Coefficient of Variation in Metastatic Lymph Nodes Determined by 18F-FDG PET/CT in Patients with Advanced NSCLC: Combination with Coefficient of Variation in Primary Tumors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. 18F-FDG PET/CT Study and Image Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef]
- Peng, L.; Du, B.; Cui, Y.; Luan, Q.; Li, Y.; Li, X. 18F-FDG PET/CT for assessing heterogeneous metabolic response between primary tumor and metastases and prognosis in non-small cell lung cancer. Clin. Lung Cancer 2022, 23, 608–619. [Google Scholar] [CrossRef] [PubMed]
- Hiley, C.; de Bruin, E.C.; McGranahan, N.; Swanton, C. Deciphering intratumor heterogeneity and temporal acquisition of driver events to refine precision medicine. Genome Biol. 2014, 15, 453. [Google Scholar] [CrossRef] [PubMed]
- Neelakantan, D.; Drasin, D.J.; Ford, H.L. Intratumoral heterogeneity: Clonal cooperation in epithelial-to-mesenchymal transition and metastasis. Cell Adhes. Migr. 2015, 9, 265–276. [Google Scholar] [CrossRef] [PubMed]
- McGranahan, N.; Swanton, C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell 2017, 168, 613–628. [Google Scholar] [CrossRef] [PubMed]
- Zito Marino, F.; Bianco, R.; Accardo, M.; Ronchi, A.; Cozzolino, I.; Morgillo, F.; Rossi, G.; Franco, R. Molecular heterogeneity in lung cancer: From mechanisms of origin to clinical implications. Int. J. Med. Sci. 2019, 16, 981–989. [Google Scholar] [CrossRef]
- Jamal-Hanjani, M.; Quezada, S.A.; Larkin, J.; Swanton, C. Translational Implications of Tumor Heterogeneity. Clin. Cancer Res. 2015, 21, 1258–1266. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Haggstrom, I.; Szczypinski, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef]
- Piñeiro-Fiel, M.; Moscoso, A.; Pubul, V.; Ruibal, A.; Silva-Rodriguez, J.; Aguiar, P. A Systematic Review of PET Textural Analysis and Radiomics in Cancer. Diagnostics 2021, 11, 380. [Google Scholar] [CrossRef]
- Lubner, M.G.; Smith, A.D.; Sandrasegaran, K.; Sahani, D.V.; Pickhardt, P.J. CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. RadioGraphics 2017, 37, 1483–1503. [Google Scholar] [CrossRef]
- Scapicchio, C.; Gabelloni, M.; Barucci, A.; Cioni, D.; Saba, L.; Neri, E. A deep look into radiomics. Radiol. Med. 2021, 126, 1296–1311. [Google Scholar] [CrossRef] [PubMed]
- Van Baardwijk, A.; Bosmans, G.; van Suylen, R.J.; van Kroonenburgh, M.; Hochstenbag, M.; Geskes, G.; Lambin, P.; De Ruysscher, D. Correlation of intra-tumor heterogeneity on 18F-FDG PET with pathologic features in non-small cell lung cancer: A feasibility study. Radiother. Oncol. 2008, 87, 55–58. [Google Scholar] [CrossRef]
- Henriksson, E.; Kjellen, E.; Wahlberg, P.; Ohlsson, T.; Wennerberg, J.; Brun, E. 2-Deoxy-2-[18F]fuoro-D-glucose uptake and correlation to intratumoral heterogeneity. Anticancer Res. 2007, 27, 2155–2159. [Google Scholar]
- Han, S.; Woo, S.; Suh, C.H.; Kim, Y.J.; Oh, J.S.; Lee, J.J. A systematic review of the prognostic value of texture analysis in 18F-FDG PET in lung cancer. Ann. Nucl. Med. 2018, 32, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Ha, S.; Lee, S.H.; Paeng, J.C.; Keam, B.; Kim, T.M.; Kim, D.-W.; Heo, D.S. Intratumoral heterogeneity characterized by pretreatment PET in non-small cell lung cancer patients predicts progression-free survival on EGFR tyrosine kinase inhibitor. PLoS ONE 2018, 13, e0189766. [Google Scholar] [CrossRef] [PubMed]
- Caswell, D.R.; Swanton, C. The role of tumour heterogeneity and clonal cooperativity in metastasis, immune evasion and clinical outcome. BMC Med. 2017, 15, 133. [Google Scholar] [CrossRef]
- Pahk, K.; Chung, J.H.; Yi, E.; Kim, S.; Lee, S.H. Metabolic tumor heterogeneity analysis by F-18 FDG PET/CT predicts mediastinal lymph node metastasis in non-small cell lung cancer patients with clinically suspected N2. Eur. J. Radiol. 2018, 106, 145–149. [Google Scholar] [CrossRef]
- Pellegrino, S.; Fonti, R.; Hakkak Moghadam Torbati, A.; Bologna, R.; Morra, R.; Damiano, V.; Matano, E.; De Placido, S.; Del Vecchio, S. Heterogeneity of Glycolytic Phenotype Determined by 18F-FDG PET/CT Using Coefficient of Variation in Patients with Advanced Non-Small Cell Lung Cancer. Diagnostics 2023, 13, 2448. [Google Scholar] [CrossRef]
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Pssaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; on behalf of the ESMO Guidelines Committee; et al. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 339–357. [Google Scholar] [CrossRef]
- Nioche, C.; Orlhac, F.; Boughdad, S.; Reuze, S.; Goya-Outi, J.; Robert, C.; Pellot-Barakat, C.; Soussan, M.; Frouin, F.; Buvat, I. LIFEx: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res. 2018, 78, 4786–4789. [Google Scholar] [CrossRef] [PubMed]
- Im, H.J.; Pak, K.; Cheon, G.J.; Kang, K.W.; Kim, S.-J.; Kim, I.-J.; Chung, J.-K.; Kim, E.E.; Lee, D.S. Prognostic value of volumetric parameters of (18)F-FDG PET in non-small-cell lung cancer: A meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, S.; Fonti, R.; Pulcrano, A.; Del Vecchio, S. PET-based volumetric biomarkers for risk stratification of non-small cell lung cancer patients. Diagnostics 2021, 11, 210. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, S.; Fonti, R.; Mazziotti, E.; Piccin, L.; Mozzillo, E.; Damiano, V.; Matano, E.; De Placido, S.; Del Vecchio, S. Total metabolic tumor volume by 18F-FDG PET/CT for the prediction of outcome in patients with non-small cell lung cancer. Ann. Nucl. Med. 2019, 33, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, S.; Leijenaar, R.T.H.; Troost, E.G.C.; van Timmeren, J.E.; Oberije, C.; van Elmpt, W.; de Geus-Oei, L.-F.; Bussink, J.; Lambin, F. 18F-fluorodeoxyglucose positron-emission tomography (FDG-PET)-Radiomics of metastatic lymph nodes and primary tumor in non-small cell lung cancer (NSCLC)—A prospective externally validated study. PLoS ONE 2018, 13, e0192859. [Google Scholar] [CrossRef] [PubMed]
- Hua, J.; Li, L.; Liu, L.; Liu, Q.; Liu, Y.; Chen, X. The diagnostic value of metabolic, morphological and heterogeneous parameters of 18F-FDG PET/CT in mediastinal lymph node metastasis of non–small cell lung cancer. Nucl. Med. Commun. 2021, 42, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Budiawan, H.; Cheon, G.J.; Im, H.J.; Lee, S.J.; Paeng, J.C.; Kang, K.W.; Chung, J.-K.; Lee, D.S. Heterogeneity Analysis of 18F-FDG Uptake in Differentiating Between Metastatic and Inflammatory Lymph Nodes in Adenocarcinoma of the Lung: Comparison with Other Parameters and its Application in a Clinical Setting. Nucl. Med. Mol. Imaging 2013, 47, 232–241. [Google Scholar] [CrossRef]
- Lovinfosse, P.; Hatt, M.; Visvikis, D.; Hustinx, R. Heterogeneity analysis of 18F-FDG PET imaging in oncology: Clinical indications and perspectives. Clin. Transl. Imaging 2018, 6, 393–410. [Google Scholar] [CrossRef]
- Sollini, M.; Cozzi, L.; Antunovic, L.; Chiti, A.; Kirienko, M. PET Radiomics in NSCLC: State of the art and a proposal for harmonization of methodology. Sci. Rep. 2017, 7, 358. [Google Scholar] [CrossRef]
- Anan, N.; Zainon, R.; Tamal, M. A review on advances in 18F-FDG PET/CT radiomics standardisation and application in lung disease management. Insights Imaging 2022, 13, 22. [Google Scholar] [CrossRef]
Characteristic | N° |
---|---|
Patients | 58 |
Age | |
Mean ± SD | 64 ± 11 |
Range | 38–83 |
Gender | |
Male/Female | 39/19 |
Histology | |
Adenocarcinoma | 31 |
Squamous cell carcinoma | 13 |
Large cell carcinoma | 3 |
Not otherwise specified | 11 |
TNM stage | |
III (A/B/C) | 16 (2/9/5) |
IV (A/B) | 42 (10/32) |
Treatment after 18F-FDG PET/CT | |
Chemotherapy | 31 |
Chemoradiotherapy | 2 |
Chemotherapy/Immunotherapy | 15 |
No cancer therapy | 10 |
Parameters | Mean ± SD | Range |
---|---|---|
SUVmax | ||
Lymph nodes | 11.89 ± 8.54 | 3.53–46.82 |
Primary tumors | 11.92 ± 6.21 | 3.05–38.51 |
SUVmean | ||
Lymph nodes | 4.85 ± 1.90 | 2.94–12.32 |
Primary tumors | 5.47 ± 2.34 | 2.71–16.37 |
CoV | ||
Lymph nodes | 0.37 ± 0.16 | 0.10–0.86 |
Primary tumors | 0.36 ± 0.14 | 0.07–0.66 |
MTV (mL) | ||
Lymph nodes | 46.16 ± 99.59 | 0.45–514.45 |
Primary tumors | 48.03 ± 64.45 | 0.26–321.22 |
TLG (g) | ||
Lymph nodes | 256.84 ± 548.27 | 1.63–3221.44 |
Primary tumors | 285.21 ± 397.95 | 0.69–2244.66 |
Variable | Overall Survival | Progression-Free Survival | ||
---|---|---|---|---|
χ2 | p | χ2 | p | |
Age | 0.1450 | 0.7033 | 0.2390 | 0.6251 |
Gender | 0.1650 | 0.6845 | 1.0990 | 0.2945 |
Histology | 2.3070 | 0.1288 | 1.2440 | 0.2646 |
SUVmax N | 4.3810 | 0.0363 | 3.9680 | 0.0464 |
SUVmean N | 5.4100 | 0.0200 | 5.2210 | 0.0223 |
CoV N | 6.0550 | 0.0139 | 3.3430 | 0.0675 |
SUVmax T | 1.8130 | 0.1782 | 1.6430 | 0.1999 |
SUVmean T | 2.0720 | 0.1500 | 3.0300 | 0.0818 |
CoV T | 5.6640 | 0.0173 | 4.3560 | 0.0369 |
Lymph node MTV | 0.8220 | 0.3645 | 1.6470 | 0.1993 |
Lymph node TLG | 0.8510 | 0.3562 | 1.7760 | 0.1826 |
Primary tumor MTV | 2.2380 | 0.1347 | 1.4700 | 0.2254 |
Primary tumor TLG | 1.3280 | 0.2492 | 1.0260 | 0.3111 |
MTVTOT | 11.5750 | 0.0007 | 6.8410 | 0.0089 |
TLGWB | 6.1870 | 0.0129 | 3.5400 | 0.0599 |
Stage | 6.2770 | 0.0122 | 2.9570 | 0.0855 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellegrino, S.; Fonti, R.; Vallone, C.; Morra, R.; Matano, E.; De Placido, S.; Del Vecchio, S. Coefficient of Variation in Metastatic Lymph Nodes Determined by 18F-FDG PET/CT in Patients with Advanced NSCLC: Combination with Coefficient of Variation in Primary Tumors. Cancers 2024, 16, 279. https://doi.org/10.3390/cancers16020279
Pellegrino S, Fonti R, Vallone C, Morra R, Matano E, De Placido S, Del Vecchio S. Coefficient of Variation in Metastatic Lymph Nodes Determined by 18F-FDG PET/CT in Patients with Advanced NSCLC: Combination with Coefficient of Variation in Primary Tumors. Cancers. 2024; 16(2):279. https://doi.org/10.3390/cancers16020279
Chicago/Turabian StylePellegrino, Sara, Rosa Fonti, Carlo Vallone, Rocco Morra, Elide Matano, Sabino De Placido, and Silvana Del Vecchio. 2024. "Coefficient of Variation in Metastatic Lymph Nodes Determined by 18F-FDG PET/CT in Patients with Advanced NSCLC: Combination with Coefficient of Variation in Primary Tumors" Cancers 16, no. 2: 279. https://doi.org/10.3390/cancers16020279
APA StylePellegrino, S., Fonti, R., Vallone, C., Morra, R., Matano, E., De Placido, S., & Del Vecchio, S. (2024). Coefficient of Variation in Metastatic Lymph Nodes Determined by 18F-FDG PET/CT in Patients with Advanced NSCLC: Combination with Coefficient of Variation in Primary Tumors. Cancers, 16(2), 279. https://doi.org/10.3390/cancers16020279