Traditional Prostate Cancer Risk Assessment Scales Do Not Predict Outcomes from Brain Metastases: A Population-Based Predictive Nomogram
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Cohort Selection
2.3. Statistical Analyses
3. Results
3.1. Descriptive Data
3.2. Univariate Analysis
3.3. Multivariable Analysis
3.4. Nomogram and Validation
4. Discussion
4.1. Traditional Prostate Cancer Risk Predictors
4.2. Race and Ethnicity
4.3. Tumor Size
4.4. Concurrent Metastases
4.5. Treatment
4.6. Predictive Modeling
4.7. Limitations and Generalizability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Achrol, A.S.; Rennert, R.C.; Anders, C.; Soffietti, R.; Ahluwalia, M.S.; Nayak, L.; Peters, S.; Arvold, N.D.; Harsh, G.R.; Steeg, P.S.; et al. Brain metastases. Nat. Rev. Dis. Primers 2019, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Nayak, L.; Lee, E.Q.; Wen, P.Y. Epidemiology of brain metastases. Curr. Oncol. Rep. 2012, 14, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Gavrilovic, I.T.; Posner, J.B. Brain metastases: Epidemiology and pathophysiology. J. Neuro-Oncol. 2005, 75, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Soffietti, R.; Ruda, R.; Mutani, R. Management of brain metastases. J. Neurol. 2002, 249, 1357–1369. [Google Scholar] [CrossRef] [PubMed]
- Hatzoglou, V.; Patel, G.V.; Morris, M.J.; Curtis, K.; Zhang, Z.; Shi, W.; Huse, J.; Rosenblum, M.; Holodny, A.I.; Young, R.J. Brain metastases from prostate cancer: An 11-year analysis in the MRI era with emphasis on imaging characteristics, incidence, and prognosis. J. Neuroimaging 2014, 24, 161–166. [Google Scholar] [CrossRef]
- Boxley, P.J.; Smith, D.E.; Gao, D.; Kessler, E.R.; Echalier, B.; Bernard, B.; Ormond, D.R.; Lam, E.T.; Kavanagh, B.D.; Flaig, T.W. Prostate Cancer Central Nervous System Metastasis in a Contemporary Cohort. Clin. Genitourin. Cancer 2021, 19, 217–222 e211. [Google Scholar] [CrossRef]
- Caffo, O.; Gernone, A.; Ortega, C.; Sava, T.; Carteni, G.; Facchini, G.; Re, G.L.; Amadio, P.; Bortolus, R.; Pagliarulo, V.; et al. Central nervous system metastases from castration-resistant prostate cancer in the docetaxel era. J. Neuro-Oncol. 2012, 107, 191–196. [Google Scholar] [CrossRef]
- Caffo, O.; Veccia, A.; Fellin, G.; Mussari, S.; Russo, L.; Tomio, L.; Galligioni, E. Frequency of brain metastases from prostate cancer: An 18-year single-institution experience. J. Neuro-Oncol. 2013, 111, 163–167. [Google Scholar] [CrossRef]
- Pernar, C.H.; Ebot, E.M.; Wilson, K.M.; Mucci, L.A. The Epidemiology of Prostate Cancer. Cold Spring Harb. Perspect. Med. 2018, 8, a030361. [Google Scholar] [CrossRef]
- Bostwick, D.G.; Burke, H.B.; Djakiew, D.; Euling, S.; Ho, S.M.; Landolph, J.; Morrison, H.; Sonawane, B.; Shifflett, T.; Waters, D.J.; et al. Human prostate cancer risk factors. Cancer 2004, 101, 2371–2490. [Google Scholar] [CrossRef]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A.; Grading, C. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.I.; Zelefsky, M.J.; Sjoberg, D.D.; Nelson, J.B.; Egevad, L.; Magi-Galluzzi, C.; Vickers, A.J.; Parwani, A.V.; Reuter, V.E.; Fine, S.W.; et al. A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score. Eur. Urol. 2016, 69, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Mohler, J.L.; Armstrong, A.J.; Bahnson, R.R.; D’Amico, A.V.; Davis, B.J.; Eastham, J.A.; Enke, C.A.; Farrington, T.A.; Higano, C.S.; Horwitz, E.M.; et al. Prostate Cancer, Version 1.2016. J. Natl. Compr. Cancer Netw. 2016, 14, 19–30. [Google Scholar] [CrossRef]
- Sartor, O.; de Bono, J.S. Metastatic Prostate Cancer. N. Engl. J. Med. 2018, 378, 645–657. [Google Scholar] [CrossRef]
- Salvati, M.; Frati, A.; Russo, N.; Brogna, C.; Piccirilli, M.; D’Andrea, G.; Occhiogrosso, G.; Pichierri, A.; Caroli, E. Brain metastasis from prostate cancer. Report of 13 cases and critical analysis of the literature. J. Exp. Clin. Cancer Res. 2005, 24, 203–207. [Google Scholar] [PubMed]
- Tremont-Lukats, I.W.; Bobustuc, G.; Lagos, G.K.; Lolas, K.; Kyritsis, A.P.; Puduvalli, V.K. Brain metastasis from prostate carcinoma: The M. D. Anderson Cancer Center experience. Cancer 2003, 98, 363–368. [Google Scholar] [CrossRef]
- Doll, K.M.; Rademaker, A.; Sosa, J.A. Practical Guide to Surgical Data Sets: Surveillance, Epidemiology, and End Results (SEER) Database. JAMA Surg. 2018, 153, 588–589. [Google Scholar] [CrossRef]
- Humphrey, P.A. Gleason grading and prognostic factors in carcinoma of the prostate. Mod. Pathol. 2004, 17, 292–306. [Google Scholar] [CrossRef]
- Srigley, J.R.; Delahunt, B.; Egevad, L.; Samaratunga, H.; Yaxley, J.; Evans, A.J. One is the new six: The International Society of Urological Pathology (ISUP) patient-focused approach to Gleason grading. Can. Urol. Assoc. J. 2016, 10, 339–341. [Google Scholar] [CrossRef]
- Rusthoven, C.G.; Carlson, J.A.; Waxweiler, T.V.; Yeh, N.; Raben, D.; Flaig, T.W.; Kavanagh, B.D. The prognostic significance of Gleason scores in metastatic prostate cancer. Urol. Oncol. 2014, 32, 707–713. [Google Scholar] [CrossRef]
- Schmidt, H.; DeAngelis, G.; Eltze, E.; Gockel, I.; Semjonow, A.; Brandt, B. Asynchronous growth of prostate cancer is reflected by circulating tumor cells delivered from distinct, even small foci, harboring loss of heterozygosity of the PTEN gene. Cancer Res. 2006, 66, 8959–8965. [Google Scholar] [CrossRef] [PubMed]
- Hinata, N.; Fujisawa, M. Racial Differences in Prostate Cancer Characteristics and Cancer-Specific Mortality: An Overview. World J. Men’s Health 2022, 40, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Chinea, F.M.; Patel, V.N.; Kwon, D.; Lamichhane, N.; Lopez, C.; Punnen, S.; Kobetz, E.N.; Abramowitz, M.C.; Pollack, A. Ethnic heterogeneity and prostate cancer mortality in Hispanic/Latino men: A population-based study. Oncotarget 2017, 8, 69709–69721. [Google Scholar] [CrossRef] [PubMed]
- Tourinho-Barbosa, R.R.; Pompeo, A.C.; Glina, S. Prostate cancer in Brazil and Latin America: Epidemiology and screening. Int. Braz. J. Urol. 2016, 42, 1081–1090. [Google Scholar] [CrossRef]
- Esdaille, A.R.; Ibilibor, C.; Holmes, A., 2nd; Palmer, N.R.; Murphy, A.B. Access and Representation: A Narrative Review of the Disparities in Access to Clinical Trials and Precision Oncology in Black men with Prostate Cancer. Urology 2022, 163, 90–98. [Google Scholar] [CrossRef]
- Jain, B.; Ng, K.; Santos, P.M.G.; Taparra, K.; Muralidhar, V.; Mahal, B.A.; Vapiwala, N.; Trinh, Q.D.; Nguyen, P.L.; Dee, E.C. Prostate Cancer Disparities in Risk Group at Presentation and Access to Treatment for Asian Americans, Native Hawaiians, and Pacific Islanders: A Study With Disaggregated Ethnic Groups. JCO Oncol. Pract. 2022, 18, e204–e218. [Google Scholar] [CrossRef]
- Butler, S.; Muralidhar, V.; Chavez, J.; Fullerton, Z.; Mahal, A.; Nezolosky, M.; Vastola, M.; Zhao, S.G.; D’Amico, A.V.; Dess, R.T.; et al. Active Surveillance for Low-Risk Prostate Cancer in Black Patients. N. Engl. J. Med. 2019, 380, 2070–2072. [Google Scholar] [CrossRef]
- Krimphove, M.J.; Fletcher, S.A.; Cole, A.P.; Berg, S.; Sun, M.; Lipsitz, S.R.; Mahal, B.A.; Nguyen, P.L.; Choueiri, T.K.; Kibel, A.S.; et al. Quality of Care in the Treatment of Localized Intermediate and High Risk Prostate Cancer at Minority Serving Hospitals. J. Urol. 2019, 201, 735–741. [Google Scholar] [CrossRef]
- Weiner, A.B.; Matulewicz, R.S.; Tosoian, J.J.; Feinglass, J.M.; Schaeffer, E.M. The effect of socioeconomic status, race, and insurance type on newly diagnosed metastatic prostate cancer in the United States (2004–2013). Urol. Oncol. 2018, 36, 91.e1–91.e6. [Google Scholar] [CrossRef]
- Johnson, S.B.; Hamstra, D.A.; Jackson, W.C.; Zhou, J.; Foster, B.; Foster, C.; Song, Y.; Li, D.; Palapattu, G.S.; Kunju, L.; et al. Larger maximum tumor diameter at radical prostatectomy is associated with increased biochemical failure, metastasis, and death from prostate cancer after salvage radiation for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 275–281. [Google Scholar] [CrossRef]
- Eichelberger, L.E.; Koch, M.O.; Eble, J.N.; Ulbright, T.M.; Juliar, B.E.; Cheng, L. Maximum tumor diameter is an independent predictor of prostate-specific antigen recurrence in prostate cancer. Mod. Pathol. 2005, 18, 886–890. [Google Scholar] [CrossRef] [PubMed]
- Parsons, M.W.; Hutten, R.J.; Tward, A.; Khouri, A.; Peterson, J.; Morrell, G.; Lloyd, S.; Cannon, D.M.; Johnson, S.B. The Effect of Maximum Tumor Diameter by MRI on Disease Control in Intermediate and High-risk Prostate Cancer Patients Treated With Brachytherapy Boost. Clin. Genitourin. Cancer 2022, 20, e68–e74. [Google Scholar] [CrossRef] [PubMed]
- Henry, J.M.; Isaacs, J.T. Relationship between tumor size and the curability of metastatic prostatic cancer by surgery alone or in combination with adjuvant chemotherapy. J. Urol. 1988, 139, 1119–1123. [Google Scholar] [CrossRef]
- Chang, E.L.; Hassenbusch, S.J., 3rd; Shiu, A.S.; Lang, F.F.; Allen, P.K.; Sawaya, R.; Maor, M.H. The role of tumor size in the radiosurgical management of patients with ambiguous brain metastases. Neurosurgery 2003, 53, 272–280; discussion 280–281. [Google Scholar] [CrossRef]
- Archer Goode, E.; Wang, N.; Munkley, J. Prostate cancer bone metastases biology and clinical management (Review). Oncol. Lett. 2023, 25, 163. [Google Scholar] [CrossRef] [PubMed]
- Valastyan, S.; Weinberg, R.A. Tumor metastasis: Molecular insights and evolving paradigms. Cell 2011, 147, 275–292. [Google Scholar] [CrossRef]
- Manna, F.; Karkampouna, S.; Zoni, E.; De Menna, M.; Hensel, J.; Thalmann, G.N.; Kruithof-de Julio, M. Metastases in Prostate Cancer. Cold Spring Harb. Perspect. Med. 2019, 9, a033688. [Google Scholar] [CrossRef]
- Messex, J.K.; Liou, G.Y. Impact of Immune Cells in the Tumor Microenvironment of Prostate Cancer Metastasis. Life 2023, 13, 333. [Google Scholar] [CrossRef]
- Thobe, M.N.; Clark, R.J.; Bainer, R.O.; Prasad, S.M.; Rinker-Schaeffer, C.W. From prostate to bone: Key players in prostate cancer bone metastasis. Cancers 2011, 3, 478–493. [Google Scholar] [CrossRef]
- Han, H.; Wang, Y.; Curto, J.; Gurrapu, S.; Laudato, S.; Rumandla, A.; Chakraborty, G.; Wang, X.; Chen, H.; Jiang, Y.; et al. Mesenchymal and stem-like prostate cancer linked to therapy-induced lineage plasticity and metastasis. Cell Rep. 2022, 39, 110595. [Google Scholar] [CrossRef]
- Li, D.; Xu, W.; Chang, Y.; Xiao, Y.; He, Y.; Ren, S. Advances in landscape and related therapeutic targets of the prostate tumor microenvironment. Acta Biochim. Biophys. Sin. 2023, 55, 956–973. [Google Scholar] [CrossRef]
- Sfanos, K.S.; Yegnasubramanian, S.; Nelson, W.G.; De Marzo, A.M. The inflammatory microenvironment and microbiome in prostate cancer development. Nat. Rev. Urol. 2018, 15, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022, 27, 5730. [Google Scholar] [CrossRef] [PubMed]
- James, N.D.; de Bono, J.S.; Spears, M.R.; Clarke, N.W.; Mason, M.D.; Dearnaley, D.P.; Ritchie, A.W.S.; Amos, C.L.; Gilson, C.; Jones, R.J.; et al. Abiraterone for Prostate Cancer Not Previously Treated with Hormone Therapy. N. Engl. J. Med. 2017, 377, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Chi, K.N.; Agarwal, N.; Bjartell, A.; Chung, B.H.; Pereira de Santana Gomes, A.J.; Given, R.; Juarez Soto, A.; Merseburger, A.S.; Ozguroglu, M.; Uemura, H.; et al. Apalutamide for Metastatic, Castration-Sensitive Prostate Cancer. N. Engl. J. Med. 2019, 381, 13–24. [Google Scholar] [CrossRef]
- Chi, K.N.; Chowdhury, S.; Bjartell, A.; Chung, B.H.; Pereira de Santana Gomes, A.J.; Given, R.; Juarez, A.; Merseburger, A.S.; Ozguroglu, M.; Uemura, H.; et al. Apalutamide in Patients With Metastatic Castration-Sensitive Prostate Cancer: Final Survival Analysis of the Randomized, Double-Blind, Phase III TITAN Study. J. Clin. Oncol. 2021, 39, 2294–2303. [Google Scholar] [CrossRef]
- Smith, M.R.; Hussain, M.; Saad, F.; Fizazi, K.; Sternberg, C.N.; Crawford, E.D.; Kopyltsov, E.; Park, C.H.; Alekseev, B.; Montesa-Pino, A.; et al. Darolutamide and Survival in Metastatic, Hormone-Sensitive Prostate Cancer. N. Engl. J. Med. 2022, 386, 1132–1142. [Google Scholar] [CrossRef]
Category | Subcategory | Patients | Percentage | Survival (Months) | [95% CI] | Univariate | |||
---|---|---|---|---|---|---|---|---|---|
HR | [95% CI] | p | Sig | ||||||
Overall | 461 | 100.00 | 13 | [11–15] | |||||
Age | 0–64 | 156 | 33.84 | 14 | [11–18] | reference | |||
65+ | 305 | 66.16 | 11 | [9–14] | 1.167 | [0.9346–1.457] | 0.173 | ||
Race | Non-Hispanic White | 295 | 63.99 | 10 | [8–14] | reference | |||
Hispanic (all races) | 63 | 13.67 | 17 | [12–39] | 0.6008 | [0.4203–0.8588] | 0.005 | ** | |
American Indian/Alaska Native | 3 | 0.65 | 16 | [0.5–NA] | 0.6942 | [0.1724–2.7952] | 0.608 | ||
Asian or Pacific Islander | 24 | 5.21 | 10 | [6–16] | 1.2317 | [0.7874–1.9269] | 0.361 | ||
Black | 76 | 16.49 | 16 | [13–19] | 0.8441 | [0.6327–1.1260] | 0.249 | ||
Tumor Size (cm) | <3 | 8 | 3.19 | NA | [NA–NA] | reference | |||
>3 | 16 | 6.37 | 19 | [2–NA] | 11.699 | [1.478–92.58] | 0.020 | * | |
PSA value (ng/mL) | <97.9 ng/mL | 104 | 42.80 | 11 | [7–16] | reference | |||
>97.9 ng/mL | 139 | 57.20 | 14 | [11–19] | 0.9219 | [0.7005–1.213] | 0.561 | ||
ISUP Grading (TURP) | Grade 1–4 | 44 | 44.90 | 17.5 | [10–19] | reference | |||
Grade 5 | 54 | 55.10 | 13.0 | [10–38] | 1.118 | [0.720–1.735] | 0.619 | ||
Additional Metastases | None | 66 | 14.32 | 18 | [13–39] | reference | |||
Bone | 261 | 56.62 | 12 | [10–16] | 1.40859 | [1.0119–1.961] | 0.042 | * | |
Bone and Liver | 14 | 3.04 | 8 | [4–NA] | 1.70839 | [0.8794–3.319] | 0.114 | ||
Bone and Liver, and Lungs | 31 | 6.72 | 11 | [5–49] | 1.023939 | [0.6099–1.737] | 0.904 | ||
Bone and Lungs | 67 | 14.53 | 13 | [11–22] | 1.21943 | [0.8107–1.834] | 0.341 | ||
Liver | 8 | 1.74 | 3.5 | [1–NA] | 4.39485 | [1.9580–9.864] | 0.001 | *** | |
Liver and Lungs | 5 | 1.08 | 10 | [9–NA] | 1.90014 | [0.7503–4.812] | 0.176 | ||
Lungs | 9 | 1.95 | 8 | [3–NA] | 1.75303 | [0.7868–3.906] | 0.170 | ||
Time to Treatment | <1 month | 214 | 57.68 | 14 | [11–18] | reference | |||
1–18 month | 157 | 42.32 | 14 | [12–17] | 0.8217 | [0.6461–1.045] | 0.109 | ||
Treatment Summary | No treatment | 215 | 1.95 | 10 | [8–13] | reference | |||
Chemotherapy or Systemic Treatment | 32 | 6.94 | 19 | [16–33] | 0.7407 | [0.4890–1.1220] | 0.157 | ||
Radiation only | 141 | 30.59 | 11 | [8–15] | 0.8889 | [0.6974–1.1330] | 0.341 | ||
Radiation and Chemotherapy | 48 | 10.41 | 25 | [16–65] | 0.5427 | [0.3654–0.8061] | 0.002 | ** | |
Surgery only | 9 | 18 | [6–NA] | 0.7144 | [0.3344–1.5261] | 0.385 | |||
Surgery and Chemotherapy | 5 | 1.08 | 19 | [3–NA] | 0.8062 | [0.2987–2.1760] | 0.6707 | ||
Surgery and Radiation | 6 | 1.30 | 9 | [5–NA] | 1.5082 | [0.6663–3.4139] | 0.3242 | ||
All Three | 5 | 1.08 | 13 | [5–NA] | 1.3411 | [0.4965–3.6225] | 0.5626 | ||
Surgery to Non-Primary Site | No/unknown/other | 392 | 85.03 | 12 | [10–14] | reference | |||
Distant Site | 67 | 14.53 | 21 | [10–33] | 0.7486 | [0.5528–1.014] | 0.061 | ||
Lymph Node | 2 | 0.43 | 0.5 | [0.5–NA] | 2.0611 | [0.2884–14.732] | 0.471 | ||
Surgery to Brain Metastasis | No | 443 | 96.10 | 13 | [11–15] | reference | |||
Yes | 18 | 3.90 | 7.5 | [2–NA] | 1.1459 | [0.671–1.957] | 0.618 |
Category | Subcategory | Resection (n = 18) | No Resection (n = 443) | p | Sig |
---|---|---|---|---|---|
Age | 68.33 ± 6.65 | 70.02 ± 10.78 | 0.3175 | ||
Race | 0.3914 | ||||
White | 15 (83%) | 280 (63%) | |||
Hispanic | 0 (0%) | 63 (14%) | |||
American Indian/Alaska Native | 0 (0%) | 3 (0.6%) | |||
Asian or Pacific Islander | 1 (6%) | 23 (5%) | |||
Black | 2 (11%) | 74 (17%) | |||
Additional Metastases | <0.001 | *** | |||
None | 14 (78%) | 51 (12%) | |||
Bone | 0 (0%) | 261 (59%) | |||
Bone + Liver | 0 (0%) | 14 (3%) | |||
Bone + Liver + Lungs | 0 (0%) | 31 (7%) | |||
Bone + Lungs | 0 (0%) | 67 (15%) | |||
Liver | 2 (11%) | 7 (2%) | |||
Liver + Lungs | 0 (0%) | 4 (1%) | |||
Lung | 2 (11%) | 8 (2%) | |||
Survival | 16.00 ± 21.36 | 17.58 ± 22.04 | 0.7621 |
Category | Subcategory | Multivariable | |||
---|---|---|---|---|---|
HR | [95% CI] | p | Sig | ||
Race | Non-Hispanic White | reference | |||
Hispanic (all races) | 0.4126 | [0.2216–0.7680] | 0.0052 | ** | |
Non-Hispanic American Indian/Alaska Native | 0.4956 | [0.1172–2.0960] | 0.3400 | ||
Non-Hispanic Asian or Pacific Islander | 1.7181 | [0.8707–3.3904] | 0.1186 | ||
Non-Hispanic Black | 0.7364 | [0.4721–1.1485] | 0.1772 | ||
Tumor Size (cm) | <3 | reference | |||
>3 | 13.5045 | [1.6672–109.3849] | 0.0147 | * | |
Additional Metastases | None | reference | |||
Bone | 1.2316 | [0.7508–2.0202] | 0.4094 | ||
Bone and Liver | 1.7555 | [0.6909–4.4609] | 0.2369 | ||
Bone and Liver and Lungs | 1.0037 | [0.4322–2.3311] | 0.9931 | ||
Bone and Lungs | 1.0873 | [0.5749–2.0564] | 0.7968 | ||
Liver | 6.3700 | [2.2858–17.7522] | 0.0004 | *** | |
Liver and Lungs | 2.2564 | [0.5131–9.9225] | 0.2815 | ||
Lungs | 1.5616 | [0.5998–4.0660] | 0.3613 | ||
Treatment Summary | No treatment | reference | |||
Chemotherapy or Systemic Treatment Only | 0.4883 | [0.2477–0.9627] | 0.0385 | * | |
Radiation Only | 0.6775 | [0.4579–1.0024] | 0.0514 | ||
Radiation and Chemotherapy | 0.3946 | [0.2220–0.7014] | 0.0015 | ** | |
Surgery Only | 1.2845 | [0.4453–3.7057] | 0.6432 | ||
Surgery and Chemotherapy | 0.3267 | [0.0776–1.3751] | 0.1271 | ||
Surgery and Radiation | 1.2557 | [0.3678–4.2866] | 0.7163 | ||
All Three | 0.8085 | [0.2501–2.6143] | 0.7226 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ladner, L.R.; Adhikari, S.; Bhutada, A.S.; Cuoco, J.A.; Patel, V.M.; Entwistle, J.J.; Rogers, C.M.; Marvin, E.A. Traditional Prostate Cancer Risk Assessment Scales Do Not Predict Outcomes from Brain Metastases: A Population-Based Predictive Nomogram. Cancers 2024, 16, 3029. https://doi.org/10.3390/cancers16173029
Ladner LR, Adhikari S, Bhutada AS, Cuoco JA, Patel VM, Entwistle JJ, Rogers CM, Marvin EA. Traditional Prostate Cancer Risk Assessment Scales Do Not Predict Outcomes from Brain Metastases: A Population-Based Predictive Nomogram. Cancers. 2024; 16(17):3029. https://doi.org/10.3390/cancers16173029
Chicago/Turabian StyleLadner, Liliana R., Srijan Adhikari, Abhishek S. Bhutada, Joshua A. Cuoco, Vaibhav M. Patel, John J. Entwistle, Cara M. Rogers, and Eric A. Marvin. 2024. "Traditional Prostate Cancer Risk Assessment Scales Do Not Predict Outcomes from Brain Metastases: A Population-Based Predictive Nomogram" Cancers 16, no. 17: 3029. https://doi.org/10.3390/cancers16173029
APA StyleLadner, L. R., Adhikari, S., Bhutada, A. S., Cuoco, J. A., Patel, V. M., Entwistle, J. J., Rogers, C. M., & Marvin, E. A. (2024). Traditional Prostate Cancer Risk Assessment Scales Do Not Predict Outcomes from Brain Metastases: A Population-Based Predictive Nomogram. Cancers, 16(17), 3029. https://doi.org/10.3390/cancers16173029