 36, M: 77) | 72.8 | RAEB (n = 32) | RAEB: Intermediate-2 (n = 17) Intermediate-1 (n = 11) High risk (n = 4) | 54 (W: 21, M: 33) | 34.8 | (1) Sex-matched controls. (2) Normal iron status. |
RA (n = 31) | RA: Low risk (n = 20) Intermediate-1 (n = 10) Intermediate-2 (n = 1) | ||||||||
RCMD (n = 19) | RCMD: Low risk (n = 12) Intermediate-1 (n = 7) | ||||||||
RARS (n = 9) | RARS: Low risk (n = 9) | ||||||||
Unclassified (n = 8) | - | ||||||||
5q-syndrome (n = 7) | 5q-syndrome: Low risk (n = 6) Intermediate-1 (n = 1) | ||||||||
CMML (n = 7) | CMML: Low risk (n = 4) Intermediate-1 (n = 2) Intermediate-2 (n = 1) | ||||||||
Gu, S., 2013 [21] | 2009–2012 | Asia (China) | 73 (W: 34, M: 39) | 62 | RCMD (n = 21) | Low risk (n = 46) High risk (n = 27) | 28 (W:10, M:18) | 39 | (1) Healthy individuals. |
RCUD (n = 11) | |||||||||
RAEB-1 (n = 11) | |||||||||
RAEB-2 (n = 10) | |||||||||
MDS-U (n = 8) | |||||||||
RARS (n = 7) | |||||||||
5q-syndrome (n = 5) | |||||||||
Cui, R., 2014 [22] | 2011–2013 | Asia (China) | 107 (W:41, M:66) | 50 | RCMD/RCMDRS (n = 34) | Intermediate-1 (n = 60) Intermediate-2 (n = 24) No data (n = 9) Low risk (n = 8) High risk (n = 6) | 40 (W:22, M:18) | 40 | (1) Normal iron status. |
RAEB-1/RAEB-2 (n = 25) | |||||||||
RA/RARS (n = 9) | |||||||||
Unclassified (n = 1) | |||||||||
5q-syndrome (n = 1) | |||||||||
El Husseiny, N.M., 2014 [23] | ND | Africa (Egypt) | 21 (W:10, M:11) | 56 1 | RCMD (n = 8) | ND | 13 (W:6, M:7) | 56 1 | (1) Age- and sex-matched controls. |
Hypoplastic MDS (n = 7) | |||||||||
RAEB (n = 6) |
First Author, Year | Hepcidin Assay | Type of Biological Material | Mean or Median Hepcidin Levels in MDS Patients [ng/mL] | Mean or Median Hepcidin Levels in Controls [ng/mL] | Transfusions | Iron Chelation Therapy | Mean or Median Ferritin Levels in MDS Patients [μg/L] | Main Study Results Related to Hepcidin Levels |
---|---|---|---|---|---|---|---|---|
Santini, V., 2011 [20] | SELDI- TOF MS | Blood (serum) | All patients: 14.81 1 | 11.72 1 | Transfused patients (n = 45) | No iron chelation | All patients: 515 | (1) Hepcidin levels did not differ significantly between patients and controls. (2) Hepcidin levels varied significantly across MDS subtypes, with the lowest levels seen in RARS and the highest in RAEB. (3) MDS hepcidin levels were related to transfusions, iron overload (IO), and inflammation. |
RAEB: 31.55 | RAEB (n = 18) | RAEB: 661 | ||||||
RA: 9.65 | RA (n = 9) | RA: 368 | ||||||
RCMD: 10.69 | RCMD (n = 5) | RCMD: 420 | ||||||
RARS: 3.99 | RARS (n = 3) | RARS: 725 | ||||||
Unclassified: 16.91 | Unclassified (n = 4) | Unclassified: 580 | ||||||
5q-syndrome: 18.47 | 5q-syndrome (n = 2) | 5q-syndrome: 1364 | ||||||
CMML: 28.01 | CMML (n = 4) | CMML: 289 | ||||||
Gu, S., 2013 [21] | ELISA (Cusabio Biotech, Wuhan, China) | Blood (serum) Bone marrow (BM) | All patients: 301.61 (serum), 265.66 (BM) | 335.71 (BM) | Transfused patients (n = 51) | ND | All patients: 621 | (1) BM hepcidin levels did not differ significantly between patients and controls. (2) Hepcidin levels did not differ significantly between serum and BM in MDS patients. (3) Hepcidin levels varied significantly across MDS subtypes with the lowest levels seen in RARS and the highest in RAEB-1. 2 (4) High risk MDS patients have higher hepcidin levels than low risk patients. 2 (5) MDS hepcidin levels are related to transfusions, IO, and inflammation. 2 |
RCMD: 237.16 2 | RCMD: 1444 | |||||||
RCUD: 265.66 2 | RCUD: 66 | |||||||
RAEB-1: 335.71 2 | RAEB-1: 985 | |||||||
RAEB-2: 301.09 2 | RAEB-2: 629 | |||||||
MDS-U: 306.08 2 | MDS-U: 78 | |||||||
RARS: 105.40 2 | RARS: 921 | |||||||
5q-syndrome: 299.49 2 | 5q-syndrome: 598 | |||||||
Cui, R., 2014 [22] | ELISA (DRG Instruments, Marburg, Germany) | Blood (serum) | 81.7 | 55.9 | No transfusions | ND | 450 3 | (1) Hepcidin levels were higher in patients than in controls. |
El Husseiny, N.M., 2014 [23] | ELISA (DRG Instruments GmbH, Marburg, Germany) | Blood (serum) | All patients: 55.8 | 19.9 | 3-9 blood units (median: 6 blood units) | No iron chelation | All patients: 539.14 3 | (1) Hepcidin levels did not differ significantly between patients and controls. (2) Hepcidin levels did not vary across MDS subtypes. (3) MDS hepcidin levels were not related to transfusions and IO. |
RCMD: 66.6 | RCMD: 527.3 | |||||||
Hypoplastic MDS: 22.6 | Hypoplatsic MDS: 434.5 | |||||||
RAEB: 80.1 | RAEB: 676.8 |
First Author, Year | Study Period | Region of Origin | Number of Patients | Mean or Median Age of Patients [Years] | MDS Subtypes | IPSS | Follow-Up |
---|---|---|---|---|---|---|---|
Ghoti, H., 2011 [24] | ND | Asia (Israel) North America (USA) | 19 (W: 12, M: 7) | 68 | RCMD (n = 11) | Intermediate (n = 11) Low risk (n = 8) | 3 months |
RA (n = 5) | |||||||
RARS (n = 3) | |||||||
Zipperer, E., 2013 [25] | 2009–2010 | Europe (Germany) | 89 (W: 37, M: 52) | 71 | RCMD (n = 38) | ND | 18 months |
RAEB-2 (n = 14) | |||||||
RAEB-1 (n = 8) | |||||||
RCMDRS (n = 7) | |||||||
5q-syndrome (n = 7) | |||||||
CMML-2 (n = 6) | |||||||
CMML-1 (n = 4) | |||||||
RARS (n = 3) | |||||||
RA (n = 2) | |||||||
Zhu, Y., 2016 [26] | 2008–2014 | Asia (China) | 52 (W: 21, M: 31) | All patients: 63 SF3B1 mutation: 64 No mutation: 61 | RARS (n = 23) | Intermediate-1 (n = 28) Low risk (n = 14) Intermediate-2 (n = 8) High risk (n = 2) | 18 months |
RCMDRS (n = 20) | |||||||
RAEB-1 (n = 6) | |||||||
RAEB-2 (n = 3) | |||||||
Gu, S., 2017 [27] | 2010–2014 | Asia (China) | 22 (W: ND, M: ND) | ND | RCUD/RARS/5q-syndrome/RCMD (n = 15) (low-risk MDS) | ND | 26 weeks |
RAEB-1/RAEB-2 (n = 7) (high-risk MDS) | |||||||
de Swart, L., 2018 [28] | 2008–2010 | Europe (The Netherlands, United Kingdom, Sweden, Romania, Greece, Czechia) | 109 (W: 45, M: 64) | 73 | RCMD 1 (n = 37) | Low risk (n = 47) 1 Intermediate-1 (n = 41) Unknown (n = 12) | 5.8 years |
RARS (n = 30) | |||||||
RA (n = 18) | |||||||
RAEB (n = 7) | |||||||
RCMDRS (n = 4) | |||||||
5q-syndrome (n = 4) | |||||||
Hoeks, M., 2021 [29] | 2008 | Europe, Asia (The Netherlands, United Kingdom, Greece, Sweden, Romania, Czech Republic, Austria, Croatia, Denmark, France, Germany, Israel, Italy, Poland, Portugal, Serbia, Spain) | 256 (W: 87, M: 169) | 74 | RCMD (n = 114) | Low risk (n = 144) Intermediate-1 (n = 75) Unknown (n = 36) Intermediate-2 (n = 1) | 6.6 years |
RARS (n = 56) | |||||||
RA (n = 45) | |||||||
RAEB-1 (n = 16) | |||||||
RCMDRS (n = 10) | |||||||
5q-syndrom (n = 10) | |||||||
Unclassified (n = 5) | |||||||
Ambaglio, I., 2013 [30] | ND | Europe (Italy) | 76 (W: 36, M: 40) | 67 | RARS/RCMDRS (n = 26) | ND | - |
RAEB-1/RAEB-2 (n = 23) | |||||||
RA/RCMD (n = 22) | |||||||
RARS-T (n = 5) | |||||||
Montalembert, M., 2017 [31] | 2012–2014 | Europe (France) | 25 (W: 8, M: 17) | 69.5 | RARS (n = 12) | Low risk (n = 15) Intermediate-1 (n = 10) | - |
RA (n = 6) | |||||||
MDS/MPN (n = 2) | |||||||
RAEB-1 (n = 2) | |||||||
Unclassified (n = 2) | |||||||
5q-syndrome (n = 1) |
First Author, Year | Hepcidin Assay | Type of Biological Material | Mean or Median Hepcidin Levels in Patients [ng/mL] | Transfusions | Iron Chelation Therapy | Mean or Median Ferritin Levels in MDS Patients [μg/L] | Main Study Results Related to Hepcidin Levels | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ghoti, H., 2011 [24] | ELISA (in house) | Blood (serum) | 545 (before treatment) | Mean number of transfusions: 45.6 | Deferasirox (20 mg/kg/day) | 1558 1 | (1) Hepcidin levels were increased by treatment with deferasirox. | ||||||||
811 (after treatment) | |||||||||||||||
Zipperer, E., 2013 [25] | ELISA (DRG Instruments GmbH, Marburg, Germany) | Blood (serum) | All patients: 17.5 | Transfused patients (n = 41) 2-83 units 2 | ND | All patients: 876 1 | (1) Hepcidin levels varied significantly across MDS subtypes, with the lowest levels seen in RA/RARS and the highest in RAEB 1/2. (2) High hepcidin levels were associated with worse survival. | ||||||||
RCMD: 17.8 | RCMD: 950 | ||||||||||||||
RAEB-1/RAEB-2: 29.1 | RAEB-1/RAEB-2: 1130 | ||||||||||||||
RCMDRS: 8.7 | RCMDRS: 643 | ||||||||||||||
5q-syndrome: 26.3 | 5q-syndrome: 1680 | ||||||||||||||
CMML-1/CMML-2: 16.9 | CMML-1/CMML-2: 395 | ||||||||||||||
RA/RARS: 5.9 | RA/RARS: 584 | ||||||||||||||
Zhu, Y., 2016 [26] | ELISA (Bachem, San Carlos, CA, USA) | Blood (serum) | SF3B1 mutation: 17.3 No mutations: 77.8 | Transfused patients: 0 units (n = 17) <10 units (n = 14) 10–20 units (n = 8) >20 units (n = 9) No data (n = 4) | ND | SF3B1 mutation: 1088.9 1 No mutation: 575.7 | (1) Patients with the SF3B1 mutation had significantly lower hepcidin levels than patients without the mutation. | ||||||||
Gu, S., 2017 [27] | ELISA (Cusabio Biotech, Wuhan, China) | Blood (serum) | Low-risk MDS 3: 284.24 4 | 2.37 units per month 6 | Deferoxamine 7 | Low-risk MDS 3: 2182 mg/L 8 | (1) Hepcidin levels were higher in high-risk MDS patients compared to low-risk MDS. (2) Hepcidin levels were increased by treatment with deferoxamine. | ||||||||
High-risk MDS 5: 336.47 | |||||||||||||||
Week 0: 301.26 | |||||||||||||||
High-risk MDS 5: 1733 mg/L | |||||||||||||||
Week 4: 325.48 | |||||||||||||||
Week 0: 1946 mg/L | |||||||||||||||
Week 26: 340.33 | Week 4: 1829 mg/L | ||||||||||||||
Week 26: 1721 mg/L | |||||||||||||||
de Swart, L., 2018 [28] | WCX and TOF-MS | Blood (serum) | At study inclusion: 12.56 9 | 1 year follow-up: 15.62 9 | 2 years follow-up: 14.51 9 | Transfused patients (n = 14) | Patients on deferasirox (n = 4) Patients on deferoxamine (n = 2) | At study inclusion: 287 | (1) Hepcidin levels decreased in transfusion-independent MDS-RS over time. | ||||||
TI MDS-RS: 10.60 | TI MDS-RS: 9.49 | TI MDS-RS: 8.09 | MDS-RS: 376 | ||||||||||||
TI MDS non-RS: 12.56 | TI MDS non-RS: 12.00 | TI MDS non-RS: 12.83 | MDS non-RS: 246 | ||||||||||||
TD MDS-RS: 28.74 | TD MDS-RS: 25.67 | TD MDS-RS: 14.51 | TD: 634 | ||||||||||||
TD MDS non-RS: 13.67 | TD MDS non-RS: 48.27 | TD MDS non-RS: 25.67 | TI: 264 | ||||||||||||
Hoeks, M., 2021 [29] | WCX and TOF-MS | Blood (serum) | At study inclusion: 23.99 9 | Visit 1 10: 26.23 9 | Visit 2 10: 28.46 9 | Visit 3 10: 28.46 9 | Visit 4 10: 24.83 9 | At study inclusion: Transfused patients (n = 62) | Patients on deferiprone/ deferasirox (n = 11) Patients on deferoxamine (n = 5) | At study inclusion: 488 | Visit 1 10: 605 | Visit 2 10: 702 | Visit 3 10: 822 | Visit 4 10: 858 | (1) Hepcidin levels were higher in transfusion-dependent non-RS patients compared to non-RS transfusion-independent patients. (2) Hepcidin levels increased over time in transfusion-dependent patients. |
TI MDS-RS: 13.95 | TI MDS-RS: 10.88 | TI MDS-RS: 10.32 | TI MDS-RS: 10.60 | TI MDS-RS: 10.88 | Visit 1 10: Transfused patients (n = 76) | TI MDS-RS: 505 | TI MDS-RS: 356 | TI MDS-RS: 343 | TI MDS-RS: 493 | TI MDS-RS: 441 | |||||
TI MDS non-RS: 17.30 | TI MDS non-RS: 17.86 | TI MDS non-RS: 15.62 | TI MDS non-RS: 18.14 | TI MDS non-RS: 14.51 | Visit 2: Transfused patients (n = 73) | TI MDS non-RS: 280 | TI MDS non-RS: 274 | TI MDS non-RS: 251 | TI MDS non-RS: 262 | TI MDS non-RS: 263 | |||||
TD MDS-RS: 21.76 | TD MDS-RS: 23.44 | TD MDS-RS: 25.95 | TD MDS-RS: 41.85 | TD MDS-RS: 32.64 | Visit 3: Transfused patients (n = 70) | TD MDS-RS: 919 | TD MDS-RS: 1096 | TD MDS-RS: 1627 | TD MDS-RS: 2104 | TD MDS-RS: 2092 | |||||
TD MDS non-RS: 56.92 | TD MDS non-RS: 52.45 | TD MDS non-RS: 58.59 | TD MDS non-RS: 43.80 | TD MDS non-RS: 44.64 | Visit 4: Transfused patients (n = 48) | TD MDS non-RS: 935 | TD MDS non-RS: 1145 | TD MDS non-RS: 1297 | TD MDS non-RS: 1083 | TD MDS non-RS:1399 | |||||
Ambaglio, I., 2013 [30] | WCX-TOF-MS | Blood (serum) | 19.81 9 | Transfused patients (n = 25) | ND | 409 1 | (1) Low hepcidin levels in MDS patients with the SF3B1 mutation. | ||||||||
de Montalembert, M., 2017 [31] | LC-MS | Blood (serum) | 36.35 | 77 units since diagnosis 27 units per year | Patients on deferasirox (n = 16) | 1611 1 | (1) Hepcidin levels were higher in MDS patients compared to thalassemia (1.35 ng/mL) and sickle cell anemia (2.10 ng/mL) patients. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Słomka, A.; Pokrzywa, A.; Strzała, D.; Kubiaczyk, M.; Wesolowska, O.; Denkiewicz, K.; Styczyński, J. The Role of Hepcidin in Myelodysplastic Syndromes (MDS): A Systematic Review of Observational Studies. Cancers 2024, 16, 332. https://doi.org/10.3390/cancers16020332
Słomka A, Pokrzywa A, Strzała D, Kubiaczyk M, Wesolowska O, Denkiewicz K, Styczyński J. The Role of Hepcidin in Myelodysplastic Syndromes (MDS): A Systematic Review of Observational Studies. Cancers. 2024; 16(2):332. https://doi.org/10.3390/cancers16020332
Chicago/Turabian StyleSłomka, Artur, Anna Pokrzywa, Dominika Strzała, Maja Kubiaczyk, Oliwia Wesolowska, Kinga Denkiewicz, and Jan Styczyński. 2024. "The Role of Hepcidin in Myelodysplastic Syndromes (MDS): A Systematic Review of Observational Studies" Cancers 16, no. 2: 332. https://doi.org/10.3390/cancers16020332
APA StyleSłomka, A., Pokrzywa, A., Strzała, D., Kubiaczyk, M., Wesolowska, O., Denkiewicz, K., & Styczyński, J. (2024). The Role of Hepcidin in Myelodysplastic Syndromes (MDS): A Systematic Review of Observational Studies. Cancers, 16(2), 332. https://doi.org/10.3390/cancers16020332