Short-Term Outcomes Analysis Comparing Open, Lap-Assisted, Totally Laparoscopic, and Robotic Total Gastrectomy for Gastric Cancer: A Network Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Selection Process
2.3. Data Collection Process
2.4. Outcomes of Interest and Definitions
2.5. Quality Assessment
2.6. Statistical Analysis
3. Results
3.1. Systematic Review
3.2. Meta-Analysis
3.2.1. Primary Outcomes
3.2.2. Secondary Outcomes
3.2.3. Functional Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Lordick, F.; Carneiro, F.; Cascinu, S.; Fleitas, T.; Haustermans, K.; Piessen, G.; Vogel, A.; Smyth, E.C. Gastric Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2022, 33, 1005–1020. [Google Scholar] [CrossRef] [PubMed]
- Japanese Gastric Cancer Association. Japanese Gastric Cancer Treatment Guidelines 2021 (6th Edition). Gastric Cancer 2023, 26, 1–25. [Google Scholar] [CrossRef]
- Lei, X.; Wang, Y.; Shan, F.; Li, S.; Jia, Y.; Miao, R.; Xue, K.; Li, Z.; Ji, J.; Li, Z. Short-and Long-Term Outcomes of Laparoscopic versus Open Gastrectomy in Patients with Gastric Cancer: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. World J. Surg. Oncol. 2022, 20, 405. [Google Scholar] [CrossRef] [PubMed]
- Kitano, S.; Iso, Y.; Moriyama, M.; Sugimachi, K. Laparoscopy-Assisted Billroth I Gastrectomy. Surg. Laparosc. Endosc. 1994, 4, 146–148. [Google Scholar] [PubMed]
- Hashizume, M.; Shimada, M.; Tomikawa, M.; Ikeda, Y.; Takahashi, I.; Abe, R.; Koga, F.; Gotoh, N.; Konishi, K.; Maehara, S.; et al. Early Experiences of Endoscopic Procedures in General Surgery Assisted by a Computer-Enhanced Surgical System. Surg. Endosc. 2002, 16, 1187–1191. [Google Scholar] [CrossRef]
- Makuuchi, R.; Kamiya, S.; Tanizawa, Y.; Bando, E.; Terashima, M. Robotic Surgery for Gastric Cancer. Mini-Invasive Surg. 2019, 3, 11. [Google Scholar] [CrossRef]
- Marohn, M.R.; Hanly, E.J. Twenty-First Century Surgery Using Twenty-First Century Technology: Surgical Robotics. Curr. Surg. 2004, 61, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.G.; Temperley, H.C.; O’Sullivan, N.J.; Marcelino, V.; Ryan, O.K.; Ryan, É.J.; Donlon, N.E.; Johnston, S.M.; Robb, W.B. Minimally Invasive and Open Gastrectomy for Gastric Cancer: A Systematic Review and Network Meta-Analysis of Randomized Clinical Trials. Ann. Surg. Oncol. 2023, 30, 5544–5557. [Google Scholar] [CrossRef]
- Ferrari, D.; Violante, T.; Novelli, M.; Starlinger, P.P.; Smoot, R.L.; Reisenauer, J.S.; Larson, D.W. The Death of Laparoscopy. Surg. Endosc. 2024, 38, 2677–2688. [Google Scholar] [CrossRef]
- Watt, J.; Del Giovane, C. Network Meta-Analysis. Methods Mol. Biol. 2022, 2345, 187–201. [Google Scholar] [CrossRef]
- Caldwell, D.M.; Ades, A.E.; Higgins, J.P.T. Simultaneous Comparison of Multiple Treatments: Combining Direct and Indirect Evidence. BMJ 2005, 331, 897–900. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Goossen, K.; Tenckhoff, S.; Probst, P.; Grummich, K.; Mihaljevic, A.L.; Büchler, M.W.; Diener, M.K. Optimal Literature Search for Systematic Reviews in Surgery. Langenbecks Arch. Surg. 2018, 403, 119–129. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of Surgical Complications: A New Proposal with Evaluation in a Cohort of 6336 Patients and Results of a Survey. Ann. Surg. 2004, 240, 205. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A Tool for Assessing Risk of Bias in Non-Randomised Studies of Interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C. The Cochrane Collaboration’s Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- Salanti, G.; Higgins, J.P.T.; Ades, A.E.; Ioannidis, J.P.A. Evaluation of Networks of Randomized Trials. Stat. Methods Med. Res. 2008, 17, 279–301. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.; White, I.R.; Riley, R.D. A Matrix-Based Method of Moments for Fitting the Multivariate Random Effects Model for Meta-Analysis and Meta-Regression. Biom. J. 2013, 55, 231–245. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G. Quantifying Heterogeneity in a Meta-Analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Salanti, G. Indirect and Mixed-Treatment Comparison, Network, or Multiple-Treatments Meta-Analysis: Many Names, Many Benefits, Many Concerns for the next Generation Evidence Synthesis Tool. Res. Synth. Methods 2012, 3, 80–97. [Google Scholar] [CrossRef] [PubMed]
- Nikolakopoulou, A.; Higgins, J.P.T.; Papakonstantinou, T.; Chaimani, A.; Del Giovane, C.; Egger, M.; Salanti, G. CINeMA: An Approach for Assessing Confidence in the Results of a Network Meta-Analysis. PLoS Med. 2020, 17, e1003082. [Google Scholar] [CrossRef]
- Balduzzi, S.; Rücker, G.; Nikolakopoulou, A.; Papakonstantinou, T.; Salanti, G.; Efthimiou, O.; Schwarzer, G. Netmeta: An R Package for Network Meta-Analysis Using Frequentist Methods. J. Stat. Softw. 2023, 106, 1–40. [Google Scholar] [CrossRef]
- Eom, S.S.; Park, S.H.; Eom, B.W.; Yoon, H.M.; Kim, Y.W.; Ryu, K.W. Short and Long-Term Surgical Outcomes of Laparoscopic Total Gastrectomy Compared with Open Total Gastrectomy in Gastric Cancer Patients. Cancers 2022, 15, 76. [Google Scholar] [CrossRef]
- Illuminati, G.; D’Urso, A.; Fiori, E.; Cerasari, S.; Nardi, P.; Lapergola, A.; Pasqua, R.; Sorrenti, S.; Pironi, D.; Lauro, A.; et al. Laparoscopy-Assisted vs Open Total Gastrectomy with D2 Lymphadenectomy for Advanced Gastric Cancer: Results of a Retrospective, Multicenter Study. Updates Surg. 2023, 75, 1645–1651. [Google Scholar] [CrossRef]
- Jia, Z.; Cao, S.; Meng, C.; Liu, X.; Li, Z.; Tian, Y.; Yu, J.; Sun, Y.; Xu, J.; Liu, G.; et al. Intraoperative Performance and Outcomes of Robotic and Laparoscopic Total Gastrectomy for Gastric Cancer: A High-Volume Center Retrospective Propensity Score Matching Study. Cancer Med. 2023, 12, 10485–10498. [Google Scholar] [CrossRef]
- Kinoshita, T.; Akimoto, E.; Yura, M.; Yoshida, M. Survival Outcomes of Laparoscopic versus Open Total Gastrectomy with Nodal Dissection for Gastric Cancer in a High-Volume Japanese Center: A Propensity Score-Matched Analysis. Ann. Gastroenterol. Surg. 2022, 7, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Salvador-Rosés, H.; Escartín, A.; Muriel, P.; Santamaría, M.; González, M.; Jara, J.; Vela, F.; Olsina, J.J. Robotic versus Open Approach in Total Gastrectomy for Gastric Cancer: A Comparative Single-Center Study of Perioperative Outcomes. J. Robot. Surg. 2023, 17, 1735–1741. [Google Scholar] [CrossRef]
- Zheng, H.-L.; Shen, L.-l.; Xu, B.-b.; Chen, Q.-Y.; Lu, J.; Xue, Z.; Jia-Lin; Xie, J.-W.; Li, P.; Huang, C.-M.; et al. Oncological Outcomes of Laparoscopic versus Open Radical Total Gastrectomy for Upper-Middle Gastric Cancer after Neoadjuvant Chemotherapy: A Study of Real-World Data. Surg. Endosc. 2023, 37, 6288–6297. [Google Scholar] [CrossRef]
- Hu, H.-T.; Ma, F.-H.; Xiong, J.-P.; Li, Y.; Jin, P.; Liu, H.; Ma, S.; Kang, W.-Z.; Tian, Y.-T. Laparoscopic vs Open Total Gastrectomy for Advanced Gastric Cancer Following Neoadjuvant Therapy: A Propensity Score Matching Analysis. World J. Gastrointest. Surg. 2022, 14, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Hikage, M.; Fujiya, K.; Kamiya, S.; Tanizawa, Y.; Bando, E.; Terashima, M. Comparisons of Surgical Outcomes between Robotic and Laparoscopic Total Gastrectomy in Patients with Clinical Stage I/IIA Gastric Cancer. Surg. Endosc. 2022, 36, 5257–5266. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Zhong, Q.; Liu, Z.Y.; Li, P.; Wang, J.B.; Lin, J.X.; Lu, J.; Cao, L.L.; Lin, M.; Tu, R.H.; et al. Surgical Outcomes, Technical Performance, and Surgery Burden of Robotic Total Gastrectomy for Locally Advanced Gastric Cancer: A Prospective Study. Ann. Surg. 2022, 276, E434–E443. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhang, K.-C.; Cao, B.; Deng, H.; Liu, G.-B.; Song, L.-Q.; Zhao, R.-Y.; Liu, Y.; Chen, L.; Wei, B. Short and Long-Term Outcomes between Laparoscopic and Open Total Gastrectomy for Advanced Gastric Cancer after Neoadjuvant Chemotherapy. World J. Gastrointest. Surg. 2022, 14, 452–469. [Google Scholar] [CrossRef]
- Di Carlo, S.; Siragusa, L.; Fassari, A.; Fiori, E.; La Rovere, F.; Izzo, P.; Usai, V.; Cavallaro, G.; Franceschilli, M.; Dhimolea, S.; et al. Laparoscopic versus Open Total Gastrectomy for Locally Advanced Gastric Cancer: Short and Long-Term Results. Curr. Oncol. 2022, 29, 8442–8455. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Qian, F.; Zhao, Y.; Chen, J.; Zhang, F.; Li, Z.; Wang, X.; Li, P.; Liu, J.; Wen, Y.; et al. A Comparative Study on Perioperative Outcomes between Robotic versus Laparoscopic D2 Total Gastrectomy. Int. J. Surg. 2022, 102, 106636. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.T.; Chen, J.Y.; Chen, Q.Y.; Que, S.J.; Liu, Z.Y.; Zhong, Q.; Wang, J.B.; Lin, J.X.; Lu, J.; Lin, M.; et al. Patient-Reported Outcomes of Individuals with Gastric Cancer Undergoing Totally Laparoscopic Versus Laparoscopic-Assisted Total Gastrectomy: A Real-World, Propensity Score-Matching Analysis. Ann. Surg. Oncol. 2023, 30, 1759–1769. [Google Scholar] [CrossRef]
- Qiu, X.T.; Zheng, C.Y.; Liang, Y.L.; Zheng, L.Z.; Zu, B.; Chen, H.H.; Dong, Z.Y.; Zhu, L.M.; Lin, W. Totally Laparoscopic Total Gastrectomy Using the “Enjoyable Space” Approach Coupled with Self-Pulling and Latter Transection Reconstruction versus Laparoscopic-Assisted Total Gastrectomy for Upper Gastric Cancer: Short-Term Outcomes. Wideochir. Inne Tech. Maloinwazyjne 2022, 17, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, S.; Nakauchi, M.; Serizawa, A.; Nakamura, K.; Akimoto, S.; Tanaka, T.; Inaba, K.; Uyama, I.; Suda, K. Clinical Advantage of Standardized Robotic Total Gastrectomy for Gastric Cancer: A Single-Center Retrospective Cohort Study Using Propensity-Score Matching Analysis. Gastric Cancer 2022, 25, 804–816. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.K.; Lin, J.X.; Wang, F.H.; Xie, J.W.; Wang, J.B.; Lu, J.; Chen, Q.Y.; Cao, L.L.; Lin, M.; Tu, R.H.; et al. Robotic Spleen-Preserving Total Gastrectomy Shows Better Short-Term Advantages: A Comparative Study with Laparoscopic Surgery. Surg. Endosc. 2022, 36, 8639–8650. [Google Scholar] [CrossRef]
- van der Wielen, N.; Straatman, J.; Daams, F.; Rosati, R.; Parise, P.; Weitz, J.; Reissfelder, C.; Diez del Val, I.; Loureiro, C.; Parada-González, P.; et al. Open versus Minimally Invasive Total Gastrectomy after Neoadjuvant Chemotherapy: Results of a European Randomized Trial. Gastric Cancer 2021, 24, 258–271. [Google Scholar] [CrossRef] [PubMed]
- Challine, A.; Voron, T.; Dousset, B.; Creavin, B.; Katsahian, S.; Parc, Y.; Lazzati, A.; Lefèvre, J.H. Postoperative Outcomes after Laparoscopic or Open Gastrectomy. A National Cohort Study of 10,343 Patients. Eur. J. Surg. Oncol. 2021, 47, 1985–1995. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Liu, M.; Li, S.; Yu, J.; Qi, X.; Tan, F.; Xu, K.; Zhang, N.; Yao, Z.; Yang, H.; et al. Surgical and Oncological Efficacy of Laparoscopic-Assisted Total Gastrectomy versus Open Total Gastrectomy for Gastric Cancer by Propensity Score Matching: A Retrospective Comparative Study. J. Cancer Res. Clin. Oncol. 2021, 147, 2153–2165. [Google Scholar] [CrossRef]
- Feng, X.; Chen, X.; Ye, Z.; Xiong, W.; Yao, X.; Wang, W.; Wang, J.; Chen, L.; Li, Y. Laparoscopic Versus Open Total Gastrectomy for Advanced Gastric Cancer: A Multicenter, Propensity Score-Matched Cohort Study in China. Front. Oncol. 2021, 11, 780398. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.S.; Choi, N.R.; Kim, B.S.; Yook, J.H.; Kim, M.J.; Kim, B.S. Totally Laparoscopic Total Gastrectomy Using the Modified Overlap Method and Conventional Open Total Gastrectomy: A Comparative Study. World J. Gastroenterol. 2021, 27, 2193–2204. [Google Scholar] [CrossRef]
- Kumamoto, T.; Ishida, Y.; Igeta, M.; Hojo, Y.; Nakamura, T.; Kurahashi, Y.; Shinohara, H. Potential Advantages of Robotic Total Gastrectomy for Gastric Cancer: A Retrospective Comparative Cohort Study. J. Robot. Surg. 2022, 16, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Roh, C.K.; Lee, S.; Son, S.Y.; Hur, H.; Han, S.U. Textbook Outcome and Survival of Robotic versus Laparoscopic Total Gastrectomy for Gastric Cancer: A Propensity Score Matched Cohort Study. Sci. Rep. 2021, 11, 15394. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, X.; Liu, Z.; Shan, F.; Ying, X.; Li, Z.; Ji, J. Short-Term Outcomes of Laparoscopic versus Open Total Gastrectomy after Neoadjuvant Chemotherapy: A Cohort Study Using the Propensity Score Matching Method. J. Gastrointest. Oncol. 2021, 12, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Huang, C.; Xu, Z.; Su, X.; Zhao, G.; Ye, J.; Du, X.; Huang, H.; Hu, J.; Li, G.; et al. Morbidity and Mortality of Laparoscopic vs Open Total Gastrectomy for Clinical Stage I Gastric Cancer: The CLASS02 Multicenter Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1590–1597. [Google Scholar] [CrossRef]
- Komatsu, S.; Kosuga, T.; Kubota, T.; Okamoto, K.; Konishi, H.; Shiozaki, A.; Fujiwara, H.; Ichikawa, D.; Otsuji, E. Comparison of Short- and Long-Term Outcomes Following Laparoscopy and Open Total Gastrectomy for Gastric Cancer: A Propensity Score-Matched Analysis. Am. J. Transl. Res. 2020, 12, 2225. [Google Scholar] [PubMed]
- Yang, C.; Shi, Y.; Xie, S.; Chen, J.; Zhao, Y.; Qian, F.; Hao, Y.; Tang, B.; Yu, P. Short-Term Outcomes of Robotic- versus Laparoscopic-Assisted Total Gastrectomy for Advanced Gastric Cancer: A Propensity Score Matching Study. BMC Cancer 2020, 20, 669. [Google Scholar] [CrossRef]
- Lee, H.; Kim, W.; Lee, J. Long-Term Outcomes of Laparoscopic versus Open Total Gastrectomy for Advanced Gastric Cancer: A Propensity Score-Matched Analysis. Dig. Surg. 2020, 37, 220–228. [Google Scholar] [CrossRef]
- Sakamoto, T.; Fujiogi, M.; Matsui, H.; Fushimi, K.; Yasunaga, H. Short-Term Outcomes of Laparoscopic and Open Total Gastrectomy for Gastric Cancer: A Nationwide Retrospective Cohort Analysis. Ann. Surg. Oncol. 2020, 27, 518–526. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Yang, D.; Tang, Z.; Wang, Q. Feasibility of Laparoscopic Total Gastrectomy for Advanced Siewert Type I and Type III Esophagogastric Junction Carcinoma: A Propensity Score-Matched Case-Control Study. Asian J. Surg. 2019, 42, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.P.; Shi, J.; Liu, D.N.; Jiang, Q.G.; Lei, X.; Qiu, H.; Li, T.Y. Robotic-Assisted versus Conventional Laparoscopic-Assisted Total Gastrectomy with D2 Lymphadenectomy for Advanced Gastric Cancer: Short-Term Outcomes at a Mono-Institution. BMC Surg. 2019, 19, 86. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Yoshikawa, T.; Maezawa, Y.; Kano, K.; Hara, K.; Sato, T.; Hayashi, T.; Yamada, T.; Cho, H.; Ogata, T.; et al. A Comparison of the Body Composition Changes between Laparoscopy-Assisted and Open Total Gastrectomy for Gastric Cancer. Vivo 2018, 32, 1513–1518. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Y.; Bai, B.; Yu, D.; Lian, B.; Zhao, Q. Surgical and Long-Term Survival Outcomes after Laparoscopic and Open Total Gastrectomy for Locally Advanced Gastric Cancer: A Propensity Score-Matched Analysis. World J. Surg. 2019, 43, 594–603. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.C.; Song, B.; Dai, X.D.; Zhang, X.Y. Comparative Study of Laparoscopic-Assisted and Open Total Gastrectomy for Siewert Types II and III Adenocarcinoma of the Esophagogastric Junction. J. Cell. Physiol. 2019, 234, 11235–11239. [Google Scholar] [CrossRef] [PubMed]
- Etoh, T.; Honda, M.; Kumamaru, H.; Miyata, H.; Yoshida, K.; Kodera, Y.; Kakeji, Y.; Inomata, M.; Konno, H.; Seto, Y.; et al. Morbidity and Mortality from a Propensity Score-Matched, Prospective Cohort Study of Laparoscopic versus Open Total Gastrectomy for Gastric Cancer: Data from a Nationwide Web-Based Database. Surg. Endosc. 2018, 32, 2766–2773. [Google Scholar] [CrossRef]
- Chen, K.; Pan, Y.; Zhai, S.T.; Yu, W.H.; Pan, J.H.; Zhu, Y.P.; Chen, Q.L.; Wang, X.F. Totally Laparoscopic versus Open Total Gastrectomy for Gastric Cancer: A Case-Matched Study about Short-Term Outcomes. Medicine 2017, 96, e8061. [Google Scholar] [CrossRef]
- Chen, X.Z.; Wang, S.Y.; Wang, Y.S.; Jiang, Z.H.; Zhang, W.H.; Liu, K.; Yang, K.; Chen, X.L.; Zhao, L.Y.; Qiu, M.; et al. Comparisons of Short-Term and Survival Outcomes of Laparoscopy-Assisted versus Open Total Gastrectomy for Gastric Cancer Patients. Oncotarget 2017, 8, 52366–52380. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.X.; Lin, J.L.; Zheng, C.H.; Li, P.; Xie, J.W.; Wang, J.B.; Lu, J.; Chen, Q.Y.; Cao, L.L.; Lin, M.; et al. Short- and Long-Term Outcomes of Laparoscopy-Assisted versus Open Total Gastrectomy for Gastric Cancer: A Propensity Score-Matched Analysis. Oncotarget 2017, 8, 80029–80038. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y.; Choi, H.J.; Cho, J.B.; Lee, J. Totally Laparoscopic Total Gastrectomy versus Laparoscopically Assisted Total Gastrectomy for Gastric Cancer. Anticancer Res. 2016, 36, 1999–2003. [Google Scholar]
- Kim, H.B.; Kim, S.M.; Ha, M.H.; Seo, J.E.; Choi, M.G.; Sohn, T.S.; Bae, J.M.; Kim, S.; Lee, J.H. Comparison of Reduced Port Totally Laparoscopic-Assisted Total Gastrectomy (Duet TLTG) and Conventional Laparoscopic-Assisted Total Gastrectomy. Surg. Laparosc. Endosc. Percutan. Tech. 2016, 26, e132–e136. [Google Scholar] [CrossRef]
- Wu, H.; Li, W.; Chen, G.; Wang, W.; Zheng, Z.; Li, J.; Li, X. Outcome of Laparoscopic Total Gastrectomy for Gastric Carcinoma. J. BUON 2016, 21, 603–608. [Google Scholar] [PubMed]
- Shu, B.; Lei, S.; Li, F.; Hua, S.; Chen, Y.; Huo, Z. Laparoscopic Total Gastrectomy Compared with Open Resection for Gastric Carcinoma: A Case-Matched Study with Long-Term Follow-Up. J. BUON 2016, 21, 101–107. [Google Scholar] [PubMed]
- Lu, Y.; Jiang, B.; Liu, T. Laparoscopic versus Open Total Gastrectomy for Advanced Proximal Gastric Carcinoma: A Matched Pair Analysis. J. BUON 2016, 21, 903–908. [Google Scholar]
- Huang, C.M.; Lv, C.B.; Lin, J.X.; Chen, Q.Y.; Zheng, C.H.; Li, P.; Xie, J.W.; Wang, J.B.; Lu, J.; Cao, L.L.; et al. Laparoscopic-Assisted versus Open Total Gastrectomy for Siewert Type II and III Esophagogastric Junction Carcinoma: A Propensity Score-Matched Case-Control Study. Surg. Endosc. 2017, 31, 3495–3503. [Google Scholar] [CrossRef]
- Park, J.M.; Kim, H.I.; Han, S.U.; Yang, H.K.; Kim, Y.W.; Lee, H.J.; An, J.Y.; Kim, M.C.; Park, S.; Song, K.Y.; et al. Who May Benefit from Robotic Gastrectomy?: A Subgroup Analysis of Multicenter Prospective Comparative Study Data on Robotic versus Laparoscopic Gastrectomy. Eur. J. Surg. Oncol. 2016, 42, 1944–1949. [Google Scholar] [CrossRef] [PubMed]
- Shida, A.; Mitsumori, N.; Fujioka, S.; Takano, Y.; Iwasaki, T.; Takahashi, N.; Ishibashi, Y.; Omura, N.; Yanaga, K. Comparison of Short-Term and Long-Term Clinical Outcomes between Laparoscopic and Open Total Gastrectomy for Patients with Gastric Cancer. Surg. Laparosc. Endosc. Percutan. Tech. 2016, 26, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.T.; Zhang, X.D.; Xue, H.Z. Open Versus Hand-Assisted Laparoscopic Total Gastric Resection with D2 Lymph Node Dissection for Adenocarcinoma: A Case-Control Study. Surg. Laparosc. Endosc. Percutan. Tech. 2017, 27, 42–50. [Google Scholar] [CrossRef]
- Ramagem, C.A.G.; Linhares, M.; Lacerda, C.F.; Bertulucci, P.A.; Wonrath, D.; de Oliveira, A.T.T. Comparison of Laparoscopic Total Gastrectomy and Laparotomic Total Gastrectomy for Gastric Cancer. Arq. Bras. Cir. Dig. 2015, 28, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Nam, B.H.; Ryu, K.W.; Ryu, S.Y.; Park, Y.K.; Kim, S.; Kim, Y.W. Comparison of Outcomes after Laparoscopy-Assisted and Open Total Gastrectomy for Early Gastric Cancer. Br. J. Surg. 2015, 102, 1500–1505. [Google Scholar] [CrossRef]
- Lu, J.; Huang, C.M.; Zheng, C.H.; Li, P.; Xie, J.W.; Wang, J.B.; Lin, J.X.; Chen, Q.Y.; Cao, L.L.; Lin, M. Short- and Long-Term Outcomes after Laparoscopic versus Open Total Gastrectomy for Elderly Gastric Cancer Patients: A Propensity Score-Matched Analysis. J. Gastrointest. Surg. 2015, 19, 1949–1957. [Google Scholar] [CrossRef]
- Shen, W.; Xi, H.; Wei, B.; Cui, J.; Bian, S.; Zhang, K.; Wang, N.; Huang, X.; Chen, L. Robotic versus Laparoscopic Gastrectomy for Gastric Cancer: Comparison of Short-Term Surgical Outcomes. Surg. Endosc. 2016, 30, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Choi, Y.Y.; An, J.Y.; Kim, D.W.; Hyung, W.J.; Noh, S.H. Short-Term Outcomes of Laparoscopic Total Gastrectomy Performed by a Single Surgeon Experienced in Open Gastrectomy: Review of Initial Experience. J. Gastric Cancer 2015, 15, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.R.; Kim, H.O.; Son, B.H.; Shin, J.H.; Yoo, C.H. Laparoscopic-Assisted Total Gastrectomy versus Open Total Gastrectomy for Upper and Middle Gastric Cancer in Short-Term and Long-Term Outcomes. Surg. Laparosc. Endosc. Percutan. Tech. 2014, 24, 277–282. [Google Scholar] [CrossRef]
- Lee, M.S.; Lee, J.H.; Park, D.J.; Lee, H.J.; Kim, H.H.; Yang, H.K. Comparison of Short- and Long-Term Outcomes of Laparoscopic-Assisted Total Gastrectomy and Open Total Gastrectomy in Gastric Cancer Patients. Surg. Endosc. 2013, 27, 2598–2605. [Google Scholar] [CrossRef]
- Bo, T.; Peiwu, Y.; Feng, Q.; Yongliang, Z.; Yan, S.; Yingxue, H.; Huaxing, L. Laparoscopy-Assisted vs. Open Total Gastrectomy for Advanced Gastric Cancer: Long-Term Outcomes and Technical Aspects of a Case-Control Study. J. Gastrointest. Surg. 2013, 17, 1202–1208. [Google Scholar] [CrossRef]
- Guan, G.; Jiang, W.; Chen, Z.; Liu, X.; Lu, H.; Zhang, X. Early Results of a Modified Splenic Hilar Lymphadenectomy in Laparoscopy-Assisted Total Gastrectomy for Gastric Cancer with Stage CT1-2: A Case-Control Study. Surg Endosc 2013, 27, 1923–1931. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, B.S.; Lee, I.S.; Lee, S.; Yook, J.H.; Kim, B.S. Comparison of Totally Laparoscopic Total Gastrectomy and Open Total Gastrectomy for Gastric Cancer. J. Laparoendosc. Adv. Surg. Tech. 2013, 23, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kim, Y.M.; Kim, M.C.; Jung, G.J. Is Laparoscopy-Assisted Total Gastrectomy Feasible for the Treatment of Gastric Cancer? A Case-Matched Study. Dig. Surg. 2014, 30, 348–354. [Google Scholar] [CrossRef]
- Jeong, O.; Jung, M.R.; Kim, G.Y.; Kim, H.S.; Ryu, S.Y.; Park, Y.K. Comparison of Short-Term Surgical Outcomes between Laparoscopic and Open Total Gastrectomy for Gastric Carcinoma: Case-Control Study Using Propensity Score Matching Method. J. Am. Coll. Surg. 2013, 216, 184–191. [Google Scholar] [CrossRef]
- Hong, L.; Han, Y.; Jin, Y.; Zhang, H.; Zhao, Q. The Short-Term Outcome in Esophagogastric Junctional Adenocarcinoma Patients Receiving Total Gastrectomy: Laparoscopic versus Open Gastrectomy—A Retrospective Cohort Study. Int. J. Surg. 2013, 11, 957–961. [Google Scholar] [CrossRef]
- Eom, B.W.; Kim, Y.W.; Lee, S.E.; Ryu, K.W.; Lee, J.H.; Yoon, H.M.; Cho, S.J.; Kook, M.C.; Kim, S.J. Survival and Surgical Outcomes after Laparoscopy-Assisted Total Gastrectomy for Gastric Cancer: Case-Control Study. Surg. Endosc. 2012, 26, 3273–3281. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.G.; Kim, B.S.; Kim, T.H.; Kim, K.C.; Yook, J.H.; Kim, B.S. The Effects of Laparoscopic Assisted Total Gastrectomy on Surgical Outcomes in the Treatment of Gastric Cancer. J. Korean Surg. Soc. 2011, 80, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.M.; Kim, Y.W.; Lee, J.H.; Ryu, K.W.; Eom, B.W.; Park, J.Y.; Choi, I.J.; Kim, C.G.; Lee, J.Y.; Cho, S.J.; et al. Robot-Assisted Total Gastrectomy Is Comparable with Laparoscopically Assisted Total Gastrectomy for Early Gastric Cancer. Surg. Endosc. 2012, 26, 1377–1381. [Google Scholar] [CrossRef] [PubMed]
- Sakuramoto, S.; Kikuchi, S.; Futawatari, N.; Katada, N.; Moriya, H.; Hirai, K.; Yamashita, K.; Watanabe, M. Laparoscopy-Assisted Pancreas- and Spleen-Preserving Total Gastrectomy for Gastric Cancer as Compared with Open Total Gastrectomy. Surg. Endosc. 2009, 23, 2416–2423. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, H.; Yokota, R.; Homma, S.; Kondo, Y. Comparison of Invasiveness between Laparoscopy-Assisted Total Gastrectomy and Open Total Gastrectomy. World J. Surg. 2009, 33, 2389–2395. [Google Scholar] [CrossRef]
- Mochiki, E.; Toyomasu, Y.; Ogata, K.; Andoh, H.; Ohno, T.; Aihara, R.; Asao, T.; Kuwano, H. Laparoscopically Assisted Total Gastrectomy with Lymph Node Dissection for Upper and Middle Gastric Cancer. Surg. Endosc. Other Interv. Tech. 2008, 22, 1997–2002. [Google Scholar] [CrossRef]
- Topal, B.; Leys, E.; Ectors, N.; Aerts, R.; Penninckx, F. Determinants of Complications and Adequacy of Surgical Resection in Laparoscopic versus Open Total Gastrectomy for Adenocarcinoma. Surg. Endosc. Other Interv. Tech. 2008, 22, 980–984. [Google Scholar] [CrossRef] [PubMed]
- Dulucq, J.L.; Wintringer, P.; Stabilini, C.; Solinas, L.; Perissat, J.; Mahajna, A. Laparoscopic and Open Gastric Resections for Malignant Lesions: A Prospective Comparative Study. Surg. Endosc. Other Interv. Tech. 2005, 19, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.L.; He, Y.; Xu, R.H. Gastric Cancer Treatment: Recent Progress and Future Perspectives. J. Hematol. Oncol. 2023, 16, 57. [Google Scholar] [CrossRef]
- Ajani, J.A.; D’Amico, T.A.; Bentrem, D.J.; Chao, J.; Cooke, D.; Corvera, C.; Das, P.; Enzinger, P.C.; Enzler, T.; Fanta, P.; et al. Gastric Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 167–192. [Google Scholar] [CrossRef]
- Rogers, J.E.; Ajani, J.A. Recent Advances in the Management of Gastric Adenocarcinoma Patients. Fac. Rev. 2023, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Aiolfi, A.; Lombardo, F.; Matsushima, K.; Sozzi, A.; Cavalli, M.; Panizzo, V.; Bonitta, G.; Bona, D. Systematic Review and Updated Network Meta-Analysis of Randomized Controlled Trials Comparing Open, Laparoscopic-Assisted, and Robotic Distal Gastrectomy for Early and Locally Advanced Gastric Cancer. Surgery 2021, 170, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Hyung, W.J.; Yang, H.K.; Han, S.U.; Lee, Y.J.; Park, J.M.; Kim, J.J.; Kwon, O.K.; Kong, S.H.; Kim, H.I.; Lee, H.J.; et al. A Feasibility Study of Laparoscopic Total Gastrectomy for Clinical Stage I Gastric Cancer: A Prospective Multi-Center Phase II Clinical Trial, KLASS 03. Gastric Cancer 2019, 22, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Kunisaki, C.; Katai, H.; Sakuramoto, S.; Mizusawa, J.; Katayama, H.; Kadoya, S.; Yamada, T.; Kinoshita, T.; Yoshikawa, T.; Terashima, M. A Nonrandomized Controlled Trial: Long-Term Outcomes of LATG/LAPG for CStage I Gastric Cancer: Japan Clinical Oncology Group Study JCOG1401. Gastric Cancer 2024, 27, 164–175. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Y.; Peng, Q.; Bai, M.; Shang, Z.; Li, L.; Tian, F.; Jing, C. Safety and Effectiveness of Totally Laparoscopic Total Gastrectomy vs Laparoscopic-Assisted Total Gastrectomy: A Meta-Analysis. Int. J. Surg. 2024, 110, 1245. [Google Scholar] [CrossRef]
- Vasavada, B.; Patel, H. Laparoscopic vs Open Gastrectomy: An Updated Meta-Analysis of Randomized Control Trials for Short-Term Outcomes. Indian J. Surg. Oncol. 2021, 12, 587. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Yu, D.; Li, Y.; Fan, C.; Li, G. Laparoscopic versus Open Gastrectomy for Advanced Gastric Cancer: A Meta-Analysis Based on High-Quality Retrospective Studies and Clinical Randomized Trials. Clin. Res. Hepatol. Gastroenterol. 2018, 42, 577–590. [Google Scholar] [CrossRef]
- Eom, B.W.; Ahn, H.S.; Lee, I.S.; Min, J.S.; Son, Y.G.; Lee, S.E.; Kim, J.H.; Lee, S.Y.; Kim, J.H.; Ahn, S.H.; et al. Korean Gastric Cancer Association Nationwide Survey on Gastric Cancer in 2014. J. Gastric Cancer 2016, 16, 131–140. [Google Scholar] [CrossRef]
- Ryu, S.W.; Eom, B.W.; Kim, D.J.; Huh, Y.J.; Jeong, S.H.; Suh, Y.S.; Kim, J.W.; Kwon, I.G.; Kwon, O.K.; Lee, I.S. Korean Gastric Cancer Association-Led Nationwide Survey on Surgically Treated Gastric Cancers in 2019. J. Gastric Cancer 2021, 21, 221–235. [Google Scholar] [CrossRef]
- Park, S.H.; Han, M.; Yoon, H.M.; Ryu, K.W.; Kim, Y.W.; Eom, B.W. Real-World Nationwide Outcomes of Minimally Invasive Surgery for Advanced Gastric Cancer Based on Korean Gastric Cancer Association-Led Survey. J. Gastric Cancer 2024, 24, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Manara, M.; Aiolfi, A.; Sozzi, A.; Calì, M.; Grasso, F.; Rausa, E.; Bonitta, G.; Bonavina, L.; Bona, D. Short-Term Outcomes Analysis Comparing Open, Laparoscopic, Laparoscopic-Assisted, and Robotic Distal Gastrectomy for Locally Advanced Gastric Cancer: A Randomized Trials Network Analysis. Cancers 2024, 16, 1620. [Google Scholar] [CrossRef] [PubMed]
- Etoh, T.; Ohyama, T.; Sakuramoto, S.; Tsuji, T.; Lee, S.W.; Yoshida, K.; Koeda, K.; Hiki, N.; Kunisaki, C.; Tokunaga, M.; et al. Five-Year Survival Outcomes of Laparoscopy-Assisted vs Open Distal Gastrectomy for Advanced Gastric Cancer: The JLSSG0901 Randomized Clinical Trial. JAMA Surg. 2023, 158, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-J.; Li, H.-T.; Yu, J.-P.; Su, L.; Guo, C.-A.; Chen, P.; Yan, L.; Li, K.; Ma, Y.-W.; Wang, L.; et al. Severity and Incidence of Complications Assessed by the Clavien–Dindo Classification Following Robotic and Laparoscopic Gastrectomy for Advanced Gastric Cancer: A Retrospective and Propensity Score-Matched Study. Surg. Endosc. 2019, 33, 3341–3354. [Google Scholar] [CrossRef] [PubMed]
- Aiolfi, A.; Sozzi, A.; Bonitta, G.; Lombardo, F.; Cavalli, M.; Campanelli, G.; Bonavina, L.; Bona, D. Short-Term Outcomes of Different Esophagojejunal Anastomotic Techniques during Laparoscopic Total Gastrectomy: A Network Meta-Analysis. Surg. Endosc. 2023, 37, 5777–5790. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, Y.; Hu, Y.; Feng, Y.; Mao, Q.; Xue, W. Outcomes of Laparoscopic versus Open Total Gastrectomy with D2 Lymphadenectomy for Gastric Cancer: A Systematic Review and Meta-Analysis. Eur. J. Med. Res. 2022, 27, 124. [Google Scholar] [CrossRef]
- Sozzi, A.; Aiolfi, A.; Matsushima, K.; Bonitta, G.; Lombardo, F.; Viti, M.; Russo, A.; Campanelli, G.; Bona, D. Linear- Versus Circular-Stapled Esophagojejunostomy during Total Gastrectomy: Systematic Review and Meta-Analysis. J. Laparoendosc. Adv. Surg. Tech. 2023, 33, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Garbarino, G.M.; Laracca, G.G.; Lucarini, A.; Piccolino, G.; Mercantini, P.; Costa, A.; Tonini, G.; Canali, G.; Muttillo, E.M.; Costa, G. Laparoscopic versus Open Surgery for Gastric Cancer in Western Countries: A Systematic Review and Meta-Analysis of Short- and Long-Term Outcomes. J. Clin. Med. 2022, 11, 3590. [Google Scholar] [CrossRef] [PubMed]
- Trastulli, S.; Desiderio, J.; Lin, J.X.; Reim, D.; Zheng, C.H.; Borghi, F.; Cianchi, F.; Norero, E.; Nguyen, N.T.; Qi, F.; et al. Open vs Robotic Gastrectomy with D2 Lymphadenectomy: A Propensity Score-Matched Analysis on 1469 Patients from the IMIGASTRIC Prospective Database. Langenbecks Arch. Surg. 2023, 408, 302. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Kinoshita, T.; Tonouchi, A.; Kaito, A.; Tokunaga, M. What Are the Reasons for a Longer Operation Time in Robotic Gastrectomy than in Laparoscopic Gastrectomy for Stomach Cancer? Surg. Endosc. 2019, 33, 192–198. [Google Scholar] [CrossRef]
- Omori, T.; Yamamoto, K.; Hara, H.; Shinno, N.; Yamamoto, M.; Fujita, K.; Kanemura, T.; Takeoka, T.; Akita, H.; Wada, H.; et al. Comparison of Robotic Gastrectomy and Laparoscopic Gastrectomy for Gastric Cancer: A Propensity Score-Matched Analysis. Surg. Endosc. 2022, 36, 6223–6234. [Google Scholar] [CrossRef]
- Wang, X.; Yao, Y.; Qian, H.; Li, H.; Zhu, X. Longer Operating Time During Gastrectomy Has Adverse Effects on Short-Term Surgical Outcomes. J. Surg. Res. 2019, 243, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Shin, Y.-R.; Hur, H.; Lee, C.M.; Min, J.S.; Ryu, S.W.; Chae, H.D.; Jeong, O.; Choi, C.-I.; Song, K.-Y.; et al. Exploring Ideal Operative Time for Best Outcomes in Gastric Cancer Surgery: A Multi-Institutional Study Based on KLASS-07 Database. Chin. J. Cancer Res. 2023, 35, 660. [Google Scholar] [CrossRef]
- Straatman, J.; Van Der Wielen, N.; Cuesta, M.A.; de Lange-de Klerk, E.S.M.; Jansma, E.P.; Van Der Peet, D.L. Minimally Invasive Versus Open Total Gastrectomy for Gastric Cancer: A Systematic Review and Meta-Analysis of Short-Term Outcomes and Completeness of Resection: Surgical Techniques in Gastric Cancer. World J. Surg. 2016, 40, 148–157. [Google Scholar] [CrossRef]
- Feng, Q.; Ma, H.; Qiu, J.; Du, Y.; Zhang, G.; Li, P.; Wen, K.; Xie, M. Comparison of Long-Term and Perioperative Outcomes of Robotic Versus Conventional Laparoscopic Gastrectomy for Gastric Cancer: A Systematic Review and Meta-Analysis of PSM and RCT Studies. Front. Oncol. 2021, 11, 759509. [Google Scholar] [CrossRef] [PubMed]
- Aiolfi, A.; Bona, D.; Bonitta, G.; Lombardo, F.; Manara, M.; Sozzi, A.; Schlanger, D.; Popa, C.; Cavalli, M.; Campanelli, G.; et al. Long-Term Impact of D2 Lymphadenectomy during Gastrectomy for Cancer: Individual Patient Data Meta-Analysis and Restricted Mean Survival Time Estimation. Cancers 2024, 16, 424. [Google Scholar] [CrossRef]
- Chan, K.S.; Oo, A.M. Learning Curve of Laparoscopic and Robotic Total Gastrectomy: A Systematic Review and Meta-Analysis. Surg. Today 2024, 54, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Seika, P.; Biebl, M.; Raakow, J.; Kröll, D.; Çetinkaya-Hosgör, C.; Thuss-Patience, P.; Maurer, M.M.; Dobrindt, E.M.; Pratschke, J.; Denecke, C. The Learning Curve for Hand-Assisted Laparoscopic Total Gastrectomy in Gastric Cancer Patients. J. Clin. Med. 2022, 11, 6841. [Google Scholar] [CrossRef] [PubMed]
- Brenkman, H.J.F.; Claassen, L.; Hannink, G.; van der Werf, L.R.; Ruurda, J.P.; Nieuwenhuizen, G.A.P.; Luyer, M.D.P.; Kouwenhoven, E.A.; van Det, M.J.; van Berge Henegouwen, M.I.; et al. Learning Curve of Laparoscopic Gastrectomy: A Multicenter Study. Ann. Surg. 2023, 277, e808–e816. [Google Scholar] [CrossRef] [PubMed]
Author, Year Country | Study Design | Period | Approach | No. pts | Age (yrs) | Sex (M) | BMI (kg/m2) | Location (P-M-D) | pStage 0–I | pStage II | pStage III | pStage IV | Neoadj/Periop tp | QoE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Eom, 2022 Korea [24] | Ret PSM | 2012–2016 | OTG | 119 | 60.2 ± 11.6 | 94 | 23.8 ± 3.3 | 96-14-9 | 93 | 17 | 9 | 0 | 0 | S |
TLTG | 119 | 62.3 ± 11.4 | 93 | 23.3 ± 3.1 | 105-14-0 | 93 | 17 | 9 | 0 | 0 | ||||
Illuminati, 2023 Italy [25] | Ret | 2010–2021 | OTG | 109 | 57.7 ± 8.5 | 83 | 20.8 ± 2.8 | nr | 0 | 8 | 92 | 0 | 36 | S |
LATG | 98 | 59.4 ± 8.5 | 69 | 21.1 ± 2.7 | 0 | 7 | 101 | 0 | 40 | |||||
Jia, 2023 China [26] | Ret PSM | 2014–2021 | RTG | 147 | 62.9 ± 10 | 118 | 25 ± 3.7 | 90-57-0 | 44 | 41 | 62 | 0 | 0 | M |
TLTG | 371 | 62.5 ± 9.4 | 294 | 24.5 ± 3.4 | 239-132-0 | 121 | 92 | 158 | 0 | 0 | ||||
Kinoshita, 2022 Japan [27] | Ret PSM | 2008–2018 | OTG | 163 | 67 ± 3.5 | 134 | 22.4 ± 1.1 | nr | 56 | 54 | 53 | 0 | 17 | M |
TLTG | 163 | 69 ± 3 | 130 | 22.2 ± 0.9 | 91 | 33 | 39 | 0 | 16 | |||||
Salvador-Roses, 2023 Spain [28] | Ret | 2014–2021 | OTG | 48 | 64 ± 13 | 40 | 27 ± 4 | nr | nr | nr | nr | nr | 26 | S |
RTG | 30 | 68 ± 13 | 23 | 26 ± 5 | 13 | |||||||||
Zheng, 2023 China [29] | Ret | 2008–2018 | OTG | 57 | 63.3 ± 11.3 | 48 | nr | nr | 6 | 15 | 36 | 0 | 57 | M |
TLTG | 89 | 60.3 ± 10.1 | 69 | 16 | 35 | 38 | 0 | 89 | ||||||
Hu, 2022 China [30] | Ret PSM | 2011–2018 | OTG | 69 | 53.9 ± 12.7 | 52 | 22.8 ± 3.3 | 22-37-10 | 0 | 22 | 44 | 3 | 69 | S |
TLTG | 69 | 53.4 ± 13.4 | 53 | 22.6 ± 3.1 | 28-34-7 | 0 | 27 | 38 | 4 | 69 | ||||
Hikage, 2022 Japan [31] | Ret | 2013–2020 | RTG | 36 | 72 ± 8 | 26 | 23.1 ± 2 | nr | 25 | 5 | 6 | 0 | nr | S |
TLTG | 58 | 71 ± 9 | 46 | 22.8 ± 3.2 | 42 | 15 | 1 | 0 | ||||||
Chen, 2022 China [32] | Pro PSM | 2015–2020 | RTG | 48 | 61.3 ± 9.3 | 38 | 22.3 ± 2.7 | 31-17-0 | 13 | 16 | 19 | 0 | nr | L |
TLTG | 96 | 61.6 ± 7.6 | 79 | 22.3 ± 3.2 | 66-30-0 | 22 | 29 | 45 | 0 | |||||
Cui, 2022 China [33] | Ret | 2012–2019 | OTG | 75 | 56.8 ± 11.9 | 59 | 23.7 ± 3.3 | 46-29-0 | 24 | 16 | 34 | 1 | 75 | S |
TLTG | 61 | 57.6 ± 10.4 | 47 | 22.8 ± 2.7 | 40-21-0 | 9 | 22 | 29 | 1 | 61 | ||||
Di Carlo, 2022 Italy [34] | Ret | 2015–2021 | OTG | 53 | 71 ± 5.8 | 33 | 24.5 ± 2.9 | nr | 0 | 23 | 30 | 0 | 44 | S |
TLTG | 39 | 67 ± 6.5 | 25 | 22.6 ± 2.2 | 0 | 18 | 21 | 0 | 30 | |||||
Li, 2022 China [35] | Pro | 2018–2021 | RTG | 69 | 59.4 ± 9.9 | 48 | 22.6 ± 2.8 | 50-13-6 | 14 | 17 | 38 | 0 | nr | L |
TLTG | 73 | 58.9 ± 9.2 | 52 | 22.9 ± 2.8 | 52-16-5 | 15 | 19 | 39 | 0 | |||||
Lin, 2023 China [36] | Ret PSM | 2014–2018 | LATG | 208 | nr | 140 | nr | 68-106-34 | 59 | 64 | 85 | 0 | 208 | S |
TLTG | 104 | 71 | 32-57-15 | 29 | 30 | 45 | 0 | 104 | ||||||
Qiu, 2022 China [37] | Ret | 2020 | LATG | 51 | 63.9 ± 8.2 | 36 | 23.1 ± 4.2 | 34-17-0 | 11 | 17 | 23 | 0 | nr | M |
TLTG | 46 | 63.3 ± 9.1 | 31 | 23.7 ± 4 | 31-15-0 | 11 | 15 | 20 | 0 | |||||
Shibasaki, 2022 Japan [38] | Ret PSM | 2009–2021 | RTG | 100 | 69 ± 3.8 | 69 | 23 ± 1.3 | nr | 46 | 23 | 31 | 0 | 13 | M |
TLTG | 100 | 68 ± 3.5 | 67 | 23.1 ± 1.1 | 34 | 26 | 40 | 0 | 10 | |||||
Wang, 2022 China [39] | Ret PSM | 2016–2020 | RTG | 115 | 60.4 ± 9.4 | 91 | 22.5 ± 3 | 85-30-0 | 30 | 40 | 45 | 0 | 108 | L |
TLTG | 230 | 60.3 ± 10.4 | 179 | 22.4 ± 3 | 172-58-0 | 72 | 60 | 98 | 0 | 214 | ||||
van der Wielen, 2021 Europe [40] | RCT | 2015–2018 | OTG | 49 | 61.8 ± 10 | 32 | 25.2 ± 4 | 14-25-10 | nr | nr | nr | nr | 49 | |
TLTG | 47 | 59.4 ± 12.5 | 28 | 26.5 ± 4.8 | 13-25-9 | 47 | ||||||||
Challine, 2021 France [41] | Ret | 2013–2018 | OTG | 5037 | 68 ± 4.5 | nr | nr | nr | nr | nr | nr | nr | nr | S |
TLTG | 745 | 64 ± 5 | ||||||||||||
Fan, 2021 China [42] | Ret PSM | 2011–2018 | OTG | 131 | nr | 97 | nr | 90-41-0 | 23 | 40 | 68 | 0 | 12 | M |
LATG | 131 | 98 | 93-38-0 | 24 | 41 | 66 | 0 | 14 | ||||||
Feng, 2021 China [43] | Ret PSM | 2011–2015 | OTG | 225 | 61 ± 3.5 | 164 | 22.2 ± 1 | nr | 18 | 42 | 165 | 0 | nr | M |
TLTG | 225 | 59 ± 4.3 | 154 | 21.9 ± 1 | 8 | 71 | 146 | 0 | ||||||
Ko, 2021 Korea [44] | Ret PSM | 2012–2018 | OTG | 61 | 58.7 ± 10.7 | 41 | 24 ± 2.7 | nr | 33 | 19 | 9 | 0 | 0 | S |
TLTG | 61 | 58.3 ± 11.3 | 40 | 24 ± 3 | 31 | 19 | 11 | 0 | 0 | |||||
Kumamoto, 2022 Japan [45] | Ret | 2017–2021 | RTG | 27 | 69 ± 3.5 | 19 | 23.2 ± 0.7 | 2-25-0 | nr | nr | nr | nr | 2 | S |
TLTG | 29 | 70 ± 1.8 | 19 | 22.4 ± 0.9 | 7-22-0 | 7 | ||||||||
Roh, 2021 Korea [46] | Ret PSM | 2009–2018 | RTG | 74 | 53.8 ± 11.6 | 42 | 23.6 ± 2.9 | 51-23-0 | 50 | 15 | 9 | 0 | nr | M |
TLTG | 74 | 54.6 ± 12.7 | 42 | 23.8 ± 3.4 | 47-27-0 | 47 | 18 | 9 | 0 | |||||
Wang, 2021 China [47] | Ret PSM | 2013–2018 | OTG | 46 | 59.7 ± 8.7 | 36 | 23.3 ± 3.7 | 46-0-0 | 15 | 17 | 13 | 0 | 46 | M |
TLTG | 23 | 60.1 ± 9.7 | 18 | 23.7 ± 3.8 | 23-0-0 | 4 | 11 | 8 | 0 | 23 | ||||
Liu F, 2020 China [48] | RCT | 2017–2018 | OTG | 109 | 59.4 ± 9.2 | 80 | 23.7 ± 3.1 | nr | 91 | 14 | 4 | 0 | nr | |
TLTG | 105 | 59.8 ± 9.4 | 75 | 23.9 ± 3.1 | 85 | 13 | 7 | 0 | ||||||
Komatsu, 2020 Japan [49] | Ret PSM | 200–2015 | OTG | 65 | 67 | 51 | 22 | 39-26-0 | nr | nr | nr | nr | 0 | S |
TLTG | 65 | 68 | 50 | 22 | 39-26-0 | 0 | ||||||||
Yang, 2020 China [50] | Ret PSM | 2010–2017 | RTG | 126 | 60.3 ± 8.9 | 105 | 22.1 ± 2.5 | 58-68-0 | 3 | 30 | 93 | 0 | 0 | M |
LATG | 126 | 60.8 ± 9.1 | 100 | 22.1 ± 2.8 | 61-65-0 | 3 | 27 | 86 | 0 | 0 | ||||
Lee, 2020 Korea [51] | Ret PSM | 2004–2014 | OTG | 51 | 63 ± 13.5 | 36 | nr | 26-25-0 | 1 | 23 | 27 | 0 | 0 | M |
TLTG | 51 | 62.1 ± 12.3 | 37 | 24-27-0 | 1 | 21 | 29 | 0 | 0 | |||||
Sakamamoto, 2020 Japan [52] | Ret PSM | 2010–2017 | OTG | 12,229 | nr | 8998 | nr | nr | nr | nr | nr | nr | nr | S |
TLTG | 12,229 | 9005 | ||||||||||||
Zhao, 2019 China [53] | Ret PSM | 2012–2017 | OTG | 217 | 59 ± 10.6 | 175 | 22.7 ± 2.6 | 217-0-0 | 2 | 122 | 93 | 0 | 9 | M |
TLTG | 468 | 60.4 ± 10.4 | 330 | 22.5 ± 2.6 | 468-0-0 | 7 | 268 | 193 | 0 | 61 | ||||
Ye, 2019 China [54] | Ret | 2015–2018 | RTG | 99 | 58.7 ± 6.7 | 58 | 23.9 ± 1.9 | 33-66-0 | 2 | 54 | 43 | 0 | 0 | M |
LATG | 106 | 59 ± 7.3 | 55 | 23.9 ± 1.4 | 42-64-0 | 3 | 51 | 52 | 0 | 0 | ||||
Aoyama, 2018 Japan [55] | Ret | 2011–2016 | OTG | 208 | 70 ± 9.2 | 154 | nr | nr | nr | nr | nr | nr | nr | S |
LATG | 95 | 69 ± 6.5 | 68 | |||||||||||
Li, 2019 China [56] | Ret PSM | 2008–2014 | OTG | 296 | nr | 200 | 22.5 ± 2.9 | nr | 47 | 119 | 130 | 0 | 0 | L |
LATG | 296 | 214 | 22.8 ± 3.2 | 47 | 119 | 130 | 0 | 0 | ||||||
Wang, 2019 China [57] | Ret | 2009–2014 | OTG | 43 | 61.9 ± 6 | 23 | nr | 43-0-0 | 17 | 21 | 5 | 0 | 0 | S |
LATG | 32 | 61.9 ± 8.7 | 21 | 32-0-0 | 11 | 17 | 4 | 0 | 0 | |||||
Etoh, 2018 Japan [58] | Pro PSM | 2014–2015 | OTG | 512 | nr | 378 | nr | nr | nr | nr | nr | nr | 41 | S |
TLTG | 512 | 383 | 38 | |||||||||||
Chen K, 2017 China [59] | Ret | 2007–2016 | OTG | 124 | 53.5 ± 14.6 | 81 | 23 ± 3.7 | nr | 59 | 28 | 37 | 0 | nr | L |
TLTG | 124 | 52.7 ± 13.1 | 81 | 23.9 ± 4.3 | 60 | 29 | 35 | 0 | ||||||
Chen XZ, 2017 China [60] | Ret PSM | 2006–2015 | OTG | 69 | 60.5 ± 9.3 | 58 | 23 ± 3 | 37-19-13 | 14 | 16 | 38 | 1 | nr | M |
LATG | 69 | 57.1 ± 10.1 | 58 | 21.1 ± 2.1 | 41-21-7 | 14 | 16 | 38 | 1 | |||||
Lin JX, 2017 China [61] | Ret PSM | nr | OTG | 346 | 61.3 ± 10.1 | 274 | 22 ± 2.3 | 188-136-22 | 51 | 62 | 233 | 0 | nr | M |
LATG | 346 | 61.1 ± 10 | 274 | 22 ± 2.9 | 191-136-19 | 46 | 53 | 247 | 0 | |||||
Kim EY, 2016 Korea [62] | Ret | 2009–2014 | LATG | 29 | 59.3 ± 13.1 | 20 | 23.3 ± 3.2 | 17-12-0 | 12 | 6 | 10 | 1 | nr | M |
TLTG | 27 | 60.8 ± 9.1 | 22 | 24 ± 2.9 | 21-6-0 | 25 | 1 | 1 | 0 | |||||
Kim HB, 2016 Korea [63] | Ret | 2013–2015 | TLTG | 30 | 51 ± 12.3 | 16 | 22.2 ± 2.7 | 19-11-0 | nr | nr | nr | nr | nr | S |
LATG | 24 | 53 ± 11.3 | 14 | 22.7 ± 11.8 | 12-12-0 | |||||||||
Wu H, 2016 China [64] | Ret PSM | 2008–2013 | OTG | 74 | 60 ± 7.5 | 50 | 21 ± 1.8 | nr | 5 | 55 | 14 | 0 | nr | M |
TLTG | 74 | 62 ± 9.5 | 53 | 19 ± 1.5 | 6 | 53 | 15 | 0 | ||||||
Shu B, 2016 China [65] | Ret | 2007–2014 | OTG | 136 | 64 ± 5.2 | 92 | 21 ± 1.8 | 92-44-0 | 20 | 76 | 43 | 0 | nr | M |
LATG | 136 | 65 ± 5 | 86 | 20 ± 1.7 | 87-49-0 | 21 | 67 | 48 | 0 | |||||
Lu Y, 2016 China [66] | Ret | 2008–2015 | OTG | 61 | 57 ± 6.8 | 37 | 22 ± 2 | nr | 8 | 36 | 17 | 0 | 0 | M |
TLTG | 61 | 59 ± 7.8 | 39 | 19 ± 1.3 | 6 | 39 | 16 | 0 | 0 | |||||
Huang, 2017 China [67] | Ret PSM | 2007–2014 | OTG | 171 | 61.4 ± 10 | 152 | 21.9 ± 3 | 171-0-0 | 29 | 42 | 100 | 0 | 0 | M |
LATG | 171 | 62.4 ± 8.9 | 152 | 22.2 ± 2.9 | 171-0-0 | 27 | 47 | 97 | 0 | 0 | ||||
Park, 2016 China [68] | Pro | 2011–2012 | TLTG | 30 | 57.1 ± 11.1 | 18 | nr | nr | 26 | 4 | 0 | nr | S | |
RTG | 42 | 51.7 ± 12 | 26 | 28 | 14 | 0 | ||||||||
Shida, 2016 Japan [69] | Ret | 2005–2013 | OTG | 53 | 65.5 ± 12.3 | 47 | 23.2 ± 3.6 | 40-13-0 | 32 | 15 | 6 | 0 | 0 | M |
LATG | 100 | 63.8 ± 11.3 | 84 | 23.6 ± 3.1 | 74-26-0 | 79 | 17 | 4 | 0 | 0 | ||||
Zhang, 2017 China [70] | Ret | 2009–2012 | OTG | 85 | 72.9 ± 10.9 | 50 | 22.3 ± 2.5 | 73-12-0 | nr | nr | nr | nr | nr | M |
LATG | 69 | 69.4 ± 10.5 | 38 | 20.9 ± 2.1 | 57-12-0 | |||||||||
Ramagem CAG, 2015 Brazil [71] | Ret | 2009–2013 | OTG | 64 | 60 ± 11.7 | 43 | 32.1 ± 4.1 | 6-27-31 | 21 | 16 | 27 | 0 | 0 | M |
TLTG | 47 | 58 ± 10.5 | 34 | 22.3 ± 4.4 | 4-24-19 | 14 | 13 | 20 | 0 | 0 | ||||
Lee, 2015 Korea [72] | Ret | 2003–2010 | OTG | 502 | 57.6 ± 11.6 | 319 | 23.1 ± 11.6 | 371-131-0 | nr | nr | nr | nr | 0 | S |
LATG | 251 | 58.4 ± 12.7 | 160 | 23.1 ± 3 | 200-51-0 | 0 | ||||||||
Lu, 2015 China [73] | Ret PSM | 2002–2012 | OTG | 252 | nr | 213 | nr | 183-69-0 | 56 | 45 | 151 | 0 | 0 | M |
TLTG | 252 | 208 | 177-75-0 | 52 | 56 | 144 | 0 | 0 | ||||||
Shen, 2016 China [74] | Ret | 2011–2014 | TLTG | 75 | 58.6 ± 11.6 | 57 | 24.4 ± 3.7 | nr | 23 | 21 | 31 | 0 | nr | S |
RTG | 23 | 57.3 ± 10.5 | 18 | 24.6 ± 3.5 | 10 | 4 | 9 | 0 | ||||||
Song, 2015 Korea [75] | Ret | 2009–2013 | OTG | 134 | 58.5 ± 12.3 | 94 | 22.7 ± 3.7 | nr | nr | nr | nr | nr | nr | M |
TLTG | 74 | 55.9 ± 11.7 | 45 | 22.9 ± 3 | ||||||||||
Lee, 2014 Korea [76] | Ret | 2006–2009 | OTG | 50 | 59 ± 4.1 | 39 | nr | 30-20-0 | 25 | 13 | 12 | 0 | 35 | S |
LATG | 34 | 61 ± 3.5 | 25 | 15-19-0 | 22 | 7 | 5 | 0 | 23 | |||||
Lee M, 2013 Korea [77] | Ret | 2003–2010 | OTG | 50 | 51 ± 22.6 | 32 | 23 ± 3.4 | nr | 24 | 13 | 9 | 4 | nr | S |
LATG | 50 | 50.6 ± 22.1 | 32 | 23.2 ± 3.7 | 24 | 13 | 9 | 4 | ||||||
Bo T, 2013 China [78] | Ret PSM | 2004–2010 | OTG | 117 | 52.6 ± 13.6 | 80 | 21.7 ± 3.8 | 65-52-0 | 4 | 38 | 75 | 0 | 0 | L |
LATG | 117 | 54.5 ± 10.6 | 82 | 21.1 ± 3 | 64-53-0 | 6 | 40 | 71 | 0 | 0 | ||||
Guan G, 2013 China [79] | Ret | 2007–2010 | OTG | 56 | 57.8 ± 9.9 | 40 | nr | nr | 25 | 25 | 6 | 0 | nr | M |
LATG | 41 | 60.7 ± 9.1 | 33 | 18 | 20 | 3 | 0 | |||||||
Kim HS, 2013 Korea [80] | Ret | 2011 | OTG | 207 | 56 ± 8.8 | 134 | 24.1 ± 3.1 | nr | nr | nr | nr | nr | nr | M |
TLTG | 139 | 58 ± 9 | 86 | 23.6 ± 3.1 | ||||||||||
Kim KH, 2014 Korea [81] | Ret PSM | 2002–2010 | OTG | 60 | 56.7 ± 12.4 | 36 | 22.8 ± 3.3 | nr | 40 | 13 | 7 | 0 | nr | M |
LATG | 60 | 57.3 ± 13.2 | 35 | 22.6 ± 3.1 | 39 | 14 | 7 | 0 | ||||||
Jeong O, 2013 Korea [82] | Ret PSM | 2003–2011 | OTG | 122 | 62.6 ± 11.7 | 93 | 23.5 ± 3.2 | 87-35-0 | 99 | 16 | 7 | 0 | 0 | S |
TLTG | 122 | 63.2 ± 11.2 | 89 | 23.1 ± 3.4 | 94-28-0 | 105 | 13 | 4 | 0 | 0 | ||||
Hong, 2013 China [83] | Ret | 2008–2012 | OTG | 104 | 54.5 ± 10.4 | 76 | 24.4 ± 1.2 | 104-0-0 | 5 | 54 | 45 | 0 | 0 | S |
TLTG | 100 | 53.2 ± 11.1 | 71 | 24.1 ± 2.3 | 100-0-0 | 6 | 53 | 41 | 0 | 0 | ||||
Eom BW, 2012 Korea [84] | Ret | 2003–2008 | OTG | 348 | 58.7 ± 11.5 | 254 | 23.8 ± 2.9 | nr | nr | nr | nr | nr | 0 | S |
LATG | 100 | 54.9 ± 13.5 | 57 | 22.7 ± 2.8 | 0 | |||||||||
Kim M, 2011 Korea [85] | Ret | 2009–2010 | OTG | 127 | 57.3 ± 11.1 | 81 | 23.0 ± 2.9 | nr | nr | nr | nr | nr | nr | M |
LATG | 63 | 55.9 ± 12.2 | 43 | 22.7 ± 2.5 | ||||||||||
Yoon, 2012 Korea [86] | Ret | 2009–2011 | RTG | 36 | 53.9 ± 11.7 | 18 | 23.2 ± 2.5 | nr | 29 | 7 | 0 | 0 | 0 | M |
LATG | 65 | 56.9 ± 12.3 | 31 | 23.6 ± 3.4 | 55 | 7 | 3 | 0 | 0 | |||||
Sakuramoto S, 2009 Japan [87] | Ret | 2003–2007 | OTG | 44 | 67.2 ± 9.9 | 10 | 22.5 ± 3.6 | 28-16-0 | 15 | 17 | 12 | 0 | nr | M |
LATG | 30 | 63.7 ± 9.2 | 12 | 21.9 ± 2.7 | 18-12-0 | 25 | 2 | 3 | 0 | |||||
Kawamura, 2009 Japan [88] | Ret | 2003–2008 | OTG | 35 | 65.2 ± 10.7 | 25 | 22.9 ± 2.4 | 35-0-0 | 35 | nr | nr | nr | 0 | M |
TLTG | 46 | 64 ± 10.4 | 36 | 22.8 ± 3 | 46-0-0 | 46 | nr | nr | nr | 0 | ||||
Mochiki, 2008 Japan [89] | Ret | 1998–2007 | OTG | 18 | 63 ± 2.2 | 16 | nr | 15-3-0 | nr | nr | nr | nr | nr | S |
LATG | 20 | 66 ± 2.4 | 16 | 18-2-0 | ||||||||||
Topal B, 2008 Belgium [90] | Pro + Ret | 2003–2006 | OTG | 22 | 69 ± 12 | 17 | nr | 4-13-5 | 7 | 7 | 6 | 2 | nr | S |
TLTG | 38 | 68 ± 12 | 23 | 11-17-10 | 17 | 7 | 10 | 4 | ||||||
Dulucq, 2005 France [91] | Pro | 1995–2004 | OTG | 11 | 67 ± 14 | 5 | nr | nr | nr | nr | nr | nr | nr | S |
TLTG | 8 | 75 ± 8 | 3 |
OTG | LATG | TLTG | RTG | |
---|---|---|---|---|
OC | 18 (5–46) | 18 (5–41) | 17 (0–39) | 16 (3–25) |
SPCs | 7 (0–23) | 6 (0–14) | 6 (0–27) | 6 (0–58) |
AL | 8 (0–27) | 3 (0–10) | 4 (0–28) | 2 (0–25) |
Anastomotic stenosis | 2 (0–9) | 3 (0–9) | 1 (0–10) | 4 (3–17) |
Duodenal stump leak | 1 (0–4) | 1 (0–3) | 1 (0–7) | 2 (0–8) |
Pancreatic complications | 2 (0–6) | 1 (0–6) | 1 (0–5) | 1 (0–3) |
Pulmonary complications | 8 (0–79) | 5 (0–15) | 5 (0–25) | 7 (0–17) |
SSI | 4 (0–18) | 3 (0–29) | 2 (0–10) | 2 (1–17) |
Thrombotic events | 2 (0–6) | 0 (0–1) | 1 (0–4) | 2 (1–11) |
Bleeding | 5 (0–8) | 2 (0–6) | 4 (0–10) | 2 (0–17) |
Transfusion requirement | 17 (6–27) | 4 (0–7) | 10 (0–19) | 10 (4–16) |
Ileus | 2 (0–7) | 1 (0–7) | 2 (0–8) | 2 (0–8) |
Reintervention | 15 (0–18) | 1 (0–5) | 9 (0–16) | 2 (0–11) |
In-hospital mortality | 1 (0–9) | 0 (0–2) | 1 (0–3) | 0 (0–8) |
OT | 208.9 (109.4–323) | 240.5 (150.8–338.7) | 248.3 (144–466) | 297.5 (203.9–550) |
Intraoperative blood loss | 247.9 (99.2–758) | 133.8 (50–299) | 107.2 (10–275.3) | 89 (32.5–207.1) |
No LN retrieved | 36 (15–54.3) | 35 (18–48.4) | 36.3 (18–54) | 39.1 (22–48) |
Time to first flatus | 3.9 (3–5.4) | 4.8 (2.4–23.4) | 3.3 (1.9–5.7) | 6.9 (2.2–23.1) |
Time to first liquid intake | 4.9 (2–10.7) | 4.9 (3.5–9.1) | 3.9 (1.5–9.1) | 3.8 (3.5–3.9) |
Time to first ambulation | 3.7 (0.7–10.4) | 3.6 (0.6–9.1) | 2.2 (1.7–3.1) | 2.3 (1.8–2.8) |
LOS | 14.2 (6–29) | 10.8 (7–19) | 13.1 (5–18) | 9.8 (7–13) |
Outcomes | I2 (95% CrI) | ||||
---|---|---|---|---|---|
OC | OTG | 0.92 (0.81–1.04) | 0.82 (0.73–0.92) | 0.75 (0.59–0.95) | 22.5 (0–43.9) |
1.08 (0.96–1.23) | LATG | 0.89 (0.76–1.04) | 0.81 (0.63–1.05) | ||
1.22 (1.09–1.36) | 1.13 (0.96–1.32) | TLTG | 0.92 (0.74–1.14) | ||
1.33 (1.05–1.68) | 1.23 (0.95–1.58) | 1.09 (0.88–1.36) | RTG | ||
SPCs | OTG | 0.80 (0.59–1.07) | 0.96 (0.75–1.24) | 1.20 (0.75–1.91) | 27.5 (0–50.3) |
1.25 (0.93–1.69) | LATG | 1.21 (0.84–1.75) | 1.50 (0.91–2.49) | ||
1.04 (0.81–1.34) | 0.83 (0.57–1.20) | TLTG | 1.24 (0.80–1.94) | ||
0.84 (0.52–1.33) | 0.67 (0.40–1.10) | 0.80 (0.51–1.26) | RTG | ||
AL | OTG | 1.15 (0.83–1.59) | 1.16 (0.95–1.43) | 1.27 (0.74–2.18) | 17.6 (0–40.9) |
0.87 (0.63–1.20) | LATG | 1.01 (0.70–1.47) | 1.11 (0.61–2.01) | ||
0.86 (0.70–1.05) | 0.99 (0.68–1.43) | TLTG | 1.09 (0.65–1.85) | ||
0.79 (0.46–1.35) | 0.90 (0.50–1.64) | 0.92 (0.54–1.55) | RTG | ||
Anastomotic stenosis | OTG | 1.46 (0.95–2.24) | 1.25 (0.66–2.38) | 2.95 (0.81–10.81) | 0 (0–42.5) |
0.69 (0.45–1.05) | LATG | 0.86 (0.42–1.77) | 2.02 (0.57–7.21) | ||
0.80 (0.42–1.51) | 1.16 (0.57–2.39) | TLTG | 2.35 (0.63–8.78) | ||
0.34 (0.09–1.24) | 0.49 (0.14–1.77) | 0.43 (0.11–1.59) | RTG | ||
Duodenal stump leak | OTG | 0.79 (0.40–1.57) | 1.96 (0.64–5.98) | 1.40 (0.42–4.66) | 0 (0–52.3) |
1.26 (0.64–2.49) | LATG | 2.47 (0.71–8.61) | 1.77 (0.54–5.78) | ||
0.51 (0.17–1.56) | 0.40 (0.12–1.41) | TLTG | 0.72 (0.16–3.18) | ||
0.71 (0.21–2.37) | 0.57 (0.17–1.85) | 1.40 (0.31–6.22) | RTG | ||
Pancreatic complications | OTG | 0.79 (0.40–1.57) | 1.96 (0.64–5.98) | 1.40 (0.42–4.66) | 0 (0–40.2) |
1.26 (0.64–2.49) | LATG | 2.47 (0.71–8.61) | 1.77 (0.54–5.78) | ||
0.51 (0.17–1.56) | 0.40 (0.12–1.41) | TLTG | 0.72 (0.16–3.18) | ||
0.71 (0.21–2.37) | 0.57 (0.17–1.85) | 1.40 (0.21–6.22) | RTG | ||
Pulmonary complications | OTG | 0.96 (0.74–1.24) | 0.99 (0.91–1.08) | 0.84 (0.56–1.26) | 0 (0–33.8) |
1.04 (0.80–1.35) | LATG | 1.03 (0.79–1.35) | 0.88 (0.55–1.40) | ||
1.01 (0.93–1.10) | 0.97 (0.74–1.27) | TLTG | 0.85 (0.57–1.26) | ||
1.19 (0.79–1.78) | 1.14 (0.71–1.83) | 1.18 (0.79–1.75) | RTG | ||
SSI | OTG | 0.58 (0.42–0.81) | 0.90 (0.80–1.00) | 1.13 (0.58–2.21) | 0 (0–33.8) |
1.72 (1.24–2.40) | LATG | 1.54 (1.09–2.18) | 1.94 (0.98–3.85) | ||
1.12 (1.00–1.25) | 0.65 (0.46–0.92) | TLTG | 1.26 (0.65–2.46) | ||
0.89 (0.45–1.73) | 0.51 (0.26–1.02) | 0.79 (0.41–1.55) | RTG | ||
Thrombotic events | OTG | 1.11 (0.25–4.99) | 0.93 (0.70–1.24) | 1.96 (0.59–6.56) | 0 (0–42.5) |
0.90 (0.20–4.02) | LATG | 0.83 (0.18–3.76) | 1.76 (0.31–10.12) | ||
1.08 (0.81–1.44) | 1.2 (0.27–5.41) | TLTG | 2.11 (0.65–6.86) | ||
0.51 (0.15–1.70) | 0.57 (0.10–3.26) | 0.47 (0.15–1.54) | RTG | ||
Bleeding | OTG | 1.05 (0.68–1.62) | 1.28 (1.05–1.57) | 1.72 (0.84–3.51) | 0 (0–34.2) |
0.95 (0.62–1.47) | LATG | 1.22 (0.77–1.95) | 1.64 (0.75–3.57) | ||
0.78 (0.64–0.95) | 0.82 (0.51–1.30) | TLTG | 1.34 (0.67–2.69) | ||
0.58 (0.28–1.19) | 0.61 (0.28–1.33) | 0.75 (0.37–1.50) | RTG | ||
Transfusion requirement | OTG | 0.40 (0.18–0.88) | 0.75 (0.50–1.11) | 0.78 (0.36–1.68) | 57 (13–78.8) |
2.50 (1.13–5.51) | LATG | 1.86 (0.77–4.52) | 1.94 (0.64–5.86) | ||
1.34 (0.90–1.99) | 0.54 (0.22–1.30) | TLTG | 1.04 (0.54–2.02) | ||
1.29 (0.59–2.78) | 0.52 (0.17–1.56) | 0.96 (0.50–1.86) | RTG | ||
Ileus | OTG | 0.88 (0.59–1.31) | 0.97 (0.83–1.13) | 1.03 (0.53–1.97) | 0 (0–33.8) |
1.14 (0.76–1.69) | LATG | 1.10 (0.73–1.67) | 1.17 (0.56–2.41) | ||
1.03 (0.89–1.20) | 0.91 (0.60–1.37) | TLTG | 1.06 (0.56–2.01) | ||
0.98 (0.51–1.88) | 0.86 (0.42–1.77) | 0.95 (0.50–1.80) | RTG | ||
Conversion | LATG | 3.10 (1.09–8.84) | 2.52 (1.35–4.70) | 0 (0–64.8) | |
0.32 (0.11–0.92) | TLTG | 0.81 (0.33–1.97) | |||
0.40 (0.21–0.74) | 1.23 (0.51–2.99) | RTG | |||
Reintervention | OTG | 1.06 (0.27–4.16) | 1.09 (0.67–1.77) | 1.03 (0.38–2.77) | 74.7 (61.7–83.3) |
0.94 (0.24–3.69) | LATG | 1.02 (0.24–4.28) | 0.97 (0.19–4.91) | ||
0.92 (0.57–1.50) | 0.98 (0.23–4.10) | TLTG | 0.95 (0.40–2.27) | ||
0.97 (0.36–2.60) | 1.03 (0.20–5.19) | 1.05 (0.44–2.51) | RTG | ||
In-hospital mortality | OTG | 0.89 (0.46–1.74) | 1.04 (0.80–1.36) | 1.88 (0.70–5.11) | 74.7 (61.7–83.3) |
1.12 (0.58–2.17) | LATG | 1.17 (0.58–2.35) | 2.11 (0.71–6.28) | ||
0.96 (0.74–1.25) | 0.86 (0.43–1.72) | TLTG | 1.80 (0.67–4.89) | ||
0.53 (0.20–1.44) | 0.47 (0.16–1.42) | 0.55 (0.20–1.50) | RTG | ||
OT | OTG | 0.95 (0.48; 1.41) | 1.14 (0.71; 1.57) | 2.02 (1.30; 2.74) | 98.3 (98.1–98.5) |
−0.95 (−1.41; −0.48) | LATG | 0.19 (−0.37; 0.76) | 1.07 (0.31; 1.84) | ||
−1.14 (−1.57; −0.71) | −0.19 (−0.76; 0.37) | TLTG | 0.88 (0.23; 1.53) | ||
−2.02 (−2.74; −1.3) | −1.07 (−1.84; −0.31) | −0.88 (−1.53; −0.23) | RTG | ||
Intraoperative blood loss | OTG | −1.15 (−1.54; −0.76) | −1.43 (−1.78; −1.08) | −1.68 (−2.28; −1.08) | 98.45 (87.3–99.2) |
1.15 (0.76; 1.54) | LATG | −0.27 (−0.73; 0.19) | −0.53 (−1.17; 0.12) | ||
1.43 (1.08; 1.78) | 0.27 (−0.19; 0.73) | TLTG | −0.25 (−0.78; 0.27) | ||
1.68 (1.08; 2.28) | 0.53 (−0.12; 1.17) | 0.25 (−0.27; 0.78) | RTG | ||
No LN retrieved | OTG | −0.22 (−0.39; −0.04) | 0.06 (−0.11; 0.22) | 0.23 (−0.05; 0.51) | 98.3 (77.3–98.4) |
0.22 (0.04–0.39) | LATG | 0.28 (0.06; 0.49) | 0.44 (0.15; 0.74) | ||
−0.06 (−0.22; 0.11) | −0.28 (−0.49; −0.06) | TLTG | 0.17 (−0.08; 0.42) | ||
−0.23 (−0.51; 0.05) | −0.44 (−0.74; −0.15) | −0.17 (−0.42; 0.08) | RTG | ||
Time to first flatus | OTG | −0.97 (−1.33; −0.61) | −0.71 (−1.04; −0.38) | −1.22 (−1.85; −0.59) | 90.4 (67.3–99.4) |
0.97 (0.61; 1.33) | LATG | 0.26 (−0.16; 0.69) | −0.25 (−0.89; 0.38) | ||
0.71 (0.38; 1.04) | −0.26 (−0.69; 0.16) | TLTG | −0.51 (−1.10; 0.07) | ||
1.22 (0.59; 1.85) | 0.25 (−0.38; 0.89) | 0.51 (−0.07; 1.10) | RTG | ||
Time to first liquid intake | OTG | −0.46 (−1.35; 0.44) | −0.87 (−1.52; −0.21) | −1.20 (−2.54; 0.14) | 99.3 (99.2–99.4) |
0.46 (−0.44; 1.35) | LATG | −0.41 (−1.39; 0.56) | −0.74 (−2.27; 0.78) | ||
0.87 (0.21; 1.52) | 0.41 (−0.56; 1.39) | TLTG | −0.33 (−1.5; 0.84) | ||
1.20 (−0.14; 2.54) | 0.74 (−0.78; 2.27) | 0.33 (−0.84; 1.50) | RTG | ||
Time to first ambulation | OTG | −0.80 (−1.63; 0.03) | −0.81 (−1.52; −0.09) | −1.02 (−2.29; 0.26) | 97.7 (97–98.3) |
0.80 (−0.03; 1.63) | LATG | −0.01 (−1.01; 0.99) | −0.22 (−1.67; 1.23) | ||
0.81 (0.09; 1.01) | 0.01 (−0.99; 1.01) | TLTG | −0.21 (−1.27; 0.85) | ||
1.02 (−0.26; 2.29) | 0.22 (−1.23; 1.67) | 0.21 (−0.85; 1.27) | RTG | ||
LOS | OTG | −0.46 (−0.71; −0.21) | −0.55 (−0.77; −0.33) | −0.84 (−1.22; −0.45) | 96.8 (96.4–97.2) |
0.46 (0.21; 0.71) | LATG | −0.09 (−0.39; 0.21) | −0.38 (−0.79; 0.03) | ||
0.55 (0.33–0.77) | 0.09 (−0.21; 0.39) | TLTG | −0.29 (−0.64; 0.06) | ||
0.84 (0.45; 1.22) | 0.38 (−0.03; 0.79) | 0.29 (−0.06; 0.64) | RTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manara, M.; Aiolfi, A.; Bonitta, G.; Schlanger, D.; Popa, C.; Lombardo, F.; Manfredini, L.; Biondi, A.; Bonavina, L.; Bona, D. Short-Term Outcomes Analysis Comparing Open, Lap-Assisted, Totally Laparoscopic, and Robotic Total Gastrectomy for Gastric Cancer: A Network Meta-Analysis. Cancers 2024, 16, 3404. https://doi.org/10.3390/cancers16193404
Manara M, Aiolfi A, Bonitta G, Schlanger D, Popa C, Lombardo F, Manfredini L, Biondi A, Bonavina L, Bona D. Short-Term Outcomes Analysis Comparing Open, Lap-Assisted, Totally Laparoscopic, and Robotic Total Gastrectomy for Gastric Cancer: A Network Meta-Analysis. Cancers. 2024; 16(19):3404. https://doi.org/10.3390/cancers16193404
Chicago/Turabian StyleManara, Michele, Alberto Aiolfi, Gianluca Bonitta, Diana Schlanger, Calin Popa, Francesca Lombardo, Livia Manfredini, Antonio Biondi, Luigi Bonavina, and Davide Bona. 2024. "Short-Term Outcomes Analysis Comparing Open, Lap-Assisted, Totally Laparoscopic, and Robotic Total Gastrectomy for Gastric Cancer: A Network Meta-Analysis" Cancers 16, no. 19: 3404. https://doi.org/10.3390/cancers16193404
APA StyleManara, M., Aiolfi, A., Bonitta, G., Schlanger, D., Popa, C., Lombardo, F., Manfredini, L., Biondi, A., Bonavina, L., & Bona, D. (2024). Short-Term Outcomes Analysis Comparing Open, Lap-Assisted, Totally Laparoscopic, and Robotic Total Gastrectomy for Gastric Cancer: A Network Meta-Analysis. Cancers, 16(19), 3404. https://doi.org/10.3390/cancers16193404