Secondary Transcriptomic Analysis of Triple-Negative Breast Cancer Reveals Reliable Universal and Subtype-Specific Mechanistic Markers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Preprocessing of RNA-Sequencing Data
2.3. TNBC Subtype Prediction
2.4. Mechanistic Marker Prediction Using Read Count Data
2.5. Additional Analysis of Differentially Expressed Genes
2.6. Drug Prediction Using Modulated Pathways and Predicted Mechanistic Markers
2.7. In Vitro TNBC RNA-Seq Analysis
2.8. In Vitro Immunoblots
3. Results
3.1. Search of Gene Expression Omnibus Yields 196 Bulk RNA-Seq TNBC Samples
3.2. Differentially Expressed Gene Analysis Reveals Known and New TNBC-Related Transcripts
3.3. Gene Ontology Enrichment Reveals No Significant Terms
3.4. Sparse Pathway Modulation Results Precluded Pathway-Based Drug Prediction
3.5. TNBC Samples Do Not Cluster by Predicted TNBC Subtype or Study of Origin
3.6. TNMD as a Novel TNBC Mechanistic Marker
3.7. CIDEC, CD300LG, ASPM, and RGS1 Are 98.9% Effective at Delineating TNBC from Healthy Samples
3.8. Subtype-Differentiating Mechanistic Markers Include IFNG, AIM2, and FCAMR for IM Subtype
3.9. Predicted Mechanistic Markers Contain Potential Repurposable Drug Options
3.10. Top DEGs and Mechanistic Markers Include Gene Products Involved in Lipid Utilization, Mitosis, and Intracellular Transport
3.11. TNBC Top Gene Expression Profiles Validated In Vitro via CellMiner RNA-Seq
3.12. KIF14 and TNMD Gene Products Are Expressed at Expected Levels In Vitro
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaidi, Z.; Dib, H.A. Abstract 4191: The Worldwide Female Breast Cancer Incidence and Survival, 2018. Cancer Res. 2019, 79, 4191. [Google Scholar] [CrossRef]
- Alam, M.S.; Sultana, A.; Wang, G.; Haque Mollah, M.N. Gene Expression Profile Analysis to Discover Molecular Signatures for Early Diagnosis and Therapies of Triple-Negative Breast Cancer. Front. Mol. Biosci. 2022, 9, 1049741. [Google Scholar] [CrossRef] [PubMed]
- Balsa, L.M.; Rodriguez, M.R.; Ferraresi-Curotto, V.; Parajón-Costa, B.S.; Gonzalez-Baró, A.C.; León, I.E. Finding New Molecular Targets of Two Copper(II)-Hydrazone Complexes on Triple-Negative Breast Cancer Cells Using Mass-Spectrometry-Based Quantitative Proteomics. Int. J. Mol. Sci. 2023, 24, 7531. [Google Scholar] [CrossRef] [PubMed]
- Anders, C.; Carey, L.A. Understanding and Treating Triple-Negative Breast Cancer. Oncol. Williston Park N. 2008, 22, 1233–1239, discussion 1239–1240, 1243. [Google Scholar]
- Collignon, J.; Lousberg, L.; Schroeder, H.; Jerusalem, G. Triple-Negative Breast Cancer: Treatment Challenges and Solutions. Breast Cancer Dove Med. Press 2016, 8, 93–107. [Google Scholar] [CrossRef]
- Yin, L.; Duan, J.-J.; Bian, X.-W.; Yu, S. Triple-Negative Breast Cancer Molecular Subtyping and Treatment Progress. Breast Cancer Res. 2020, 22, 61. [Google Scholar] [CrossRef]
- Chumsri, S.; Howes, T.; Bao, T.; Sabnis, G.; Brodie, A. Aromatase, Aromatase Inhibitors, and Breast Cancer. J. Steroid Biochem. Mol. Biol. 2011, 125, 13–22. [Google Scholar] [CrossRef]
- Chalakur-Ramireddy, N.K.R.; Pakala, S.B. Combined Drug Therapeutic Strategies for the Effective Treatment of Triple Negative Breast Cancer. Biosci. Rep. 2018, 38, BSR20171357. [Google Scholar] [CrossRef]
- Wang, Q.; Gun, M.; Hong, X. Induced Tamoxifen Resistance Is Mediated by Increased Methylation of E-Cadherin in Estrogen Receptor-Expressing Breast Cancer Cells. Sci. Rep. 2019, 9, 14140. [Google Scholar] [CrossRef]
- Liedtke, C.; Mazouni, C.; Hess, K.R.; André, F.; Tordai, A.; Mejia, J.A.; Symmans, W.F.; Gonzalez-Angulo, A.M.; Hennessy, B.; Green, M.; et al. Response to Neoadjuvant Therapy and Long-Term Survival in Patients With Triple-Negative Breast Cancer. J. Clin. Oncol. 2008, 26, 1275–1281. [Google Scholar] [CrossRef]
- Dass, S.A.; Tan, K.L.; Selva Rajan, R.; Mokhtar, N.F.; Mohd Adzmi, E.R.; Wan Abdul Rahman, W.F.; Tengku Din, T.A.D.A.-A.; Balakrishnan, V. Triple Negative Breast Cancer: A Review of Present and Future Diagnostic Modalities. Medicina 2021, 57, 62. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Zhang, H.; Zhang, S.-D.; Cheng, X.-Y.; Zheng, S.-M.; Sun, Y.-H.; Zhang, D.-W.; Jiang, Y.; Tian, J.-W. Mammographic and Clinicopathological Features of Triple-Negative Breast Cancer. Br. J. Radiol. 2014, 87, 20130496. [Google Scholar] [CrossRef]
- McMahon, B.; Cohen, C.; Brown, R.S.; El-Serag, H.; Ioannou, G.N.; Lok, A.S.; Roberts, L.R.; Singal, A.G.; Block, T. Opportunities to Address Gaps in Early Detection and Improve Outcomes of Liver Cancer. JNCI Cancer Spectr. 2023, 7, pkad034. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.M.; Jensen, S.; Pickett, B.E. A Signaling Pathway-Driven Bioinformatics Pipeline for Predicting Therapeutics against Emerging Infectious Diseases. F1000Research 2021, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.S.; Van Vleet, T.R.; Ciurlionis, R.; Buck, W.R.; Mittelstadt, S.W.; Blomme, E.A.G.; Liguori, M.J. Comparison of RNA-Seq and Microarray Gene Expression Platforms for the Toxicogenomic Evaluation of Liver From Short-Term Rat Toxicity Studies. Front. Genet. 2018, 9, 636. [Google Scholar] [CrossRef]
- Wouters, O.J.; McKee, M.; Luyten, J. Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009–2018. JAMA 2020, 323, 844–853. [Google Scholar] [CrossRef]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon Provides Fast and Bias-Aware Quantification of Transcript Expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef]
- Clough, E.; Barrett, T. The Gene Expression Omnibus Database. In Statistical Genomics: Methods and Protocols; Mathé, E., Davis, S., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2016; pp. 93–110. ISBN 978-1-4939-3578-9. [Google Scholar]
- Wilson, M.M.; Callens, C.; Le Gallo, M.; Mironov, S.; Ding, Q.; Salamagnon, A.; Chavarria, T.E.; Viel, R.; Peasah, A.D.; Bhutkar, A.; et al. An EMT-Primary Cilium-GLIS2 Signaling Axis Regulates Mammogenesis and Claudin-Low Breast Tumorigenesis. Sci. Adv. 2021, 7, eabf6063. [Google Scholar] [CrossRef]
- Savage, P.; Pacis, A.; Kuasne, H.; Liu, L.; Lai, D.; Wan, A.; Dankner, M.; Martinez, C.; Muñoz-Ramos, V.; Pilon, V.; et al. Chemogenomic Profiling of Breast Cancer Patient-Derived Xenografts Reveals Targetable Vulnerabilities for Difficult-to-Treat Tumors. Commun. Biol. 2020, 3, 310. [Google Scholar] [CrossRef]
- Stover, D.G.; Gil Del Alcazar, C.R.; Brock, J.; Guo, H.; Overmoyer, B.; Balko, J.; Xu, Q.; Bardia, A.; Tolaney, S.M.; Gelman, R.; et al. Phase II Study of Ruxolitinib, a Selective JAK1/2 Inhibitor, in Patients with Metastatic Triple-Negative Breast Cancer. NPJ Breast Cancer 2018, 4, 10. [Google Scholar] [CrossRef]
- Xu, S.; Liu, H.; Wan, L.; Zhang, W.; Wang, Q.; Zhang, S.; Shang, S.; Zhang, Y.; Pang, D. The MS-lincRNA Landscape Reveals a Novel lincRNA BCLIN25 That Contributes to Tumorigenesis by Upregulating ERBB2 Expression via Epigenetic Modification and RNA-RNA Interactions in Breast Cancer. Cell Death Dis. 2019, 10, 920. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sui, S.; Wu, H.; Zhang, J.; Zhang, X.; Xu, S.; Pang, D. The Transcriptional Landscape of lncRNAs Reveals the Oncogenic Function of LINC00511 in ER-Negative Breast Cancer. Cell Death Dis. 2019, 10, 599. [Google Scholar] [CrossRef]
- Xu, S.; Wang, P.; Zhang, J.; Wu, H.; Sui, S.; Zhang, J.; Wang, Q.; Qiao, K.; Yang, W.; Xu, H.; et al. Ai-lncRNA EGOT Enhancing Autophagy Sensitizes Paclitaxel Cytotoxicity via Upregulation of ITPR1 Expression by RNA-RNA and RNA-Protein Interactions in Human Cancer. Mol. Cancer 2019, 18, 89. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.; Wang, Q.; Ning, S.; Wu, J.; Zhang, X.; Chen, Y.; Xu, S. Landscape of Tumor Suppressor Long Noncoding RNAs in Breast Cancer. J. Exp. Clin. Cancer Res. CR 2019, 38, 79. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Kong, D.; Chen, Q.; Ping, Y.; Pang, D. Oncogenic Long Noncoding RNA Landscape in Breast Cancer. Mol. Cancer 2017, 16, 129. [Google Scholar] [CrossRef]
- Kim, T.; Han, S.; Chun, Y.; Yang, H.; Min, H.; Jeon, S.Y.; Kim, J.-I.; Moon, H.-G.; Lee, D. Comparative Characterization of 3D Chromatin Organization in Triple-Negative Breast Cancers. Exp. Mol. Med. 2022, 54, 585–600. [Google Scholar] [CrossRef]
- Barrón-Gallardo, C.A.; Garcia-Chagollán, M.; Morán-Mendoza, A.J.; Delgadillo-Cristerna, R.; Martínez-Silva, M.G.; Aguilar-Lemarroy, A.; Jave-Suárez, L.F. Transcriptomic Analysis of Breast Cancer Patients Sensitive and Resistant to Chemotherapy: Looking for Overall Survival and Drug Resistance Biomarkers. Technol. Cancer Res. Treat. 2022, 21, 15330338211068965. [Google Scholar] [CrossRef]
- Barrón-Gallardo, C.A.; Garcia-Chagollán, M.; Morán-Mendoza, A.J.; Delgadillo-Cristerna, R.; Martínez-Silva, M.G.; Villaseñor-García, M.M.; Aguilar-Lemarroy, A.; Jave-Suárez, L.F. A Gene Expression Signature in HER2+ Breast Cancer Patients Related to Neoadjuvant Chemotherapy Resistance, Overall Survival, and Disease-Free Survival. Front. Genet. 2022, 13, 991706. [Google Scholar] [CrossRef]
- Bartlett, T.E.; Evans, I.; Jones, A.; Barrett, J.E.; Haran, S.; Reisel, D.; Papaikonomou, K.; Jones, L.; Herzog, C.; Pashayan, N.; et al. Antiprogestins Reduce Epigenetic Field Cancerization in Breast Tissue of Young Healthy Women. Genome Med. 2022, 14, 64. [Google Scholar] [CrossRef]
- Marino, N.; German, R.; Podicheti, R.; Rockey, P.; Sandusky, G.E.; Temm, C.J.; Nakshatri, H.; Addison, R.J.; Selman, B.; Althouse, S.K.; et al. FAM83A Is a Potential Biomarker for Breast Cancer Initiation. Biomark. Res. 2022, 10, 8. [Google Scholar] [CrossRef]
- Rapier-Sharman, N.; Krapohl, J.; Beausoleil, E.J.; Gifford, K.T.L.; Hinatsu, B.R.; Hoffmann, C.S.; Komer, M.; Scott, T.M.; Pickett, B.E. Preprocessing of Public RNA-Sequencing Datasets to Facilitate Downstream Analyses of Human Diseases. Data 2021, 6, 75. [Google Scholar] [CrossRef]
- Rapier-Sharman, N.; Clancy, J.; Pickett, B.E. Joint Secondary Transcriptomic Analysis of Non-Hodgkin’s B-Cell Lymphomas Predicts Reliance on Pathways Associated with the Extracellular Matrix and Robust Diagnostic Biomarkers. J. Bioinforma. Syst. Biol. 2022, 5, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Clancy, J.; Hoffmann, C.S.; Pickett, B.E. Transcriptomics Secondary Analysis of Severe Human Infection with SARS-CoV-2 Identifies Gene Expression Changes and Predicts Three Transcriptional Biomarkers in Leukocytes. Comput. Struct. Biotechnol. J. 2023, 21, 1403–1413. [Google Scholar] [CrossRef] [PubMed]
- Moreno, C.; Bybee, E.; Tellez Freitas, C.M.; Pickett, B.E.; Weber, K.S. Meta-Analysis of Two Human RNA-Seq Datasets to Determine Periodontitis Diagnostic Biomarkers and Drug Target Candidates. Int. J. Mol. Sci. 2022, 23, 5580. [Google Scholar] [CrossRef] [PubMed]
- Orjuela, S.; Huang, R.; Hembach, K.M.; Robinson, M.D.; Soneson, C. ARMOR: An Automated Reproducible MOdular Workflow for Preprocessing and Differential Analysis of RNA-Seq Data. G3 Bethesda Md. 2019, 9, 2089–2096. [Google Scholar] [CrossRef]
- Köster, J.; Rahmann, S. Snakemake--a Scalable Bioinformatics Workflow Engine. Bioinforma. Oxf. Engl. 2012, 28, 2520–2522. [Google Scholar] [CrossRef]
- Babraham Bioinformatics—Trim Galore! Available online: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (accessed on 7 June 2021).
- Babraham Bioinformatics—FastQC A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 7 June 2021).
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinforma. Oxf. Engl. 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Liberzon, A.; Subramanian, A.; Pinchback, R.; Thorvaldsdóttir, H.; Tamayo, P.; Mesirov, J.P. Molecular Signatures Database (MSigDB) 3.0. Bioinformatics 2011, 27, 1739–1740. [Google Scholar] [CrossRef]
- Wu, D.; Smyth, G.K. Camera: A Competitive Gene Set Test Accounting for Inter-Gene Correlation. Nucleic Acids Res. 2012, 40, e133. [Google Scholar] [CrossRef]
- Gifford, K.T.L.; Pickett, B.E. Comparative Meta-Analysis of Host Transcriptional Response during Streptococcus Pneumoniae Carriage or Infection. Microb. Pathog. 2022, 173, 105816. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Gray, W.H.; Lehmann, B.D.; Bauer, J.A.; Shyr, Y.; Pietenpol, J.A. TNBCtype: A Subtyping Tool for Triple-Negative Breast Cancer. Cancer Inform. 2012, 11, CIN.S9983. [Google Scholar] [CrossRef] [PubMed]
- TNBC_Mechanistic_Marker_Prediction/PCA_Visualization_JMN_TNBC.R. Available online: https://github.com/naomi-rapier-sharman/TNBC_mechanistic_marker_prediction/blob/main/PCA_visualization_JMN_TNBC.R (accessed on 1 October 2024).
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13 August 2016; pp. 785–794. [Google Scholar]
- TNBC_mechanistic_marker_prediction/TNBC_subtype_XGBoost_NLRS_BEP.R. Available online: https://github.com/naomi-rapier-sharman/TNBC_mechanistic_marker_prediction/blob/main/TNBC_subtype_XGBoost_NLRS_BEP.R (accessed on 1 October 2024).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- TNBC_Mechanistic_Marker_Prediction/Heatmap_Visualization_JMN_TNBC.R. Available online: https://github.com/naomi-rapier-sharman/TNBC_mechanistic_marker_prediction/blob/main/heatmap_visualization_JMN_TNBC.R (accessed on 1 October 2024).
- Jensen, L.J.; Kuhn, M.; Stark, M.; Chaffron, S.; Creevey, C.; Muller, J.; Doerks, T.; Julien, P.; Roth, A.; Simonovic, M.; et al. STRING 8--a Global View on Proteins and Their Functional Interactions in 630 Organisms. Nucleic Acids Res. 2009, 37, D412–D416. [Google Scholar] [CrossRef]
- Miller, D.T.; Lee, K.; Abul-Husn, N.S.; Amendola, L.M.; Brothers, K.; Chung, W.K.; Gollob, M.H.; Gordon, A.S.; Harrison, S.M.; Hershberger, R.E.; et al. ACMG SF v3.1 List for Reporting of Secondary Findings in Clinical Exome and Genome Sequencing: A Policy Statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2022, 24, 1407–1414. [Google Scholar] [CrossRef]
- Tarca, A.L.; Draghici, S.; Khatri, P.; Hassan, S.S.; Mittal, P.; Kim, J.-S.; Kim, C.J.; Kusanovic, J.P.; Romero, R. A Novel Signaling Pathway Impact Analysis. Bioinforma. Oxf. Engl. 2009, 25, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef]
- Mi, H.; Muruganujan, A.; Casagrande, J.T.; Thomas, P.D. Large-Scale Gene Function Analysis with the PANTHER Classification System. Nat. Protoc. 2013, 8, 1551–1566. [Google Scholar] [CrossRef]
- Fabregat, A.; Jupe, S.; Matthews, L.; Sidiropoulos, K.; Gillespie, M.; Garapati, P.; Haw, R.; Jassal, B.; Korninger, F.; May, B.; et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018, 46, D649–D655. [Google Scholar] [CrossRef]
- Nishimura, D. BioCarta. Biotech. Softw. Internet Rep. 2001, 2, 117–120. [Google Scholar] [CrossRef]
- Ochoa, D.; Hercules, A.; Carmona, M.; Suveges, D.; Gonzalez-Uriarte, A.; Malangone, C.; Miranda, A.; Fumis, L.; Carvalho-Silva, D.; Spitzer, M.; et al. Open Targets Platform: Supporting Systematic Drug-Target Identification and Prioritisation. Nucleic Acids Res. 2021, 49, D1302–D1310. [Google Scholar] [CrossRef]
- TNBC_Mechanistic_Marker_Prediction/Minip2t_Molecular_Mechanisms.R. Available online: https://github.com/naomi-rapier-sharman/TNBC_mechanistic_marker_prediction/blob/main/miniP2T_molecular_mechanisms.R (accessed on 1 October 2024).
- Workman, P. The NCI-60 Human Tumor Cell Line Screen: A Catalyst for Progressive Evolution of Models for Discovery and Development of Cancer Drugs. Cancer Res. 2023, 83, 3170–3173. [Google Scholar] [CrossRef] [PubMed]
- Shankavaram, U.T.; Varma, S.; Kane, D.; Sunshine, M.; Chary, K.K.; Reinhold, W.C.; Pommier, Y.; Weinstein, J.N. CellMiner: A Relational Database and Query Tool for the NCI-60 Cancer Cell Lines. BMC Genomics 2009, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Reinhold, W.C.; Sunshine, M.; Liu, H.; Varma, S.; Kohn, K.W.; Morris, J.; Doroshow, J.; Pommier, Y. CellMiner: A Web-Based Suite of Genomic and Pharmacologic Tools to Explore Transcript and Drug Patterns in the NCI-60 Cell Line Set. Cancer Res. 2012, 72, 3499–3511. [Google Scholar] [CrossRef] [PubMed]
- Haroldpimentel, The Farrago. What the FPKM? A Review of RNA-Seq Expression Units. Available online: https://haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review-rna-seq-expression-units/ (accessed on 1 October 2024).
- Minguzzi, S.; Selcuklu, S.D.; Spillane, C.; Parle-McDermott, A. An NTD-Associated Polymorphism in the 3’ UTR of MTHFD1L Can Affect Disease Risk by Altering miRNA Binding. Hum. Mutat. 2014, 35, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of Human Triple-Negative Breast Cancer Subtypes and Preclinical Models for Selection of Targeted Therapies. J. Clin. Investig. 2011, 121, 2750–2767. [Google Scholar] [CrossRef]
- TNBC_Mechanistic_Marker_Prediction/CellMiner_RNA_Seq_In_Vitro_logfcs.R. Available online: https://github.com/naomi-rapier-sharman/TNBC_mechanistic_marker_prediction/blob/main/CellMiner_RNA_seq_in_vitro_logfcs.R (accessed on 1 October 2024).
- Asghar, K.; Loya, A.; Rana, I.A.; Tahseen, M.; Ishaq, M.; Farooq, A.; Bakar, M.A.; Masood, I. Indoleamine 2,3-Dioxygenase Expression and Overall Survival in Patients Diagnosed with Breast Cancer in Pakistan. Cancer Manag. Res. 2019, 11, 475–481. [Google Scholar] [CrossRef]
- Biswas, P.; Stuehr, D.J. Indoleamine Dioxygenase and Tryptophan Dioxygenase Activities Are Regulated through Control of Cell Heme Allocation by Nitric Oxide. J. Biol. Chem. 2023, 299, 104753. [Google Scholar] [CrossRef]
- Biswas, P.; Dai, Y.; Stuehr, D.J. Indoleamine Dioxygenase and Tryptophan Dioxygenase Activities Are Regulated through GAPDH- and Hsp90-Dependent Control of Their Heme Levels. Free Radic. Biol. Med. 2022, 180, 179–190. [Google Scholar] [CrossRef]
- Greene, L.I.; Bruno, T.C.; Christenson, J.L.; D’Alessandro, A.; Culp-Hill, R.; Torkko, K.; Borges, V.F.; Slansky, J.E.; Richer, J.K. A Role for Tryptophan-2,3-Dioxygenase in CD8 T-Cell Suppression and Evidence of Tryptophan Catabolism in Breast Cancer Patient Plasma. Mol. Cancer Res. MCR 2019, 17, 131–139. [Google Scholar] [CrossRef]
- D’Amato, N.C.; Rogers, T.J.; Gordon, M.A.; Greene, L.I.; Cochrane, D.R.; Spoelstra, N.S.; Nemkov, T.G.; D’Alessandro, A.; Hansen, K.C.; Richer, J.K. A TDO2-AhR Signaling Axis Facilitates Anoikis Resistance and Metastasis in Triple-Negative Breast Cancer. Cancer Res. 2015, 75, 4651–4664. [Google Scholar] [CrossRef] [PubMed]
- Viti, F.; Mosca, E.; Merelli, I.; Calabria, A.; Alfieri, R.; Milanesi, L. Ontological Enrichment of the Genes-to-Systems Breast Cancer Database. In Proceedings of the Metadata and Semantic Research; Sartori, F., Sicilia, M.Á., Manouselis, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 171–182. [Google Scholar]
- Uehiro, N.; Sato, F.; Pu, F.; Tanaka, S.; Kawashima, M.; Kawaguchi, K.; Sugimoto, M.; Saji, S.; Toi, M. Circulating Cell-Free DNA-Based Epigenetic Assay Can Detect Early Breast Cancer. Breast Cancer Res. 2016, 18, 129. [Google Scholar] [CrossRef] [PubMed]
- Jian, W.; Deng, X.-C.; Munankarmy, A.; Borkhuu, O.; Ji, C.-L.; Wang, X.-H.; Zheng, W.-F.; Yu, Y.-H.; Zhou, X.-Q.; Fang, L. KIF23 Promotes Triple Negative Breast Cancer through Activating Epithelial-Mesenchymal Transition. Gland Surg. 2021, 10, 1941–1950. [Google Scholar] [CrossRef]
- Li, Z.; Yang, H.-Y.; Zhang, X.-L.; Zhang, X.; Huang, Y.-Z.; Dai, X.-Y.; Shi, L.; Zhou, G.-R.; Wei, J.-F.; Ding, Q. Kinesin Family Member 23, Regulated by FOXM1, Promotes Triple Negative Breast Cancer Progression via Activating Wnt/β-Catenin Pathway. J. Exp. Clin. Cancer Res. 2022, 41, 168. [Google Scholar] [CrossRef]
- Li, Z.; Haitao, W. Over-expression of kinesin family member 23 (KIF23) is associated with the development and prognosis of triple-negative breast cancer. Int. J. Biomed. Eng. 2021, 44, 295–299. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, W.-R.; Yang, L.-C.; Wang, J.; Sun, J.-Y.; Zhang, W.-W.; He, Z.-Y.; Wu, S.-G. KIF11 Functions as an Oncogene and Is Associated with Poor Outcomes from Breast Cancer. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2018, 51, 1207–1221. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Zhuang, H.; Xia, R.; Gan, L.; Wu, Y.; Ma, J.; Sun, Y.; Zhuang, Z. KIF11 Is Required for Proliferation and Self-Renewal of Docetaxel Resistant Triple Negative Breast Cancer Cells. Oncotarget 2017, 8, 92106–92118. [Google Scholar] [CrossRef]
- Pariyar, M.; Johns, A.; Thorne, R.F.; Scott, R.J.; Avery-Kiejda, K.A. Copy Number Variation in Triple Negative Breast Cancer Samples Associated with Lymph Node Metastasis. Neoplasia 2021, 23, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Singel, S.M.; Cornelius, C.; Zaganjor, E.; Batten, K.; Sarode, V.R.; Buckley, D.L.; Peng, Y.; John, G.B.; Li, H.C.; Sadeghi, N.; et al. KIF14 Promotes AKT Phosphorylation and Contributes to Chemoresistance in Triple-Negative Breast Cancer. Neoplasia 2014, 16, 247–256.e2. [Google Scholar] [CrossRef]
- Hung, P.-F.; Hong, T.-M.; Hsu, Y.-C.; Chen, H.-Y.; Chang, Y.-L.; Wu, C.-T.; Chang, G.-C.; Jou, Y.-S.; Pan, S.-H.; Yang, P.-C. The Motor Protein KIF14 Inhibits Tumor Growth and Cancer Metastasis in Lung Adenocarcinoma. PLoS ONE 2013, 8, e61664. [Google Scholar] [CrossRef]
- Gerashchenko, T.S.; Zolotaryova, S.Y.; Kiselev, A.M.; Tashireva, L.A.; Novikov, N.M.; Krakhmal, N.V.; Cherdyntseva, N.V.; Zavyalova, M.V.; Perelmuter, V.M.; Denisov, E.V. The Activity of KIF14, Mieap, and EZR in a New Type of the Invasive Component, Torpedo-Like Structures, Predetermines the Metastatic Potential of Breast Cancer. Cancers 2020, 12, 1909. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, M.; Yoshimaru, T.; Matsuo, T.; Kiyotani, K.; Miyoshi, Y.; Tanahashi, T.; Rokutan, K.; Yamaguchi, R.; Saito, A.; Imoto, S. Molecular Features of Triple Negative Breast Cancer Cells by Genome-Wide Gene Expression Profiling Analysis. Int. J. Oncol. 2013, 42, 478–506. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Lu, M.; Cui, Q.; Zhang, D.; Kong, D.; Liao, X.; Ren, J.; Gong, Y.; Wu, G. Overexpression of ASPM, CDC20, and TTK Confer a Poorer Prognosis in Breast Cancer Identified by Gene Co-Expression Network Analysis. Front. Oncol. 2019, 9, 310. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.J.; Cheung, A.; Ng, J.C.F.; Laddach, R.; Chenoweth, A.M.; Crescioli, S.; Fittall, M.; Dominguez-Rodriguez, D.; Roberts, J.; Levi, D. Tumor-Infiltrating B Lymphocyte Profiling Identifies IgG-Biased, Clonally Expanded Prognostic Phenotypes in Triple-Negative Breast Cancer. Cancer Res. 2021, 81, 4290–4304. [Google Scholar] [CrossRef]
- Huang, D.; Chen, X.; Zeng, X.; Lao, L.; Li, J.; Xing, Y.; Lu, Y.; Ouyang, Q.; Chen, J.; Yang, L. Targeting Regulator of G Protein Signaling 1 in Tumor-Specific T Cells Enhances Their Trafficking to Breast Cancer. Nat. Immunol. 2021, 22, 865–879. [Google Scholar] [CrossRef]
- Kung, P.-P.; Martinez, R.; Zhu, Z.; Zager, M.; Blasina, A.; Rymer, I.; Hallin, J.; Xu, M.; Carroll, C.; Chionis, J. Chemogenetic Evaluation of the Mitotic Kinesin CENP-E Reveals a Critical Role in Triple-Negative Breast Cancer. Mol. Cancer Ther. 2014, 13, 2104–2115. [Google Scholar] [CrossRef]
- Wang, D.; Xu, W.; Huang, M.; Ma, W.; Liu, Y.; Zhou, X.; Yang, Q.; Mu, K. CENPF Knockdown Inhibits Adriamycin Chemoresistance in Triple-Negative Breast Cancer via the Rb-E2F1 Axis. Sci. Rep. 2023, 13, 1803. [Google Scholar] [CrossRef]
- Malvia, S.; Bagadi, S.A.R.; Pradhan, D.; Chintamani, C.; Bhatnagar, A.; Arora, D.; Sarin, R.; Saxena, S. Study of Gene Expression Profiles of Breast Cancers in Indian Women. Sci. Rep. 2019, 9, 10018. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Bhat, N.K.; Bhat, H.K. Partial Inhibition of Estrogen-Induced Mammary Carcinogenesis in Rats by Tamoxifen: Balance between Oxidant Stress and Estrogen Responsiveness. PLoS ONE 2011, 6, 25125. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, L.; Shi, L.; Yun, F.; Liu, X.; Chen, Y.; Chen, C.; Ren, Y.; Jia, Y. Transcriptome Profiling Revealed Multiple Genes and ECM-Receptor Interaction Pathways That May Be Associated with Breast Cancer. Cell Mol. Biol. Lett. 2019, 24, 38. [Google Scholar] [CrossRef]
- Ren, C.; Tang, X.; Lan, H. Comprehensive Analysis Based on DNA Methylation and RNA-Seq Reveals Hypermethylation of the up-Regulated WT1 Gene with Potential Mechanisms in PAM50 Subtypes of Breast Cancer. PeerJ 2021, 9, 11377. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, Y.; Chen, Y.; Wang, K.; Xie, W.; Wei, D.; Hu, L. CD300LG Improves the Cytotoxic Activity of CIK. Cent. Eur. J. Immunol. 2017, 42, 117–122. [Google Scholar] [CrossRef]
- Qi, J.; Dmochowski, J.M.; Banes, A.N.; Tsuzaki, M.; Bynum, D.; Patterson, M.; Creighton, A.; Gomez, S.; Tech, K.; Cederlund, A. Differential Expression and Cellular Localization of Novel Isoforms of the Tendon Biomarker Tenomodulin. J. Appl. Physiol. 2012, 113, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Yuan, N.; Zhang, G.; Bie, F.; Ma, M.; Ma, Y.; Jiang, X.; Wang, Y.; Hao, X. Integrative Analysis of lncRNAs and miRNAs with Coding RNAs Associated with ceRNA Crosstalk Network in Triple Negative Breast Cancer. Onco Targets Ther. 2017, 10, 5883–5897. [Google Scholar] [CrossRef]
- Støy, J.; Kampmann, U.; Mengel, A.; Magnusson, N.E.; Jessen, N.; Grarup, N.; Rungby, J.; Stødkilde-Jørgensen, H.; Brandslund, I.; Christensen, C. Reduced CD300LG mRNA Tissue Expression, Increased Intramyocellular Lipid Content and Impaired Glucose Metabolism in Healthy Male Carriers of Arg82Cys in CD300LG: A Novel Genometabolic Cross-Link between CD300LG and Common Metabolic Phenotypes. BMJ Open Diabetes Res. Care 2015, 3, 000095. [Google Scholar] [CrossRef] [PubMed]
- Ulaganathan, K.; Puranam, K.; Mukta, S.; Hanumanth, S.R. Expression Profiling of Luminal B Breast Tumor in Indian Women. J. Cancer Res. Clin. Oncol. 2023, 149, 13645–13664. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Liu, J.; Wang, F.; Li, Y. Integrated Analysis of Solute Carrier Family-2 Members Reveals SLC2A4 as an Independent Favorable Prognostic Biomarker for Breast Cancer. Channels 2021, 15, 555–568. [Google Scholar] [CrossRef]
- Li, P.; Lu, M.; Shi, J.; Gong, Z.; Hua, L.; Li, Q.; Lim, B.; Zhang, X.H.-F.; Chen, X.; Li, S. Lung Mesenchymal Cells Elicit Lipid Storage in Neutrophils That Fuel Breast Cancer Lung Metastasis. Nat. Immunol. 2020, 21, 1444–1455. [Google Scholar] [CrossRef]
- Liu, K.; Zhou, S.; Kim, J.-Y.; Tillison, K.; Majors, D.; Rearick, D.; Lee, J.H.; Fernandez-Boyanapalli, R.F.; Barricklow, K.; Houston, M.S. Functional Analysis of FSP27 Protein Regions for Lipid Droplet Localization, Caspase-Dependent Apoptosis, and Dimerization with CIDEA. Am. J. Physiol. Endocrinol. Metab. 2009, 297, 1395–1413. [Google Scholar] [CrossRef]
- Nezhadali, M.; Mesbah-Namin, S.A.; Hedayati, M.; Akbarzadeh, M.; Najd Hassan Bonab, L.; Daneshpour, M.S. Serum Adiponectin and Cortisol Levels Are Not Affected by Studied ADIPOQ Gene Variants: Tehran Lipid and Glucose Study. BMC Endocr. Disord. 2022, 22, 104. [Google Scholar] [CrossRef]
- Puri, V.; Ranjit, S.; Konda, S.; Nicoloro, S.M.C.; Straubhaar, J.; Chawla, A.; Chouinard, M.; Lin, C.; Burkart, A.; Corvera, S. Cidea Is Associated with Lipid Droplets and Insulin Sensitivity in Humans. Proc. Natl. Acad. Sci. USA 2008, 105, 7833–7838. [Google Scholar] [CrossRef] [PubMed]
- Kerr, A.G.; Sinha, I.; Dadvar, S.; Arner, P.; Dahlman, I. Epigenetic Regulation of Diabetogenic Adipose Morphology. Mol. Metab. 2019, 25, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Song, N.-J.; Kim, S.; Jang, B.-H.; Chang, S.-H.; Yun, U.J.; Park, K.-M.; Waki, H.; Li, D.Y.; Tontonoz, P.; Park, K.W. Small Molecule-Induced Complement Factor D (Adipsin) Promotes Lipid Accumulation and Adipocyte Differentiation. PLoS ONE 2016, 11, 0162228. [Google Scholar] [CrossRef]
- Bulla, R.; Tripodo, C.; Rami, D.; Ling, G.S.; Agostinis, C.; Guarnotta, C.; Zorzet, S.; Durigutto, P.; Botto, M.; Tedesco, F. C1q Acts in the Tumour Microenvironment as a Cancer-Promoting Factor Independently of Complement Activation. Nat. Commun. 2016, 7, 10346. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Teng, L.; Fu, S.; Wang, G.; Li, Z.; Ding, C.; Wang, H.; Bi, L. Highly Heterogeneous-Related Genes of Triple-Negative Breast Cancer: Potential Diagnostic and Prognostic Biomarkers. BMC Cancer 2021, 21, 644. [Google Scholar] [CrossRef] [PubMed]
- Hao, N.; Shen, W.; Du, R.; Jiang, S.; Zhu, J.; Chen, Y.; Huang, C.; Shi, Y.; Xiang, R.; Luo, Y. Phosphodiesterase 3A Represents a Therapeutic Target That Drives Stem Cell-like Property and Metastasis in Breast Cancer. Mol. Cancer Ther. 2020, 19, 868–881. [Google Scholar] [CrossRef]
- Cai, J.; Zhong, M.; Xu, J.; Cheng, H.; Xu, S. Codelivery of Triptolide and IFN-γ to Boost Antitumor Immunity for Triple-Negative Breast Cancer. Int. Immunopharmacol. 2023, 120, 110346. [Google Scholar] [CrossRef]
- Liu, L.-L.; Chen, S.-L.; Huang, Y.-H.; Yang, X.; Wang, C.-H.; He, J.-H.; Yun, J.-P.; Luo, R.-Z. Adrenomedullin Inhibits Tumor Metastasis and Is Associated with Good Prognosis in Triple-Negative Breast Cancer Patients. Am. J. Transl. Res. 2020, 12, 773–786. [Google Scholar]
Sample Phenotype | Single-End or Paired-End Reads | GEO Accession Number | Relevant Samples |
---|---|---|---|
TNBC | Paired End | GSE163951 (Unpublished) | 3 |
TNBC | Single End | GSE182021 [19] | 61 |
TNBC | Paired End | GSE142767 [20] | 21 |
TNBC | Paired End | GSE107000 [21] | 3 |
TNBC * | Paired End | GSE71651 [22,23,24,25,26] | 3 |
TNBC | Single End | GSE167152 [27] | 14 |
TNBC | Paired End | GSE162187 [28,29] | 4 |
Healthy Breast Tissue * | Paired End | GSE71651 [22,23,24,25,26] | 3 |
Healthy Breast Tissue | Single End | GSE126803 (Unpublished) | 23 |
Healthy Breast Tissue | Single End | GSE157126 [30] | 16 |
Healthy Breast Tissue | Paired End | GSE166048 [31] | 45 |
Gene Symbol | Gene Name According to HUGO Gene Nomenclature Committee | Log2 Fold Change | False Discovery Rate (FDR) p-Value |
---|---|---|---|
FO082814.1 | Methylenetetrahydrofolate Dehydrogenase (NADP+ dependent) 1 Like (MTHFD1L) Pseudogene | −8.05 | 5.82 × 10−57 |
KIF14 | Kinesin Family Member 14 | 5.6 | 8.70 × 10−56 |
ELMOD3 | ELMO Domain Containing 3 | −3.59 | 4.20 × 10−55 |
HJURP | Holliday Junction Recognition Protein | 4.55 | 1.62 × 10−53 |
KIF23 | Kinesin Family Member 23 | 3.92 | 2.99 × 10−53 |
KIF11 | Kinesin Family Member 11 | 3.5 | 3.62 × 10−53 |
ASPM | Abnormal Spindle Microtubule Assembly | 6.53 | 4.37 × 10−53 |
ATAD2 | ATPase Family AAA Domain Containing 2 | 3.41 | 4.95 × 10−53 |
EZH2 | Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit | 3.55 | 5.05 × 10−52 |
Gene Symbol | Gene Name According to HUGO Gene Nomenclature Committee | Log2 Fold Change | False Discovery Rate (FDR) p-Value |
---|---|---|---|
IBSP | Integrin Binding Sialoprotein | 10.4 | 3.83 × 10−36 |
MMP1 | Matrix Metallopeptidase 1 | 9.69 | 7.97 × 10−48 |
HIST1H2BB | Histone Cluster 1 H2B Family Member B | 9.08 | 1.68 × 10−31 |
CASP14 | Caspase 14 | 9.03 | 9.78 × 10−27 |
HIST1H3B | Histone Cluster 1 H3 Family Member B | 8.59 | 2.05 × 10−33 |
HIST1H1B | Histone Cluster 1 H1 Family Member B | 8.48 | 1.47 × 10−31 |
S100A7 | S100 Calcium Binding Protein A7 | 8.4 | 1.60 × 10−30 |
RIMBP3C | RIMS Binding Protein 3C | 8.38 | 4.75 × 10−27 |
COL10A1 | Collagen Type X Alpha 1 Chain | 8.31 | 1.41 × 10−44 |
Name | pSize * | NDE | Direction of Modulation | Bonferroni-Adjusted p-Value | Pathway Database | |
---|---|---|---|---|---|---|
1 | PLK1 signaling events | 44 | 42 | Activated | 8.62 × 10−6 | NCI |
2 | Integrin signaling pathway | 37 | 28 | Inhibited | 6.98 × 10−3 | BioCarta |
Rank | Gene Symbol | Gain | Disease Status | Mean (Read Counts) | Standard Deviation (Read Counts) | Median (Read Counts) | Log2 Fold Change | False Discovery Rate |
---|---|---|---|---|---|---|---|---|
1 | CIDEC | 0.26 | TNBC | 8.28 | 31.06 | 1 | −7.9 | 3.73 × 10−45 |
Healthy | 1687.83 | 1495.58 | 1363 | |||||
2 | CD300LG | 0.12 | TNBC | 9.94 | 26.56 | 0 | −6.49 | 1.76 × 10−48 |
Healthy | 506.45 | 370.17 | 461 | |||||
3 | C14orf180 | 0.09 | TNBC | 3.19 | 10.39 | 0 | −7.88 | 6.19 × 10−46 |
Healthy | 668.37 | 705.87 | 331 | |||||
4 | ASPM | 0.09 | TNBC | 782.43 | 1327.45 | 392 | 6.53 | 4.37 × 10−53 |
Healthy | 15.72 | 17.43 | 10 | |||||
5 | RGS1 | 0.06 | TNBC | 395.07 | 734.93 | 154 | 6.53 | 5.05 × 10−52 |
Healthy | 8.57 | 11.18 | 5 | |||||
6 | TNMD | 0.05 | TNBC | 1.06 | 2.61 | 0 | −5.76 | 1.58 × 10−36 |
Healthy | 80.77 | 95.61 | 47 | |||||
7 | CFD | 0.05 | TNBC | 43.26 | 112.94 | 2.5 | −6.53 | 5.59 × 10−34 |
Healthy | 1078.11 | 1282.38 | 683.5 | |||||
14 | CENPF | 0.02 | TNBC | 662.05 | 795.07 | 409 | 5.52 | 3.46 × 10−41 |
Healthy | 30.74 | 26.31 | 26 | |||||
15 | CENPE | 0.01 | TNBC | 265.10 | 256.41 | 195 | 6.66 | 2.98 × 10−43 |
Healthy | 12.25 | 15.59 | 7 | |||||
18 | KIF14 | 0.01 | TNBC | 127.28 | 167.56 | 63 | 5.6 | 8.70 × 10−56 |
Healthy | 4.52 | 4.29 | 3 |
* All TNBC | UNS | M | IM | ERlike | LAR | MSL | BL1 | BL2 | |
---|---|---|---|---|---|---|---|---|---|
Number of Samples | 109 | 37 | 29 | 15 | 11 | 6 | 5 | 3 | 3 |
CIDEC, CD300LG, ASPM, RGS1 (top 2 upregulated and top 2 downregulated) | 98.9 | 99.3 | 100.0 | 100.0 | 83.3 | 100.0 | 100.0 | 50.0 | 50.0 |
CIDEC, CD300LG (top 2 downregulated) | 97.1 | 99.3 | 100.0 | 90.9 | 88.2 | 100.0 | 99.3 | 50.0 | 50.0 |
ASPM, RGS1 (top 2 upregulated) | 96.1 | 98.3 | 97.8 | 100.0 | 83.3 | 100.0 | 50.0 | 50.0 | 50.0 |
CIDEC | 97.1 | 99.3 | 99.3 | 87.7 | 88.2 | 99.3 | 99.3 | 50.0 | 50.0 |
CD300LG | 94.4 | 98.3 | 100.0 | 91.6 | 77.8 | 100.0 | 90.0 | 50.0 | 50.0 |
C14orf180 | 96.8 | 99.3 | 97.1 | 83.2 | 87.5 | 82.6 | 89.3 | 50.0 | 50.0 |
ASPM | 95.8 | 96.0 | 97.8 | 100.0 | 81.9 | 100.0 | 50.0 | 50.0 | 50.0 |
RGS1 | 94.8 | 96.0 | 93.5 | 100.0 | 82.6 | 90.9 | 50.0 | 50.0 | 50.0 |
TNMD | 94.8 | 98.6 | 94.2 | 94.7 | 81.2 | 90.9 | 89.3 | 50.0 | 50.0 |
CFD | 95.3 | 96.0 | 97.1 | 91.6 | 88.2 | 99.3 | 50.0 | 50.0 | 50.0 |
CENPF | 91.4 | 96.0 | 94.2 | 100.0 | 76.3 | 100.0 | 50.0 | 50.0 | 50.0 |
CENPE | 92.5 | 92.9 | 92.8 | 95.4 | 81.9 | 99.3 | 50.0 | 50.0 | 50.0 |
KIF14 | 92.1 | 94.3 | 94.2 | 100.0 | 81.9 | 100.0 | 50.0 | 50.0 | 50.0 |
Subtype | Number of Subtype Samples | Top 3 Subtype-Differentiating Biomarkers | % ROC-AUC (Combined Accuracy of Top 3 Subtype-Specific Biomarkers) |
---|---|---|---|
* All TNBC | 109 | CIDEC, CD300LG, C14orf180 | 97.1 |
UNS | 37 | FGF14, ADM, SH3PXD2A | 88.5 |
M | 29 | GBP4, ARRB1, PDE3B | 82.2 |
IM | 15 | IFNG, AIM2, FCAMR | 91.3 |
ERlike | 11 | ASCL1, IQCJ, CDKN2A | 70.0 |
LAR | 6 | ABCA12, ABCC12, AADAT | 70.0 |
MSL | 5 | CH25H, ABCA2, AATK | 70.0 |
BL1 | 3 | ABHD13, ANKHD1, AGTPBP1 | 50.0 |
BL2 | 3 | ACP6, AAGAB, AAAS | 50.0 |
Target Symbol | Target Name | Relevant TNBC Subtype | Number of Unique Drugs | Number of Approved/Phase 4 Drugs | Number of Phase 3 Drugs | Number of Phase 2 Drugs | Number of Phase 1 Drugs |
---|---|---|---|---|---|---|---|
IFNG | Interferon Gamma | IM | 3 | 1 | 0 | 0 | 0 |
ADM | Adrenomedullin | UNS | 1 | 0 | 0 | 1 | 0 |
PDE3B | Phosphodiesterase 3B | M | 11 | 0 | 1 | 0 | 0 |
CFD | Complement Factor D | All TNBC | 2 | 0 | 1 | 0 | 0 |
Gene Symbol | Log2 FC | FDR p-Value |
---|---|---|
KIF23 | 3.92 | 2.99 × 10−53 |
KIF11 | 3.50 | 3.62 × 10−53 |
KIF14 | 5.60 | 8.70 × 10−56 |
KIF2C | 4.30 | 1.58 × 10−44 |
KIF18A | 4.52 | 3.70 × 10−46 |
KIF4A | 5.02 | 2.47 × 10−43 |
KIF15 | 4.91 | 2.29 × 10−43 |
KIF20A | 4.26 | 3.76 × 10−34 |
KIF20B | 2.93 | 5.86 × 10−36 |
KIF2A | 2.03 | 1.12 × 10−26 |
Gene Name | Average Primary TNBC (Log2FC) | BT-549 (Log2FC) | HS 578T (Log2FC) | MDA-MB-231 (Log2FC) |
---|---|---|---|---|
MTHFD1L | 1.47 | 2.81 | 2.29 | 2.1 |
KIF14 | 5.6 | 6.87 | 6.67 | 7.49 |
ELMOD3 | −3.59 | −3.54 | −3.36 | −6.01 |
HJURP | 4.55 | 6 | 6.31 | 5.94 |
KIF23 | 3.92 | 3.43 | 4.34 | 5.98 |
KIF11 | 3.5 | 3.74 | 3.47 | 5.27 |
ASPM | 6.53 | 6.38 | 6.52 | 8.44 |
ATAD2 | 3.41 | 2.48 | 2.66 | 2.85 |
EZH2 | 3.55 | 3.58 | 2.68 | 4.76 |
RGS1 | 6.53 | ND * | ND * | ND * |
CIDEC | −7.9 | −6.09 | −5.92 | ND * |
CD300LG | −6.49 | ND * | −5.56 | ND * |
C14orf180 | −7.88 | ND * | −4.81 | ND * |
TNMD | −5.76 | ND * | ND * | ND * |
CFD | −6.53 | −3.64 | −7.93 | −8.36 |
CENPF | 5.52 | 3.24 | 3.72 | 5.17 |
CENPE | 6.66 | 3.38 | 3.67 | 6.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapier-Sharman, N.; Spendlove, M.D.; Poulsen, J.B.; Appel, A.E.; Wiscovitch-Russo, R.; Vashee, S.; Gonzalez-Juarbe, N.; Pickett, B.E. Secondary Transcriptomic Analysis of Triple-Negative Breast Cancer Reveals Reliable Universal and Subtype-Specific Mechanistic Markers. Cancers 2024, 16, 3379. https://doi.org/10.3390/cancers16193379
Rapier-Sharman N, Spendlove MD, Poulsen JB, Appel AE, Wiscovitch-Russo R, Vashee S, Gonzalez-Juarbe N, Pickett BE. Secondary Transcriptomic Analysis of Triple-Negative Breast Cancer Reveals Reliable Universal and Subtype-Specific Mechanistic Markers. Cancers. 2024; 16(19):3379. https://doi.org/10.3390/cancers16193379
Chicago/Turabian StyleRapier-Sharman, Naomi, Mauri Dobbs Spendlove, Jenna Birchall Poulsen, Amanda E. Appel, Rosana Wiscovitch-Russo, Sanjay Vashee, Norberto Gonzalez-Juarbe, and Brett E. Pickett. 2024. "Secondary Transcriptomic Analysis of Triple-Negative Breast Cancer Reveals Reliable Universal and Subtype-Specific Mechanistic Markers" Cancers 16, no. 19: 3379. https://doi.org/10.3390/cancers16193379
APA StyleRapier-Sharman, N., Spendlove, M. D., Poulsen, J. B., Appel, A. E., Wiscovitch-Russo, R., Vashee, S., Gonzalez-Juarbe, N., & Pickett, B. E. (2024). Secondary Transcriptomic Analysis of Triple-Negative Breast Cancer Reveals Reliable Universal and Subtype-Specific Mechanistic Markers. Cancers, 16(19), 3379. https://doi.org/10.3390/cancers16193379