Prevalence Estimation of the PALB2 Germline Variant in East Asians and Koreans through Population Database Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Population Database
2.2. Classification and Statistical Analysis of PALB2 Variants
2.3. Prevalence Estimation of PALB2 Variant
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, B.; Sheng, Q.; Nakanishi, K.; Ohashi, A.; Wu, J.; Christ, N.; Liu, X.; Jasin, M.; Couch, F.J.; Livingston, D.M. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol. Cell 2006, 22, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Ma, J.; Wu, J.; Ye, L.; Cai, H.; Xia, B.; Yu, X. PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr. Biol. 2009, 19, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Tischkowitz, M.; Xia, B. PALB2/FANCN: Recombining cancer and Fanconi anemia. Cancer Res. 2010, 70, 7353–7359. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.; Seal, S.; Thompson, D.; Kelly, P.; Renwick, A.; Elliott, A.; Reid, S.; Spanova, K.; Barfoot, R.; Chagtai, T.; et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat. Genet. 2007, 39, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Leslie, G.; Doroszuk, A.; Schneider, S.; Allen, J.; Decker, B.; Dunning, A.M.; Redman, J.; Scarth, J.; Plaskocinska, I.; et al. Cancer Risks Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J. Clin. Oncol. 2020, 38, 674–685. [Google Scholar] [CrossRef]
- Antoniou, A.C.; Casadei, S.; Heikkinen, T.; Barrowdale, D.; Pylkäs, K.; Roberts, J.; Lee, A.; Subramanian, D.; De Leeneer, K.; Fostira, F.; et al. Breast-cancer risk in families with mutations in PALB2. N. Engl. J. Med. 2014, 371, 497–506. [Google Scholar] [CrossRef]
- Southey, M.C.; Goldgar, D.E.; Winqvist, R.; Pylkäs, K.; Couch, F.; Tischkowitz, M.; Foulkes, W.D.; Dennis, J.; Michailidou, K.; van Rensburg, E.J.; et al. PALB2, CHEK2 and ATM rare variants and cancer risk: Data from COGS. J. Med. Genet. 2016, 53, 800–811. [Google Scholar] [CrossRef]
- Erkko, H.; Xia, B.; Nikkilä, J.; Schleutker, J.; Syrjäkoski, K.; Mannermaa, A.; Kallioniemi, A.; Pylkäs, K.; Karppinen, S.M.; Rapakko, K.; et al. A recurrent mutation in PALB2 in Finnish cancer families. Nature 2007, 446, 316–319. [Google Scholar] [CrossRef]
- Girard, E.; Eon-Marchais, S.; Olaso, R.; Renault, A.L.; Damiola, F.; Dondon, M.G.; Barjhoux, L.; Goidin, D.; Meyer, V.; Le Gal, D.; et al. Familial breast cancer and DNA repair genes: Insights into known and novel susceptibility genes from the GENESIS study, and implications for multigene panel testing. Int. J. Cancer 2019, 144, 1962–1974. [Google Scholar] [CrossRef]
- Janssen, B.; Bellis, S.; Koller, T.; Tischkowitz, M.; Liau, S.S. A systematic review of predicted pathogenic PALB2 variants: An analysis of mutational overlap between epithelial cancers. J. Hum. Genet. 2020, 65, 199–205. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic (Version 3.2024). Available online: https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf (accessed on 27 May 2024).
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, J.; Jeon, S.; Lee, J.; Jang, I.; Yang, J.O.; Park, S.; Lee, B.; Choi, J.; Choi, B.O.; et al. A database of 5305 healthy Korean individuals reveals genetic and clinical implications for an East Asian population. Exp. Mol. Med. 2022, 54, 1862–1871. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.S.; Hong, K.W.; Jo, H.Y.; Choi, J.; Ban, H.J.; Cho, S.B.; Chung, M. KRGDB: The large-scale variant database of 1722 Koreans based on whole genome sequencing. Database 2020, 2020, baz146. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. Off. J. Am. Coll. Med. Genet. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, N.M.; Rothstein, J.H.; Pejaver, V.; Middha, S.; McDonnell, S.K.; Baheti, S.; Musolf, A.; Li, Q.; Holzinger, E.; Karyadi, D.; et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am. J. Hum. Genet. 2016, 99, 877–885. [Google Scholar] [CrossRef]
- Jaganathan, K.; Kyriazopoulou Panagiotopoulou, S.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; Kosmicki, J.A.; Arbelaez, J.; Cui, W.; Schwartz, G.B.; et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell 2019, 176, 535–548.e24. [Google Scholar] [CrossRef]
- Pejaver, V.; Byrne, A.B.; Feng, B.J.; Pagel, K.A.; Mooney, S.D.; Karchin, R.; O’Donnell-Luria, A.; Harrison, S.M.; Tavtigian, S.V.; Greenblatt, M.S.; et al. Calibration of computational tools for missense variant pathogenicity classification and ClinGen recommendations for PP3/BP4 criteria. Am. J. Hum. Genet. 2022, 109, 2163–2177. [Google Scholar] [CrossRef]
- Walker, L.C.; Hoya, M.; Wiggins, G.A.R.; Lindy, A.; Vincent, L.M.; Parsons, M.T.; Canson, D.M.; Bis-Brewer, D.; Cass, A.; Tchourbanov, A.; et al. Using the ACMG/AMP framework to capture evidence related to predicted and observed impact on splicing: Recommendations from the ClinGen SVI Splicing Subgroup. Am. J. Hum. Genet. 2023, 110, 1046–1067. [Google Scholar] [CrossRef]
- Kim, H.; Cho, D.Y.; Choi, D.H.; Oh, M.; Shin, I.; Park, W.; Huh, S.J.; Nam, S.J.; Lee, J.E.; Kim, S.W. Frequency of pathogenic germline mutation in CHEK2, PALB2, MRE11, and RAD50 in patients at high risk for hereditary breast cancer. Breast Cancer Res. Treat. 2017, 161, 95–102. [Google Scholar] [CrossRef]
- Park, J.S.; Lee, S.T.; Nam, E.J.; Han, J.W.; Lee, J.Y.; Kim, J.; Kim, T.I.; Park, H.S. Variants of cancer susceptibility genes in Korean BRCA1/2 mutation-negative patients with high risk for hereditary breast cancer. BMC Cancer 2018, 18, 83. [Google Scholar] [CrossRef]
- Yoo, J.; Lee, G.D.; Kim, J.H.; Lee, S.N.; Chae, H.; Han, E.; Kim, Y.; Kim, M. Clinical Validity of Next-Generation Sequencing Multi-Gene Panel Testing for Detecting Pathogenic Variants in Patients With Hereditary Breast-Ovarian Cancer Syndrome. Ann. Lab. Med. 2020, 40, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Shin, S.; Lee, Y.J.; Lee, S.T.; Nam, E.J.; Han, J.W.; Lee, S.H.; Kim, T.I.; Park, H.S. Implication and Influence of Multigene Panel Testing with Genetic Counseling in Korean Patients with BRCA1/2 Mutation-Negative Breast Cancer. Cancer Res. Treat. 2022, 54, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- Ryu, K.H.; Park, S.; Chun, J.W.; Cho, E.; Choi, J.; Lee, D.E.; Shim, H.; Kim, Y.H.; Han, S.S.; Park, S.J.; et al. Prevalence and Risk Factors of Germline Pathogenic Variants in Pancreatic Ductal Adenocarcinoma. Cancer Res. Treat. 2023, 55, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, L.; Xu, M.; Feng, Z.; Sun, X.; Lu, J.; Xu, Y.; Du, P.; Wang, T.; Hu, R.; et al. The ChinaMAP analytics of deep whole genome sequences in 10,588 individuals. Cell Res. 2020, 30, 717–731. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.W.; Liu, K.Q.; Wang, P.Y.; Liu, J.Q.; Chen, J.Y.; Xu, X.J.; Xu, J.J.; Qiu, M.C.; Sun, Y.; Liu, C.; et al. Cohort profile: The Westlake BioBank for Chinese (WBBC) pilot project. BMJ Open 2021, 11, e045564. [Google Scholar] [CrossRef]
- Tadaka, S.; Kawashima, J.; Hishinuma, E.; Saito, S.; Okamura, Y.; Otsuki, A.; Kojima, K.; Komaki, S.; Aoki, Y.; Kanno, T.; et al. jMorp: Japanese Multi-Omics Reference Panel update report 2023. Nucleic Acids Res 2024, 52, D622–D632. [Google Scholar] [CrossRef]
- Miller, D.T.; Lee, K.; Abul-Husn, N.S.; Amendola, L.M.; Brothers, K.; Chung, W.K.; Gollob, M.H.; Gordon, A.S.; Harrison, S.M.; Hershberger, R.E.; et al. ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. Off. J. Am. Coll. Med. Genet. 2023, 25, 100866. [Google Scholar] [CrossRef]
- Manchanda, R.; Patel, S.; Gordeev, V.S.; Antoniou, A.C.; Smith, S.; Lee, A.; Hopper, J.L.; MacInnis, R.J.; Turnbull, C.; Ramus, S.J.; et al. Cost-effectiveness of Population-Based BRCA1, BRCA2, RAD51C, RAD51D, BRIP1, PALB2 Mutation Testing in Unselected General Population Women. J. Natl. Cancer Inst. 2018, 110, 714–725. [Google Scholar] [CrossRef]
- Janatova, M.; Kleibl, Z.; Stribrna, J.; Panczak, A.; Vesela, K.; Zimovjanova, M.; Kleiblova, P.; Dundr, P.; Soukupova, J.; Pohlreich, P. The PALB2 gene is a strong candidate for clinical testing in BRCA1- and BRCA2-negative hereditary breast cancer. Cancer Epidemiol. Biomark. Prev. 2013, 22, 2323–2332. [Google Scholar] [CrossRef]
Total Alleles (n) | Estimated Prevalence (%) | One Carrier in Every (n) | |
---|---|---|---|
Total (n = 125,748) | |||
ACMG/AMP (PV/LPV) | 227 | 0.18 (0.16–0.21) | 554 (485–632) |
ClinVar (PV/LPV) | 214 | 0.17 (0.15–0.19) | 588 (513–673) |
HGMD (DM) | 277 | 0.22 (0.20–0.25) | 454 (403–512) |
East Asian (n = 9.197) | |||
ACMG/AMP (PV/LPV) | 8 | 0.09 (0.04–0.18) | 1150 (559–2472) |
ClinVar (PV/LPV) | 7 | 0.08 (0.03–0.16) | 1314 (609–2998) |
HGMD (DM) | 14 | 0.15 (0.09–0.26) | 657 (381–1154) |
African (n = 8128) | |||
ACMG/AMP (PV/LPV) | 16 | 0.20 (0.12–0.33) | 508 (306–858) |
ClinVar (PV/LPV) | 16 | 0.20 (0.12–0.33) | 508 (306–858) |
HGMD (DM) | 17 | 0.21 (0.13–0.34) | 478 (292–794) |
Latino (n = 17,296) | |||
ACMG/AMP (PV/LPV) | 29 | 0.17 (0.11–0.24) | 596 (410–874) |
ClinVar (PV/LPV) | 28 | 0.16 (0.11–0.24) | 618 (421–912) |
HGMD (DM) | 39 | 0.23 (0.16–0.31) | 443 (321–615) |
Ashkenazi Jewish (n = 5040) | |||
ACMG/AMP (PV/LPV) | 2 | 0.04 (0.01–0.16) | 2520 (625–14,548) |
ClinVar (PV/LPV) | 1 | 0.02 (0.00–0.13) | 5040 (777–96,551) |
HGMD (DM) | 2 | 0.04 (0.01–0.16) | 2520 (625–14,548) |
European (Finnish) (n = 10,824) | |||
ACMG/AMP (PV/LPV) | 44 | 0.41 (0.30–0.55) | 246 (182–334) |
ClinVar (PV/LPV) | 44 | 0.41 (0.30–0.55) | 246 (182–334) |
HGMD (DM) | 44 | 0.41 (0.30–0.55) | 246 (182–334) |
European (non-Finnish) (n = 56,885) | |||
ACMG/AMP (PV/LPV) | 105 | 0.18 (0.15–0.22) | 542 (446–659) |
ClinVar (PV/LPV) | 98 | 0.17 (0.14–0.21) | 580 (474–711) |
HGMD (DM) | 137 | 0.24 (0.20–0.29) | 415 (350–493) |
South Asian (n = 15,308) | |||
ACMG/AMP (PV/LPV) | 15 | 0.10 (0.06–0.17) | 1021 (604–1756) |
ClinVar (PV/LPV) | 12 | 0.08 (0.04–0.14) | 1276 (709–2354) |
HGMD (DM) | 14 | 0.09 (0.05–0.16) | 1093 (635–1921) |
Other (n = 3070) | |||
ACMG/AMP (PV/LPV) | 8 | 0.26 (0.12–0.53) | 384 (187–825) |
ClinVar (PV/LPV) | 8 | 0.26 (0.12–0.53) | 384 (187–825) |
HGMD (DM) | 10 | 0.33 (0.17–0.62) | 307 (161–604) |
Total Alleles (n) | Estimated Prevalence (%) | One Carrier in Every (n) | |
---|---|---|---|
gnomAD East Asian exomes (n = 9197) | |||
ACMG/AMP (PV/LPV) | 8 | 0.09 (0.04–0.18) | 1150 (559–2472) |
ClinVar (PV/LPV) | 7 | 0.08 (0.03–0.16) | 1314 (609–2998) |
HGMD (DM) | 14 | 0.15 (0.09–0.26) | 657 (381–1154) |
gnomAD Korean exomes (n = 1909) | |||
ACMG/AMP (PV/LPV) | 2 | 0.10 (0.02–0.42) | 954 (237–5510) |
ClinVar (PV/LPV) | 1 | 0.05 (0.00–0.34) | 1909 (295–36,570) |
HGMD (DM) | 0 | 0.00 (0.00–0.25) | NA (399–NA) |
gnomAD Japanese exomes (n = 76) | |||
ACMG/AMP (PV/LPV) | 0 | 0.00 (0.00–6.00) | NA (17–NA) |
ClinVar (PV/LPV) | 0 | 0.00 (0.00–6.00) | NA (17–NA) |
HGMD (DM) | 0 | 0.00 (0.00–6.00) | NA (17–NA) |
gnomAD Other East Asian exomes (n = 7212) | |||
ACMG/AMP (PV/LPV) | 6 | 0.08 (0.03–0.19) | 1202 (524–2957) |
ClinVar (PV/LPV) | 6 | 0.08 (0.03–0.19) | 1202 (524–2957) |
HGMD (DM) | 14 | 0.19 (0.11–0.33) | 515 (299–905) |
All Korean (n = 8936) | |||
ACMG/AMP (PV/LPV) | 12 | 0.13 (0.07–0.24) | 745 (414–1374) |
ClinVar (PV/LPV) | 11 | 0.12 (0.06–0.23) | 812 (440–1544) |
HGMD (DM) | 6 | 0.07 (0.03–0.15) | 1489 (649–3663) |
gnomAD Korean exomes (n = 1909) | |||
ACMG/AMP (PV/LPV) | 2 | 0.10 (0.02–0.42) | 954 (237–5510) |
ClinVar (PV/LPV) | 1 | 0.05 (0.00–0.34) | 1909 (295–36,570) |
HGMD (DM) | 0 | 0.00 (0.00–0.25) | NA (399–NA) |
KOVA (n = 5305) | |||
ACMG/AMP (PV/LPV) | 10 | 0.19 (0.10–0.36) | 531 (279–1044) |
ClinVar (PV/LPV) | 10 | 0.19 (0.10–0.36) | 531 (279–1044) |
HGMD (DM) | 6 | 0.11 (0.05–0.26) | 884 (386–2175) |
KRGDB (n = 1722) | |||
ACMG/AMP (PV/LPV) | 0 | 0.00 (0.00–0.28) | NA (360–NA) |
ClinVar (PV/LPV) | 0 | 0.00 (0.00–0.28) | NA (360–NA) |
HGMD (DM) | 0 | 0.00 (0.00–0.28) | NA (360 –NA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.E.; Kang, M.-C.; Lee, T.; Cho, E.H.; Jang, M.-A.; Won, D.; Park, B.; Ki, C.-S.; Kong, S.-Y. Prevalence Estimation of the PALB2 Germline Variant in East Asians and Koreans through Population Database Analysis. Cancers 2024, 16, 3318. https://doi.org/10.3390/cancers16193318
Park JE, Kang M-C, Lee T, Cho EH, Jang M-A, Won D, Park B, Ki C-S, Kong S-Y. Prevalence Estimation of the PALB2 Germline Variant in East Asians and Koreans through Population Database Analysis. Cancers. 2024; 16(19):3318. https://doi.org/10.3390/cancers16193318
Chicago/Turabian StylePark, Jong Eun, Min-Chae Kang, Taeheon Lee, Eun Hye Cho, Mi-Ae Jang, Dongju Won, Boyoung Park, Chang-Seok Ki, and Sun-Young Kong. 2024. "Prevalence Estimation of the PALB2 Germline Variant in East Asians and Koreans through Population Database Analysis" Cancers 16, no. 19: 3318. https://doi.org/10.3390/cancers16193318
APA StylePark, J. E., Kang, M.-C., Lee, T., Cho, E. H., Jang, M.-A., Won, D., Park, B., Ki, C.-S., & Kong, S.-Y. (2024). Prevalence Estimation of the PALB2 Germline Variant in East Asians and Koreans through Population Database Analysis. Cancers, 16(19), 3318. https://doi.org/10.3390/cancers16193318