Opportunities and Challenges of Small Molecule Inhibitors in Glioblastoma Treatment: Lessons Learned from Clinical Trials
Abstract
:Simple Summary
Abstract
1. Introduction
2. Clinical Trials with Small Molecule Inhibitors in GBM
2.1. Mono-Target Small Molecule Inhibitors
2.2. Multitarget Small Molecule Inhibitors
2.3. Small Molecule Inhibitors Combined with Chemotherapy/Bevacizumab
2.4. Combinations of Small Molecule Inhibitors
3. Discussion
3.1. Intrinsic Versus Acquired Resistance
3.2. Influence of the Tumour Microenvironment
3.3. Clinical Trial Design
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef]
- Ohgaki, H.; Kleihues, P. The definition of primary and secondary glioblastoma. Clin. Cancer Res. 2013, 19, 764–772. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.W.; Verhaak, R.G.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; et al. The somatic genomic landscape of glioblastoma. Cell 2013, 155, 462–477. [Google Scholar] [CrossRef]
- Yan, H.; Parsons, D.W.; Jin, G.; McLendon, R.; Rasheed, B.A.; Yuan, W.; Kos, I.; Batinic-Haberle, I.; Jones, S.; Riggins, G.J.; et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 2009, 360, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.R.; Laperriere, N.; O’Callaghan, C.J.; Brandes, A.A.; Menten, J.; Phillips, C.; Fay, M.; Nishikawa, R.; Cairncross, J.G.; Roa, W.; et al. Short-Course Radiation plus Temozolomide in Elderly Patients with Glioblastoma. N. Engl. J. Med. 2017, 376, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Verhaak, R.G.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.P.; Tirosh, I.; Trombetta, J.J.; Shalek, A.K.; Gillespie, S.M.; Wakimoto, H.; Cahill, D.P.; Nahed, B.V.; Curry, W.T.; Martuza, R.L.; et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014, 344, 1396–1401. [Google Scholar] [CrossRef]
- Neftel, C.; Laffy, J.; Filbin, M.G.; Hara, T.; Shore, M.E.; Rahme, G.J.; Richman, A.R.; Silverbush, D.; Shaw, M.L.; Hebert, C.M.; et al. An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell 2019, 178, 835–849.e821. [Google Scholar] [CrossRef]
- Stommel, J.M.; Kimmelman, A.C.; Ying, H.; Nabioullin, R.; Ponugoti, A.H.; Wiedemeyer, R.; Stegh, A.H.; Bradner, J.E.; Ligon, K.L.; Brennan, C.; et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 2007, 318, 287–290. [Google Scholar] [CrossRef]
- Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 2015, 7, a020412. [Google Scholar] [CrossRef]
- Greene, C.; Campbell, M. Tight junction modulation of the blood brain barrier: CNS delivery of small molecules. Tissue Barriers 2016, 4, e1138017. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx 2005, 2, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; de Gooijer, M.C.; Roig, E.M.; Buil, L.C.; Christner, S.M.; Beumer, J.H.; Wurdinger, T.; Beijnen, J.H.; van Tellingen, O. ABCB1, ABCG2, and PTEN determine the response of glioblastoma to temozolomide and ABT-888 therapy. Clin. Cancer Res. 2014, 20, 2703–2713. [Google Scholar] [CrossRef]
- Szakacs, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 2006, 5, 219–234. [Google Scholar] [CrossRef]
- Sun, G.; Rong, D.; Li, Z.; Sun, G.; Wu, F.; Li, X.; Cao, H.; Cheng, Y.; Tang, W.; Sun, Y. Role of small molecule targeted compounds in cancer: Progress, opportunities, and challenges. Front. Cell Dev. Biol. 2021, 9, 694363. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Nielsen, T.E.; Clausen, M.H. Small-molecule kinase inhibitors: An analysis of FDA-approved drugs. Drug Discov. Today 2016, 21, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Roskoski Jr, R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol. Res. 2021, 165, 105463. [Google Scholar] [CrossRef]
- Bedard, P.L.; Hyman, D.M.; Davids, M.S.; Siu, L.L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 2020, 395, 1078–1088. [Google Scholar] [CrossRef]
- Greenhalgh, J.; Boland, A.; Bates, V.; Vecchio, F.; Dundar, Y.; Chaplin, M.; Green, J.A. First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer. Cochrane Database Syst. Rev. 2021, 3, CD010383. [Google Scholar] [CrossRef]
- Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012, 13, 239–246. [Google Scholar] [CrossRef]
- Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 2009, 361, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Muller Bark, J.; Kulasinghe, A.; Chua, B.; Day, B.W.; Punyadeera, C. Circulating biomarkers in patients with glioblastoma. Br. J. Cancer 2020, 122, 295–305. [Google Scholar] [CrossRef]
- Ronvaux, L.; Riva, M.; Coosemans, A.; Herzog, M.; Rommelaere, G.; Donis, N.; D’Hondt, L.; Douxfils, J. Liquid Biopsy in Glioblastoma. Cancers 2022, 14, 3394. [Google Scholar] [CrossRef] [PubMed]
- Gan, H.K.; Cvrljevic, A.N.; Johns, T.G. The epidermal growth factor receptor variant III (EGFRvIII): Where wild things are altered. FEBS J. 2013, 280, 5350–5370. [Google Scholar] [CrossRef] [PubMed]
- Hoogstrate, Y.; Ghisai, S.A.; de Wit, M.; de Heer, I.; Draaisma, K.; van Riet, J.; van de Werken, H.J.G.; Bours, V.; Buter, J.; Vanden Bempt, I.; et al. The EGFRvIII transcriptome in glioblastoma: A meta-omics analysis. Neuro Oncol. 2022, 24, 429–441. [Google Scholar] [CrossRef]
- Hegi, M.E.; Diserens, A.C.; Bady, P.; Kamoshima, Y.; Kouwenhoven, M.C.; Delorenzi, M.; Lambiv, W.L.; Hamou, M.F.; Matter, M.S.; Koch, A.; et al. Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor gefitinib—A phase II trial. Mol. Cancer Ther. 2011, 10, 1102–1112. [Google Scholar] [CrossRef]
- Uhm, J.H.; Ballman, K.V.; Wu, W.; Giannini, C.; Krauss, J.C.; Buckner, J.C.; James, C.D.; Scheithauer, B.W.; Behrens, R.J.; Flynn, P.J.; et al. Phase II evaluation of gefitinib in patients with newly diagnosed Grade 4 astrocytoma: Mayo/North Central Cancer Treatment Group Study N0074. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 347–353. [Google Scholar] [CrossRef]
- Franceschi, E.; Cavallo, G.; Lonardi, S.; Magrini, E.; Tosoni, A.; Grosso, D.; Scopece, L.; Blatt, V.; Urbini, B.; Pession, A.; et al. Gefitinib in patients with progressive high-grade gliomas: A multicentre phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br. J. Cancer 2007, 96, 1047–1051. [Google Scholar] [CrossRef]
- Rich, J.N.; Reardon, D.A.; Peery, T.; Dowell, J.M.; Quinn, J.A.; Penne, K.L.; Wikstrand, C.J.; Van Duyn, L.B.; Dancey, J.E.; McLendon, R.E.; et al. Phase II trial of gefitinib in recurrent glioblastoma. J. Clin. Oncol. 2004, 22, 133–142. [Google Scholar] [CrossRef]
- Haas-Kogan, D.A.; Prados, M.D.; Tihan, T.; Eberhard, D.A.; Jelluma, N.; Arvold, N.D.; Baumber, R.; Lamborn, K.R.; Kapadia, A.; Malec, M.; et al. Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J. Natl. Cancer Inst. 2005, 97, 880–887. [Google Scholar] [CrossRef] [PubMed]
- de Vries, N.A.; Buckle, T.; Zhao, J.; Beijnen, J.H.; Schellens, J.H.; van Tellingen, O. Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-gp and BCRP. Investig. New Drugs 2012, 30, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Arif, S.H.; Pandith, A.A.; Tabasum, R.; Ramzan, A.U.; Singh, S.; Siddiqi, M.A.; Bhat, A.R. Significant Effect of Anti-tyrosine Kinase Inhibitor (Gefitinib) on Overall Survival of the Glioblastoma Multiforme Patients in the Backdrop of Mutational Status of Epidermal Growth Factor Receptor and PTEN Genes. Asian J. Neurosurg. 2018, 13, 46–52. [Google Scholar] [CrossRef]
- Sos, M.L.; Koker, M.; Weir, B.A.; Heynck, S.; Rabinovsky, R.; Zander, T.; Seeger, J.M.; Weiss, J.; Fischer, F.; Frommolt, P.; et al. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res. 2009, 69, 3256–3261. [Google Scholar] [CrossRef]
- Yamamoto, C.; Basaki, Y.; Kawahara, A.; Nakashima, K.; Kage, M.; Izumi, H.; Kohno, K.; Uramoto, H.; Yasumoto, K.; Kuwano, M.; et al. Loss of PTEN expression by blocking nuclear translocation of EGR1 in gefitinib-resistant lung cancer cells harboring epidermal growth factor receptor-activating mutations. Cancer Res. 2010, 70, 8715–8725. [Google Scholar] [CrossRef] [PubMed]
- Yung, W.K.; Vredenburgh, J.J.; Cloughesy, T.F.; Nghiemphu, P.; Klencke, B.; Gilbert, M.R.; Reardon, D.A.; Prados, M.D. Safety and efficacy of erlotinib in first-relapse glioblastoma: A phase II open-label study. Neuro Oncol. 2010, 12, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Little, S.E.; Popov, S.; Jury, A.; Bax, D.A.; Doey, L.; Al-Sarraj, S.; Jurgensmeier, J.M.; Jones, C. Receptor tyrosine kinase genes amplified in glioblastoma exhibit a mutual exclusivity in variable proportions reflective of individual tumor heterogeneity. Cancer Res. 2012, 72, 1614–1620. [Google Scholar] [CrossRef]
- Taal, W.; Oosterkamp, H.M.; Walenkamp, A.M.; Dubbink, H.J.; Beerepoot, L.V.; Hanse, M.C.; Buter, J.; Honkoop, A.H.; Boerman, D.; de Vos, F.Y.; et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): A randomised controlled phase 2 trial. Lancet Oncol. 2014, 15, 943–953. [Google Scholar] [CrossRef]
- Duerinck, J.; Du Four, S.; Vandervorst, F.; D’Haene, N.; Le Mercier, M.; Michotte, A.; Van Binst, A.M.; Everaert, H.; Salmon, I.; Bouttens, F.; et al. Randomized phase II study of axitinib versus physicians best alternative choice of therapy in patients with recurrent glioblastoma. J. Neurooncol. 2016, 128, 147–155. [Google Scholar] [CrossRef]
- Duerinck, J.; Du Four, S.; Bouttens, F.; Andre, C.; Verschaeve, V.; Van Fraeyenhove, F.; Chaskis, C.; D’Haene, N.; Le Mercier, M.; Rogiers, A.; et al. Randomized phase II trial comparing axitinib with the combination of axitinib and lomustine in patients with recurrent glioblastoma. J. Neurooncol. 2018, 136, 115–125. [Google Scholar] [CrossRef]
- Batchelor, T.T.; Duda, D.G.; di Tomaso, E.; Ancukiewicz, M.; Plotkin, S.R.; Gerstner, E.; Eichler, A.F.; Drappatz, J.; Hochberg, F.H.; Benner, T.; et al. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J. Clin. Oncol. 2010, 28, 2817–2823. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, T.T.; Mulholland, P.; Neyns, B.; Nabors, L.B.; Campone, M.; Wick, A.; Mason, W.; Mikkelsen, T.; Phuphanich, S.; Ashby, L.S.; et al. Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J. Clin. Oncol. 2013, 31, 3212–3218. [Google Scholar] [CrossRef]
- Lombardi, G.; De Salvo, G.L.; Brandes, A.A.; Eoli, M.; Ruda, R.; Faedi, M.; Lolli, I.; Pace, A.; Daniele, B.; Pasqualetti, F.; et al. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): A multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2019, 20, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.M.; Dumas, J.; Adnane, L.; Lynch, M.; Carter, C.A.; Schutz, G.; Thierauch, K.H.; Zopf, D. Regorafenib (BAY 73-4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int. J. Cancer 2011, 129, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Liang, W.W.; Foltz, S.M.; Mutharasu, G.; Jayasinghe, R.G.; Cao, S.; Liao, W.W.; Reynolds, S.M.; Wyczalkowski, M.A.; Yao, L.; et al. Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. Cell Rep. 2018, 23, 227–238.e223. [Google Scholar] [CrossRef]
- Mitelman, F.; Johansson, B.; Mertens, F. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 2007, 7, 233–245. [Google Scholar] [CrossRef]
- You, G.; Fan, X.; Hu, H.; Jiang, T.; Chen, C.C. Fusion Genes Altered in Adult Malignant Gliomas. Front. Neurol. 2021, 12, 715206. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Lankerovich, M.; Lee, H.; Yoon, J.G.; Schroeder, B.; Foltz, G. Exploration of the gene fusion landscape of glioblastoma using transcriptome sequencing and copy number data. BMC Genom. 2013, 14, 818. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, K.; Wang, Q.; Torres-Garcia, W.; Zheng, S.; Vegesna, R.; Kim, H.; Verhaak, R.G. The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene 2015, 34, 4845–4854. [Google Scholar] [CrossRef]
- Woo, H.Y.; Na, K.; Yoo, J.; Chang, J.H.; Park, Y.N.; Shim, H.S.; Kim, S.H. Glioblastomas harboring gene fusions detected by next-generation sequencing. Brain Tumor Pathol. 2020, 37, 136–144. [Google Scholar] [CrossRef]
- Lassman, A.B.; Sepulveda-Sanchez, J.M.; Cloughesy, T.F.; Gil-Gil, M.J.; Puduvalli, V.K.; Raizer, J.J.; De Vos, F.Y.F.; Wen, P.Y.; Butowski, N.A.; Clement, P.M.J.; et al. Infigratinib in Patients with Recurrent Gliomas and FGFR Alterations: A Multicenter Phase II Study. Clin. Cancer Res. 2022, 28, 2270–2277. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandris, Q.G.; Montano, N.; Cenci, T.; Martini, M.; Lauretti, L.; Bianchi, F.; Larocca, L.M.; Maira, G.; Fernandez, E.; Pallini, R. Targeted therapy with bevacizumab and erlotinib tailored to the molecular profile of patients with recurrent glioblastoma. Preliminary experience. Acta Neurochir. 2013, 155, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Huang, K.; Meng, X.; Weng, Y.; Zhang, L.; Bu, L.; Zheng, X.; Cai, J.; Zhan, R.; Chen, Q. Safety and Efficacy of Anlotinib Hydrochloride Plus Temozolomide in Patients with Recurrent Glioblastoma. Clin. Cancer Res. 2023, 29, 3859–3866. [Google Scholar] [CrossRef] [PubMed]
- Sathornsumetee, S.; Desjardins, A.; Vredenburgh, J.J.; McLendon, R.E.; Marcello, J.; Herndon, J.E.; Mathe, A.; Hamilton, M.; Rich, J.N.; Norfleet, J.A.; et al. Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma. Neuro Oncol. 2010, 12, 1300–1310. [Google Scholar] [CrossRef]
- Raizer, J.J.; Giglio, P.; Hu, J.; Groves, M.; Merrell, R.; Conrad, C.; Phuphanich, S.; Puduvalli, V.K.; Loghin, M.; Paleologos, N.; et al. A phase II study of bevacizumab and erlotinib after radiation and temozolomide in MGMT unmethylated GBM patients. J. Neurooncol. 2016, 126, 185–192. [Google Scholar] [CrossRef]
- Rosenthal, M.; Clement, P.M.; Campone, M.; Gil-Gil, M.J.; DeGroot, J.; Chinot, O.; Idbaih, A.; Gan, H.; Raizer, J.; Wen, P.Y.; et al. Buparlisib plus carboplatin or lomustine in patients with recurrent glioblastoma: A phase Ib/II, open-label, multicentre, randomised study. ESMO Open 2020, 5, e000672. [Google Scholar] [CrossRef]
- Reardon, D.A.; Egorin, M.J.; Quinn, J.A.; Rich, J.N.; Gururangan, S.; Vredenburgh, J.J.; Desjardins, A.; Sathornsumetee, S.; Provenzale, J.M.; Herndon, J.E., 2nd; et al. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J. Clin. Oncol. 2005, 23, 9359–9368. [Google Scholar] [CrossRef]
- Reardon, D.A.; Egorin, M.J.; Desjardins, A.; Vredenburgh, J.J.; Beumer, J.H.; Lagattuta, T.F.; Gururangan, S.; Herndon, J.E., 2nd; Salvado, A.J.; Friedman, H.S. Phase I pharmacokinetic study of the vascular endothelial growth factor receptor tyrosine kinase inhibitor vatalanib (PTK787) plus imatinib and hydroxyurea for malignant glioma. Cancer 2009, 115, 2188–2198. [Google Scholar] [CrossRef]
- Schiff, D.; Kesari, S.; de Groot, J.; Mikkelsen, T.; Drappatz, J.; Coyle, T.; Fichtel, L.; Silver, B.; Walters, I.; Reardon, D. Phase 2 study of CT-322, a targeted biologic inhibitor of VEGFR-2 based on a domain of human fibronectin, in recurrent glioblastoma. Investig. New Drugs 2015, 33, 247–253. [Google Scholar] [CrossRef]
- Reardon, D.A.; Vredenburgh, J.J.; Coan, A.; Desjardins, A.; Peters, K.B.; Gururangan, S.; Sathornsumetee, S.; Rich, J.N.; Herndon, J.E.; Friedman, H.S. Phase I study of sunitinib and irinotecan for patients with recurrent malignant glioma. J. Neurooncol. 2011, 105, 621–627. [Google Scholar] [CrossRef]
- Brown, N.; McBain, C.; Nash, S.; Hopkins, K.; Sanghera, P.; Saran, F.; Phillips, M.; Dungey, F.; Clifton-Hadley, L.; Wanek, K.; et al. Multi-Center Randomized Phase II Study Comparing Cediranib plus Gefitinib with Cediranib plus Placebo in Subjects with Recurrent/Progressive Glioblastoma. PLoS ONE 2016, 11, e0156369. [Google Scholar] [CrossRef] [PubMed]
- Ballester, L.Y.; Fuller, G.N.; Powell, S.Z.; Sulman, E.P.; Patel, K.P.; Luthra, R.; Routbort, M.J. Retrospective Analysis of Molecular and Immunohistochemical Characterization of 381 Primary Brain Tumors. J. Neuropathol. Exp. Neurol. 2017, 76, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.Y.; Stein, A.; van den Bent, M.; De Greve, J.; Wick, A.; de Vos, F.; von Bubnoff, N.; van Linde, M.E.; Lai, A.; Prager, G.W.; et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutant low-grade and high-grade glioma (ROAR): A multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol. 2022, 23, 53–64. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research, N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008, 455, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Mason, W.P. Blood-brain barrier-associated efflux transporters: A significant but underappreciated obstacle to drug development in glioblastoma. Neuro Oncol. 2015, 17, 1181–1182. [Google Scholar] [CrossRef]
- Tang, S.C.; Sparidans, R.W.; Cheung, K.L.; Fukami, T.; Durmus, S.; Wagenaar, E.; Yokoi, T.; van Vlijmen, B.J.; Beijnen, J.H.; Schinkel, A.H. P-glycoprotein, CYP3A, and plasma carboxylesterase determine brain and blood disposition of the mTOR Inhibitor everolimus (Afinitor) in mice. Clin. Cancer Res. 2014, 20, 3133–3145. [Google Scholar] [CrossRef]
- Wang, L.B.; Karpova, A.; Gritsenko, M.A.; Kyle, J.E.; Cao, S.; Li, Y.; Rykunov, D.; Colaprico, A.; Rothstein, J.H.; Hong, R.; et al. Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell 2021, 39, 509–528.e520. [Google Scholar] [CrossRef]
- Yanovich-Arad, G.; Ofek, P.; Yeini, E.; Mardamshina, M.; Danilevsky, A.; Shomron, N.; Grossman, R.; Satchi-Fainaro, R.; Geiger, T. Proteogenomics of glioblastoma associates molecular patterns with survival. Cell Rep. 2021, 34, 108787. [Google Scholar] [CrossRef]
- Song, K.; Yuan, Y.; Lin, Y.; Wang, Y.X.; Zhou, J.; Gai, Q.J.; Zhang, L.; Mao, M.; Yao, X.X.; Qin, Y.; et al. ERBB3, IGF1R, and TGFBR2 expression correlate with PDGFR expression in glioblastoma and participate in PDGFR inhibitor resistance of glioblastoma cells. Am. J. Cancer Res. 2018, 8, 792–809. [Google Scholar]
- Jun, H.J.; Bronson, R.T.; Charest, A. Inhibition of EGFR induces a c-MET-driven stem cell population in glioblastoma. Stem Cells 2014, 32, 338–348. [Google Scholar] [CrossRef]
- Jun, H.J.; Acquaviva, J.; Chi, D.; Lessard, J.; Zhu, H.; Woolfenden, S.; Bronson, R.T.; Pfannl, R.; White, F.; Housman, D.E.; et al. Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme. Oncogene 2012, 31, 3039–3050. [Google Scholar] [CrossRef] [PubMed]
- Day, E.K.; Sosale, N.G.; Xiao, A.; Zhong, Q.; Purow, B.; Lazzara, M.J. Glioblastoma Cell Resistance to EGFR and MET Inhibition Can Be Overcome via Blockade of FGFR-SPRY2 Bypass Signaling. Cell Rep. 2020, 30, 3383–3396.e3387. [Google Scholar] [CrossRef] [PubMed]
- Saunders, V.C.; Lafitte, M.; Adrados, I.; Quereda, V.; Feurstein, D.; Ling, Y.; Fallahi, M.; Rosenberg, L.H.; Duckett, D.R. Identification of an EGFRvIII-JNK2-HGF/c-Met-Signaling Axis Required for Intercellular Crosstalk and Glioblastoma Multiforme Cell Invasion. Mol. Pharmacol. 2015, 88, 962–969. [Google Scholar] [CrossRef]
- Sunayama, J.; Matsuda, K.; Sato, A.; Tachibana, K.; Suzuki, K.; Narita, Y.; Shibui, S.; Sakurada, K.; Kayama, T.; Tomiyama, A.; et al. Crosstalk between the PI3K/mTOR and MEK/ERK pathways involved in the maintenance of self-renewal and tumorigenicity of glioblastoma stem-like cells. Stem Cells 2010, 28, 1930–1939. [Google Scholar] [CrossRef] [PubMed]
- Turke, A.B.; Song, Y.; Costa, C.; Cook, R.; Arteaga, C.L.; Asara, J.M.; Engelman, J.A. MEK inhibition leads to PI3K/AKT activation by relieving a negative feedback on ERBB receptors. Cancer Res. 2012, 72, 3228–3237. [Google Scholar] [CrossRef]
- McNeill, R.S.; Canoutas, D.A.; Stuhlmiller, T.J.; Dhruv, H.D.; Irvin, D.M.; Bash, R.E.; Angus, S.P.; Herring, L.E.; Simon, J.M.; Skinner, K.R.; et al. Combination therapy with potent PI3K and MAPK inhibitors overcomes adaptive kinome resistance to single agents in preclinical models of glioblastoma. Neuro Oncol. 2017, 19, 1469–1480. [Google Scholar] [CrossRef]
- Wen, P.Y.; Chang, S.M.; Lamborn, K.R.; Kuhn, J.G.; Norden, A.D.; Cloughesy, T.F.; Robins, H.I.; Lieberman, F.S.; Gilbert, M.R.; Mehta, M.P.; et al. Phase I/II study of erlotinib and temsirolimus for patients with recurrent malignant gliomas: North American Brain Tumor Consortium trial 04-02. Neuro Oncol. 2014, 16, 567–578. [Google Scholar] [CrossRef]
- Reardon, D.A.; Quinn, J.A.; Vredenburgh, J.J.; Gururangan, S.; Friedman, A.H.; Desjardins, A.; Sathornsumetee, S.; Herndon, J.E., 2nd; Dowell, J.M.; McLendon, R.E.; et al. Phase 1 trial of gefitinib plus sirolimus in adults with recurrent malignant glioma. Clin. Cancer Res. 2006, 12, 860–868. [Google Scholar] [CrossRef]
- Reardon, D.A.; Desjardins, A.; Vredenburgh, J.J.; Gururangan, S.; Friedman, A.H.; Herndon, J.E., 2nd; Marcello, J.; Norfleet, J.A.; McLendon, R.E.; Sampson, J.H.; et al. Phase 2 trial of erlotinib plus sirolimus in adults with recurrent glioblastoma. J. Neurooncol. 2010, 96, 219–230. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [Google Scholar] [CrossRef]
- Yancopoulos, G.D.; Davis, S.; Gale, N.W.; Rudge, J.S.; Wiegand, S.J.; Holash, J. Vascular-specific growth factors and blood vessel formation. Nature 2000, 407, 242–248. [Google Scholar] [CrossRef]
- Bergers, G.; Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 2008, 8, 592–603. [Google Scholar] [CrossRef]
- Liu, T.; Ma, W.; Xu, H.; Huang, M.; Zhang, D.; He, Z.; Zhang, L.; Brem, S.; O’Rourke, D.M.; Gong, Y.; et al. PDGF-mediated mesenchymal transformation renders endothelial resistance to anti-VEGF treatment in glioblastoma. Nat. Commun. 2018, 9, 3439. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Wang, H.; Pan, H.; Chen, J.; Deng, C. Anlotinib combined with temozolomide suppresses glioblastoma growth via mediation of JAK2/STAT3 signaling pathway. Cancer Chemother. Pharmacol. 2022, 89, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Wick, W.; Gorlia, T.; Bendszus, M.; Taphoorn, M.; Sahm, F.; Harting, I.; Brandes, A.A.; Taal, W.; Domont, J.; Idbaih, A.; et al. Lomustine and Bevacizumab in Progressive Glioblastoma. N. Engl. J. Med. 2017, 377, 1954–1963. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, L.; Bria, E.; Sperduti, I.; Hinke, A.; Hegewisch-Becker, S.; Aparicio, T.; Le Malicot, K.; Boige, V.; Koeberle, D.; Baertschi, D.; et al. Bevacizumab as maintenance therapy in patients with metastatic colorectal cancer: A meta-analysis of individual patients’ data from 3 phase III studies. Cancer Treat. Rev. 2021, 97, 102202. [Google Scholar] [CrossRef] [PubMed]
- Capper, D.; Reifenberger, G.; French, P.J.; Schweizer, L.; Weller, M.; Touat, M.; Niclou, S.P.; Euskirchen, P.; Haberler, C.; Hegi, M.E.; et al. EANO guideline on rational molecular testing of gliomas, glioneuronal, and neuronal tumors in adults for targeted therapy selection. Neuro Oncol. 2023, 25, 813–826. [Google Scholar] [CrossRef]
- Gieryng, A.; Pszczolkowska, D.; Walentynowicz, K.A.; Rajan, W.D.; Kaminska, B. Immune microenvironment of gliomas. Lab. Investig. 2017, 97, 498–518. [Google Scholar] [CrossRef]
- Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; et al. The Immune Landscape of Cancer. Immunity 2019, 51, 411–412. [Google Scholar] [CrossRef]
- Vito, A.; El-Sayes, N.; Mossman, K. Hypoxia-Driven Immune Escape in the Tumor Microenvironment. Cells 2020, 9, 992. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, H.K. Current Understanding of Hypoxia in Glioblastoma Multiforme and Its Response to Immunotherapy. Cancers 2022, 14, 1176. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.; Weller, M.; Idbaih, A.; Steinbach, J.; Finocchiaro, G.; Raval, R.R.; Ansstas, G.; Baehring, J.; Taylor, J.W.; Honnorat, J.; et al. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro Oncol. 2022, 24, 1935–1949. [Google Scholar] [CrossRef] [PubMed]
- Omuro, A.; Brandes, A.A.; Carpentier, A.F.; Idbaih, A.; Reardon, D.A.; Cloughesy, T.; Sumrall, A.; Baehring, J.; van den Bent, M.; Bahr, O.; et al. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: An international randomized phase III trial. Neuro Oncol. 2023, 25, 123–134. [Google Scholar] [CrossRef]
- Reardon, D.A.; Brandes, A.A.; Omuro, A.; Mulholland, P.; Lim, M.; Wick, A.; Baehring, J.; Ahluwalia, M.S.; Roth, P.; Bahr, O.; et al. Effect of Nivolumab vs Bevacizumab in Patients with Recurrent Glioblastoma: The CheckMate 143 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.W.; Quail, D.F. Immunotherapy for Glioblastoma: Current Progress and Challenges. Front. Immunol. 2021, 12, 676301. [Google Scholar] [CrossRef] [PubMed]
- Kwilas, A.R.; Ardiani, A.; Donahue, R.N.; Aftab, D.T.; Hodge, J.W. Dual effects of a targeted small-molecule inhibitor (cabozantinib) on immune-mediated killing of tumor cells and immune tumor microenvironment permissiveness when combined with a cancer vaccine. J. Transl. Med. 2014, 12, 294. [Google Scholar] [CrossRef]
- Kato, Y.; Tabata, K.; Kimura, T.; Yachie-Kinoshita, A.; Ozawa, Y.; Yamada, K.; Ito, J.; Tachino, S.; Hori, Y.; Matsuki, M.; et al. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS ONE 2019, 14, e0212513. [Google Scholar] [CrossRef]
- Sidorov, M.; Dighe, P.; Woo, R.W.L.; Rodriguez-Brotons, A.; Chen, M.; Ice, R.J.; Vaquero, E.; Jian, D.; Desprez, P.Y.; Nosrati, M.; et al. Dual Targeting of EGFR and MTOR Pathways Inhibits Glioblastoma Growth by Modulating the Tumor Microenvironment. Cells 2023, 12, 547. [Google Scholar] [CrossRef]
- Kummar, S.; Kinders, R.; Rubinstein, L.; Parchment, R.E.; Murgo, A.J.; Collins, J.; Pickeral, O.; Low, J.; Steinberg, S.M.; Gutierrez, M.; et al. Compressing drug development timelines in oncology using phase ‘0′ trials. Nat. Rev. Cancer 2007, 7, 131–139. [Google Scholar] [CrossRef]
- Tien, A.C.; Li, J.; Bao, X.; Derogatis, A.; Kim, S.; Mehta, S.; Sanai, N. A Phase 0 Trial of Ribociclib in Recurrent Glioblastoma Patients Incorporating a Tumor Pharmacodynamic- and Pharmacokinetic-Guided Expansion Cohort. Clin. Cancer Res. 2019, 25, 5777–5786. [Google Scholar] [CrossRef]
- Wei, H.J.; Upadhyayula, P.S.; Pouliopoulos, A.N.; Englander, Z.K.; Zhang, X.; Jan, C.I.; Guo, J.; Mela, A.; Zhang, Z.; Wang, T.J.C.; et al. Focused Ultrasound-Mediated Blood-Brain Barrier Opening Increases Delivery and Efficacy of Etoposide for Glioblastoma Treatment. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 539–550. [Google Scholar] [CrossRef]
- Hersh, A.M.; Bhimreddy, M.; Weber-Levine, C.; Jiang, K.; Alomari, S.; Theodore, N.; Manbachi, A.; Tyler, B.M. Applications of Focused Ultrasound for the Treatment of Glioblastoma: A New Frontier. Cancers 2022, 14, 4920. [Google Scholar] [CrossRef]
- Narsinh, K.H.; Perez, E.; Haddad, A.F.; Young, J.S.; Savastano, L.; Villanueva-Meyer, J.E.; Winkler, E.; de Groot, J. Strategies to Improve Drug Delivery Across the Blood-Brain Barrier for Glioblastoma. Curr. Neurol. Neurosci. Rep. 2024, 24, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Burt, T.; Young, G.; Lee, W.; Kusuhara, H.; Langer, O.; Rowland, M.; Sugiyama, Y. Phase 0/microdosing approaches: Time for mainstream application in drug development? Nat. Rev. Drug Discov. 2020, 19, 801–818. [Google Scholar] [CrossRef]
- Roepman, P.; de Bruijn, E.; van Lieshout, S.; Schoenmaker, L.; Boelens, M.C.; Dubbink, H.J.; Geurts-Giele, W.R.R.; Groenendijk, F.H.; Huibers, M.M.H.; Kranendonk, M.E.G.; et al. Clinical Validation of Whole Genome Sequencing for Cancer Diagnostics. J. Mol. Diagn. 2021, 23, 816–833. [Google Scholar] [CrossRef] [PubMed]
- Priestley, P.; Baber, J.; Lolkema, M.P.; Steeghs, N.; de Bruijn, E.; Shale, C.; Duyvesteyn, K.; Haidari, S.; van Hoeck, A.; Onstenk, W.; et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 2019, 575, 210–216. [Google Scholar] [CrossRef]
- Tsimberidou, A.M.; Iskander, N.G.; Hong, D.S.; Wheler, J.J.; Falchook, G.S.; Fu, S.; Piha-Paul, S.; Naing, A.; Janku, F.; Luthra, R.; et al. Personalized medicine in a phase I clinical trials program: The MD Anderson Cancer Center initiative. Clin. Cancer Res. 2012, 18, 6373–6383. [Google Scholar] [CrossRef] [PubMed]
- Le Tourneau, C.; Delord, J.P.; Goncalves, A.; Gavoille, C.; Dubot, C.; Isambert, N.; Campone, M.; Tredan, O.; Massiani, M.A.; Mauborgne, C.; et al. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): A multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol. 2015, 16, 1324–1334. [Google Scholar] [CrossRef]
- Vo, H.H.; Fu, S.; Hong, D.S.; Karp, D.D.; Piha-Paul, S.; Subbiah, V.; Janku, F.; Naing, A.; Yap, T.A.; Rodon, J.; et al. Challenges and opportunities associated with the MD Anderson IMPACT2 randomized study in precision oncology. NPJ Precis. Oncol. 2022, 6, 78. [Google Scholar] [CrossRef]
- Flaherty, K.T.; Gray, R.J.; Chen, A.P.; Li, S.; McShane, L.M.; Patton, D.; Hamilton, S.R.; Williams, P.M.; Iafrate, A.J.; Sklar, J.; et al. Molecular Landscape and Actionable Alterations in a Genomically Guided Cancer Clinical Trial: National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH). J. Clin. Oncol. 2020, 38, 3883–3894. [Google Scholar] [CrossRef]
- Mangat, P.K.; Halabi, S.; Bruinooge, S.S.; Garrett-Mayer, E.; Alva, A.; Janeway, K.A.; Stella, P.J.; Voest, E.; Yost, K.J.; Perlmutter, J.; et al. Rationale and Design of the Targeted Agent and Profiling Utilization Registry (TAPUR) Study. JCO Precis. Oncol. 2018, 2, 1–14. [Google Scholar] [CrossRef]
- Hoes, L.R.; van Berge Henegouwen, J.M.; van der Wijngaart, H.; Zeverijn, L.J.; van der Velden, D.L.; van de Haar, J.; Roepman, P.; de Leng, W.J.; Jansen, A.M.L.; van Werkhoven, E.; et al. Patients with Rare Cancers in the Drug Rediscovery Protocol (DRUP) Benefit from Genomics-Guided Treatment. Clin. Cancer Res. 2022, 28, 1402–1411. [Google Scholar] [CrossRef]
Compound | Target | PMID | Trial | De Novo/Recurrent | Study Population | PFS/OS | Response Rate | Biomarker Analysis |
---|---|---|---|---|---|---|---|---|
Adavosertib (AZD1775) | Wee1 | 29798906 | Phase 0 | Recurrent | GBM n = 20 | NA | NA | NA |
Buparlisib | PI3K | 30715997 | Phase II | Recurrent | GBM n = 65 | PFS 1.7m (95% CI, 1.4–1.8). OS 9.8m (95% CI, 8.4–12.1) | CR 0%, PR 0%, SD 42%, PD 54% DRC 43.8% (95% CI 31–58%) | No statistically significant association was found between PTEN, PIK3CA, PIK3R1, EGFR, PDGFRA, IDH1/2 and TP53, and PFS6 or OS. No statistically significant association in PFS between PIK3CA/PIK3R1-mutant or PTEN mutant PIK3CA/PIK3R1-wildtype or PTEN wildtype. |
Capmatinib | c-MET | 31776899 | Phase II | Recurrent | GBM n = 10, altered PTEN status | PFS not assessed due to insufficient sample size | CR 0%, PR 0%, SD 30% | NA |
Deforolimus | mTOR | 22037923 | Phase I | Recurrent | Grade IV malignant glioma n = 3 | NA | SD 33% as best response | NA |
Erlotinib | EGFR | 20150372 | Phase II | Recurrent | GBM n = 42 | PFS 2m OS 6m | CR 0%, PR 0%, SD 7.1%, PD 62% | NA |
22946346 | Phase I + II | Recurrent | GBM n = 8 | PFS 1.9m OS 6.9m | NA | NA | ||
24352766 | Phase II | Recurrent | GBM n = 40, EGFR or PTEN-mutated | PFS 3.9m (95% CI 1.6–6.1) OS 7m (95% CI 1.41–4.7) | CR 0%, PR 7%, SD 21%, PD 72% | NA | ||
20615922 | Phase II | Recurrent | GBM n = 48 | PFS6 20% (95% CI 10.0–32.4) OS 9.7m (95% CI 5.9–11.6) | CR 2.1%, PR 6.3%, SD 33.3%, PD 54.2% | No conclusion could be draw from molecular subgroup analyses due to low response rate. EGFR amplified: OS 8.3m (95% CI 4.1–10.7) CR 4.3%, PR 4.3%, SD 43.5%, PD 47.8% Non-EGFR amplified: OS 10.6m (95% CI 4.7–14.1) CR 0%, PR 8.0%, SD 43.5%, PD 60.0% | ||
19204207 | Phase II | Recurrent | GBM n = 110 | PFS 1.8m OS 7.7m | NA | EGFRvIII was correlated with poor PFS in the erlotinib arm (p = 0.003). EGFR amplification was significant for poor outcome in the entire study population (p = 0.048). | ||
Gefitinib | EGFR | 29492119 | Phase II | De novo | GBM n = 40 | PFS 6m OS 14m | NA | PFS and OS were significantly (p = 0.005) higher in EGFR +ve/PTEN-ve compared to EGFR-ve/PTEN+ve with 9 months versus 6 months, and 20 months versus 13 months, respectively. |
14638850 | Phase II | Recurrent | GBM n = 53 | EFS 8.1w (95% CI, 7.9–9.1) OS 39.4w(95% CI, 24.3–59.4) | CR 0%, PR 0%, SD 42%, PD 58.4% within 2 months. PD 96.2% at end of follow-up | Epidermal growth factor receptor expression did not correlate with either EFS or OS. | ||
17353924 | Phase II | Recurrent | GBM n = 16 AO n = 3 AA n = 9 | PFS 8.4w OS 24.6w | DCR 12.5% (95% CI 1.6–38.4%). SD 12.5% | EGFR expression or gene status, and p-Akt expression predict activity of gefitinib. | ||
20510539 | Phase II | De novo | GBM n = 96 | PFS-1year 16.7%, OS-1year 54.2% | NA | Clinical outcome was not affected by EGFR amplification or EGFRvIII mutation. | ||
21471286 | Phase II | Recurrent | GBM n = 22 | OS 8.8m | NA | No difference between patients with an amplified or a normal EGFR status. | ||
GSK2256098 | FAK kinase | 29788497 | Phase I | Recurrent | GBM n = 13 | PFS 5.7w (95% CI 3.1–8.3) | SD 27%, PD 73% | NA |
Navtemadlin (AMG-232) | MDM2 | 31359240 | Phase I | De novo and recurrent | GBM n = 10, p53wt | NA | SD 60% | NA |
Pegdinetanib (CT-322) | VEGFR-2 | 25388940 | Phase II | Recurrent | GBM n = 63 | PFS 1.8m | 1mg/kg: ORR 14.3% 2mg/kg: ORR 3.8% | NA |
Perifosine | Akt | 31325145 | Phase II | Recurrent | GBM n = 16 | PFS 1.58m (95% CI 1.08–1.84) OS 3.68m (95% CI 2.50–7.79) | SD 12.5%, PD 75% | NA |
PF-06840003 | IDO-1 | 32436060 | Phase I | Recurrent | GBM n = 14 AA gr III n = 2 AO gr III n = 1 | PFS 1.9–2.8m | DCR 47% | NA |
Picropodophyllin (AXL1717) | IGF-1R | 29113409 | Phase I/II | Recurrent | GBM n = 8 Gliosarcoma n = 1 | PFS 8w OS 15w | CR 0%, PR 11.1%, SD 44.4%, PD 44.4% | NA |
Rapamycin | mTOR | 18215105 | Phase I | Recurrent | GBM n = 14, PTEN-deficient | No PFS or OS reported | NA | NA |
Selinexor | XPO-1 | 34728525 | Phase II | Recurrent | GBM n = 76 | Arm B: PFS6 10% (95% CI 2.67–35.4) OS 10.5m (95% CI, 4.9–17.0) Arm C: PFS6 7.7% (95% CI 1.2–50.6) OS 8.5m (95% CI, 7.3–not evaluable) Arm D: 17.2% (95% CI, 7.78–38.3) OS 10.2m (95% CI, 7.0–15.4) | Arm B: ORR 8.3%, SD 25%, PD 62.5% Arm C: ORR 7.7%, SD 30.8%, PD 61.5% Arm D: ORR 10%, SD 23.3%, PD 56.7% | Patients with mutations in pancreatic and duodenal homeobox 1 (PDX1), E1A Binding Protein P400 (EP400) or Dedicator of Cytokinesis 8 (DOCK8) survived longer than patients with wildtype tumours |
Tipifarnib | FTase subunit ß | 16877733 | Phase II | Recurrent | GBM n = 67 | Non-EIAED: PFS 9w (95% CI 7–14) EAIED: PFS 6w (95% CI 4–8w) | CR 0%, PR 7.5% Non-EIAED: PR 11% EAIED: PR 3% | NA |
Trotabresib | BET | 36455228 | Phase I | Recurrent | GBM n = 19 AA n = 1 | PFS 1.9m (95% CI 1.4–3.4) IDH-wt: PFS 3.0m (95% CI 1.4–3.6) | SD 41%, PD 59% | NA |
Vismodegib (GDC-0449) | SMO | 36581779 | Phase 0/II | Recurrent | GBM n = 41 | PFS 2.3m (95% CI 1.9–2.6) OS 7.8m (95% CI 5.4–10.1) | CR 0%, PR 0%, SD 25.8%, PD 74.2% | NA |
Targets | Compound | Targets Specified | PMID | Trial | De Novo/ Recurrent GBM | Study Population | PFS/OS | Response Rate | Biomarker Analysis |
---|---|---|---|---|---|---|---|---|---|
Tumourcell | Abemaciclib | CDK 4 & 6 | 27217383 | Phase I | Recurrent | GBM n = 17 | NA | SD 17.6% | NA |
Afatinib | EGFR, ERBB2, ERBB4 | 25140039 | Phase I + II | Recurrent | GBM n = 119 | PFS 0.99m (p = 0.032) OS 9.8m (p = 0.386) | DCR 36.6% (95% CI 22.1–53.1). CR 0%, PR 2.4%, SD 34.1%, PD 34.1% | EGFR vIII+ tumours showed higher PFS versus EGFRvIII- tumours. | |
Bortezomib | 20S proteasome | 20213332 | Phase I | Recurrent | GBM n = 51 AA n = 8 AO n = 3 Other n = 4 | PFS 2.1m (95% CI 1.7–2.8) OS 6.0m (95% CI 3.9–7.4) | ORR 3%, CR 0%, PR 3%, SD 23% | NA | |
Cilengitide | Integrins ανβ3 and ανβ5 | 17470857 | Phase I | Recurrent | GBM n = 37 AA n = 11 AO n = 1 Mixed AG n = 2 | OS 5.6m (95% CI 4.3–8.4) | ORR 9.8%, CR 3.9%, PR 5.9%, SD 31.4% | NA | |
18981465 | Phase II | Recurrent | GBM n=81 | 500 mg/d: TTP 7.9w (95% CI 7.7–15.6) OS 6.5m (95% CI 5.2–9.3) 2000 mg/d: TTP 8.1w (95% CI 7.9–15.0) OS 9.9m (95% CI 6.4–15.7) | 500 mg/d: ORR 5%2000 mg/d: ORR 13% | NA | |||
21739168 | Phase II | Recurrent | GBM n = 26 | PFS 8w (95% CI 4–16) | NA | NA | |||
Dacomitinib | EGFR, ERBB2 and ERBB4 | 28575464 | Phase II | Recurrent | GBM n = 30, EGFR amplification GBM n = 19, EGFR amplification and EGFRvIII mutation | PFS 2.7m (95% CI 2.3–3.1) OS 7.4m (95% CI 5.6–9.2) | CR 2%, PR 4.1%, SD 24.5%, PD 61.2% | EGFR amplification without EGFRvIII mutation: PFS 2.7m, OS 7.8m. CR 3.3%, PR 3.3%, SD 26.7%, PD 56.7% EGFR amplification with EGFRvIII mutation: PFS 2.6m, OS 6.7m. CR 0%, PR 5.3%, SD 21.1%, PD 68.4% | |
Dasatinib (BMS-354825) | Abl1, Src, c-Kit, Lck, Yes, induces autophagy | 25758746 | Phase II | Recurrent | GBM n = 50 | PFS 1.7m (95% CI 1.3–1.9) OS 7.9m (95% CI 5.6–10.2) | CR 0%, PR 0%, SD 24%, PD 72% | NA | |
Enzastaurin | PKCβ, PKCα, PKCγ and PKCε Chk1/Chk2 | 20150385 | Phase I/II | Recurrent | GBM n = 57 | PFS 1.3m OS 4.6m | ORR 30%, PR 3.5% | NA | |
20124186 | Phase III | Recurrent | GBM n = 174 | PFS 1.51m OS 6.60m | ORR 2.9%, SD 38.5%, PD 41.4% | NA | |||
Lapatinib | EGFR, ERBB2 | 19499221 | Phase I + II | Recurrent | GBM n = 17 | NA | SD 23.5% | No relation between PTEN loss or EGFRvIII and outcome | |
Marimastat | MMP-9, MMP-1, MMP-2, MMP-14, MMP-7 | 16636750 | Phase II | De novo | GBM n = 154 Gliosarcoma n = 8 | PFS 17.1w, OS 42.9w | NA | NA | |
Palbociclib | CDK4 & 6 | 30151703 | Phase II | Recurrent | GBM n = 22, Rb1-positive | PFS 5.14 weeks, OS 15.4 weeks | PD 95% | NA | |
Paxalisib (GDC-0084) | PI3K, mTOR | 31937616 | Phase I | Recurrent | WHO grade III n = 14 WHO grade IV n = 33 | NA | ORR 0%, SD 40%, PD 55% | No correlation between PTEN loss or PI3K mutations and response to GDC-0084. | |
NCT03522298 | Phase II | De novo | GBM n = 30 | PFS 8.6m OS 15.9m | NA | NA | |||
Ribociclib | CDK4 & 6 | 31399936 | Phase Ib | Recurrent | GBM n = 3, Rb+ | Patient 1: PFS 2 m OS 10m Patient 2: PFS 5m OS 19m Patient 3: PFS 2m OS 12m | NA | NA | |
31285369 | Phase 0 | Recurrent | GBM n = 6 | PFS 9.7w OS 7.8m | NA | NA | |||
Romidepsin | HDAC 1, 2 (4 and 6) | 21377994 | Phase I/II | Recurrent | Phase I: GBM n = 8 Phase II: GBM n = 35 | PFS 8w (95% CI 5–8) OS 34w (95% CI 21–47) | CR 0%, PR 0%, SD 28%, PD 72% | NA | |
Sonolisib (PX-866) | PI3K (p110α), (p120γ), (p110δ) | 25605819 | Phase II | Recurrent | GBM n = 33 | PFS-6 17% (95% CI 5–32%) | CR 0%, PR 3%, SD 24%, PD 73% | No statistically significant association between stable disease and PTEN, EGFRvIII, PIK3CA mutation or PIK3R1 mutation | |
Tandutinib | FLT3, c-Kit, PDGFR | 27663390 | Phase I + II | Recurrent | Phase I: GBM n = 19 Phase II: GBM n = 30 | First stage: PFS 1.9m (95% CI: 1.5–3.7) OS 8.8m (95% CI: 5.9–15.4) Time of analysis: PFS6 16% | CR 3% | NA | |
Vistusertib | mTOR, PI3K isoforms α/β/γ/δ | 31707687 | Phase I | Recurrent | GBM n = 14 | PFS6 26.6% | ORR 8%, PR8%, SD 38% | No correlation between pS6 status and response. | |
Vorinostat | HDAC 1, 2, 3, 6, 8 | 19307505 | Phase II | Recurrent | GBM n = 66 | PFS 1.9m OS 5.7m | ORR 3% | NA | |
WP1066 | JAK2, STAT3 | 35575067 | Phase I | Recurrent | GBM n = 8 | PFS 2.3m (95% CI 1.7–NA) OS form initial diagnosis 25m (95% CI 22.5–NA) | PD 100% | NA | |
Tumourcell + angiogenesis | Axitinib | VEGFR1, VEGFR2, VEGFR3 PDGFRß, c-Kit | 28988341 | Phase II | Recurrent | GBM n = 50 | PFS 12.4w (95% CI 11–13) OS 29w (95% CI 20–38) | NA | MGMT-promoter hypermethylation is significantly correlated with PFS and OS |
26935577 | Phase II | Recurrent | GBM n = 22 | PFS 13w (95% CI 11–14) OS 29w (95% CI, 17–40) | CR 9%, PR 18%, SD 14% | No difference in PFS or OS for tested mutations. | |||
33067319 | Phase II | Recurrent | GBM n = 27 | PFS6 18.5% OS 18w | ORR 22.2%, CR 3.7%, PR 18.5%, SD 25.9%, PD 51.9% | NA | |||
Cabozantinib | VEGFR1-3, c-Met, Ret, Kit, Flt-1/3/4, Tie2, AXL | 29016998 | Phase II | Recurrent | GBM n = 152 | PFS 3.7m OS 7.7–10.4m (depending on dose) | 140 mg/day: ORR 17.6%, PR 17.6%, SD 58.8%, PD 11.8% 100 mg/day: ORR 14.5%, PR 14.5%, SD 67.5%, PD 12.0% | NA | |
29036345 | Phase II | Recurrent | GBM n = 70 | PFS 2.3m OS 4.6m | 140 mg/day: ORR 8.3%, PR 8.3%, SD 50.0%, PD 16.7% 100 mg/day: ORR 3.4%, PR 3.4%, SD 46.6%, PD 27.6% | NA | |||
Dovitinib | FLT3/c-Kit, FGFR1/3, VEGFR1-4, PDGF | 31292802 | Phase II | Recurrent | GBM n = 19 | TTP 1.8m (95% CI 1.4–1.8) OS 5.6m (95% CI 4.2–8.1) | NA | No impact on OS. Higher BMP 9, CD73, endoglin and VEGF D, and lower TSP 2 were associated with poorer PFS | |
27100354 | Phase I | Recurrent | GBM n = 12 | PFS 1.8m (95% CI 1.7–1.9) OS 9.5m (95% CI 2.6–16.4) | CR 0%, PR 0%, SD 36.4%, PD 63.4% | Presence of FGFR-TACC gene fusion did not affect PFS-6 | |||
Infigratinib | FGFR 1/2/3 | 35344029 | Phase II | Recurrent | GBM n = 19 AA n = 5 Other n = 2 | PFS 1.7m (95% CI 1.1–2.8) OS 6.7m (95% CI 4.2–11.7) | ORR 4.8%, PR 4.8%, SD 28.6%, PD 61.9% | Tumours harbouring FGFR1 or FGFR3 point mutations or FGFR3-TACC3 fusions showed durable disease control for more than 1 year | |
Nintedanib | VEGFR1/2/3, FGFR1/2/3 and PDGFRα/β | 23184145 | Phase II | Recurrent | GBM n = 25 | PFS-6 4.0% (95% CI 0.1–20.4) OS 6m (95% CI 3.6–8.4) | CR 0%, PR 0%, SD 12.0%, PD 88.0% | NA | |
25338318 | Phase II | Recurrent | GBM n = 22 | Bevacizumab-naive: PFS 28d (95% CI 27–83) OS 6.9m (95% CI 3.7–8.1). bevacizumab-treated: PFS 28d (95% CI 22–28) OS 2.6m (95% CI 1.0–6.9) | Bevacizumab-naive: CR 0%, PR 0%, SD 33%, PD 67% Bevacizumab-treated: CR 0%, PR 0%, SD 10%, PD 90% | NA | |||
Regorafenib | VEGFR1, VEGFR2, VEGFR3, PDGFRa, PDGFRβ, Kit (c-Kit), RET (c-RET) and Raf-1, FGFR1, FGFR2, Abl | 30522967 | Phase II | Recurrent | GBM n = 59 | PFS 2.0m (95% CI 1.9–3.6) OS 7.4m (95% CI 5.8–12.0) | CR 2%, PR 3%, SD 39%, PD 56% | NA | |
Sunitinib | VEGFR1, VEGFR2 VEGFR3, PDGFRa, PDGFRß, c-Kit, FLT3, CSF-1R, RET | 22832897 | Phase II | Recurrent | GBM n = 16 | PFS 1.4m (95% CI 1.2–4.8) OS 12.6m (95% CI 3.9–18.1) | CR 0%, PR 0%, SD 31.3% | NA | |
23086433 | Phase II | Recurrent | GBM n = 31 | PFS 1.08m (95% CI 0.92–2.47) OS 9.4m (95% CI 6.15–21.90) | Rate of radiographic response 10%, Levin 23% | NA | |||
24311637 | Phase II | Recurrent | GBM n = 40 | PFS 2.2m (95% CI 1.8–3.3) OS 9.2m (95% CI 11.9–49.2) | ORR 0%, SD 12.5%, PD 82.5% | c-KIT expression in vascular endothelial cells was associated with improved PFS (2.3m) versus c-KIT negative vascular endothelial cells (1.7m) (p = 0.025). No or low expression of PDGFR-α in tumour cells was associated with improved PFS (p = 0.043) but not with OS. | |||
24424564 | Phase II | De novo | GBM n = 12 | PFS 7.7w (95% CI 7.2–8.2) OS 12.8w (95% CI 0.5–23.8) | ORR 0%, SD 8.3%, PD 91.7% | NA | |||
SYHA1813 | VEGFR, CSF1R | 36884148 | Phase I | Recurrent | GBM n = 4 | NA | PR 25% | NA | |
Tivozanib | VEGFR1/2/3, PDGFR, c-Kit Low activity against FGFR-1, Flt3, c-Met, EGFR and IGF-1R | 27853960 | Phase II | Recurrent | GBM n = 10 | PFS 2.3m (95% CI 1.5–4.0) OS 8.1m (95% CI 5.2–12.5) | CR 10%, PR 10%, SD 40%, PD 40% | None of the investigated blood biomarkers were associated with OS or PFS. | |
Tumourcell + micro-environment | AEE788 | EGFR, HER2/ErbB2, VEGFR2/KDR, c-Abl, c-Src, Flt-1 | 22392572 | Phase I | Recurrent | GBM n = 64 | PFS 2.7m (90% CI 1.9–2.8) | CR 0%, PR 0% SD 17% | p-KDR was a significant predictor of PFS (p = 0.01) |
Bosutinib | Src/Abl, PI3K/AKT/mTOR, MAPK/ERK, JAK/STAT3. Lyn, HCK. Promotes autophagy | 25411098 | Phase II | Recurrent | GBM n = 9 | PFS 7.71w (95% CI 2.6–7.9) OS 50w (95% CI 2.9–NA) | PD 100% | NA | |
Cediranib | VEGFR(KDR), Flt1/4, c-Kit, PDGFRβ, induces autophagic vacuole accumulation. | 20458050 | Phase II | Recurrent | GBM n = 30 | PFS 117d (95% CI 82–145) OS 227d (95% CI 177–293) | 2D measurements: PR 26.6% 3D measurements: PR 56.7% | At baseline, no biomarkers showed correlations with PFS or OS | |
23940216 | Phase III | Recurrent | GBM n = 131 | PFS 92d OS 8m | CR 0,8%, PR 14.4%, SD 64.4%, PD 8.5% | Baseline VEGF levels did not have a significant effect on PFS or OS | |||
Diazepinomicin (TLN-4601) | RAS, peripheral benzodiazepine receptor (PBR) | 22048878 | Phase II | Recurrent | GBM n = 17 | PFS-6 0% OS 150d | CR + PR + SD 21.4% | NA | |
Erdafitinib (JNJ-42756493) | FGFR1/2/3/4, RET (c-RET), CSF-1R, PDGFR-α/PDGFR-β, FLT4, Kit (c-Kit), VEGFR-2 | 26324363 | Phase I | Recurrent | GBM n = 3 | NA | PR 66.7% | NA | |
Imatinib | v-Abl, c-Kit, SCF, and PDGFR, induces autophagy | 18824712 | Phase II | Recurrent | GBM n = 51 | PFS 1.8m (95% CI 1.7–2.3) OS 5.9m (95% CI 4.2–7.8) | PR 6%, SD 26% | PFS was not correlated with PDGFRα SNPs. | |
16914578 | Phase I+II | Recurrent | Phase I: GBM n = 35 Phase II: GBM n = 24 | PFS6 3% | Phase I: CR 0%, PR 2.9%, SD 34.3% Phase II: CR 0%, PR 5,9%, SD 17.6% | NA | |||
31514200 | Phase II | De novo and recurrent | De novo: GBM n = 19 Recurrent: GBM n = 32 | De novo: PFS 2.8m (95% CI 0.3–8) OS 5.0m (95% CI 0.8–30) Recurrent: PFS 2.1m (95% CI 0.3–19.3) OS 6.5m (95% CI 0.3–51.5) | NA | NA | |||
19789313 | Phase II | De novo | GBM n = 20 | OS 6.2m | CR 0%, PR 0%, SD 90%, PD 5%, nonevaluable 5% | NA | |||
ONC201 | Akt and ERK to induce TNF-related apoptosis-inducing ligand (TRAIL) | 31702782 | Phase II | Recurrent | GBM n = 20 | PFS 1.8m OS 7.5m | CR 0% | NA | |
Pazopanib | VEGFR1, VEGFR2, VEGFR3, PDGFRa/β,c-Kit, FGFR1, c-Fms Induces autophagy | 20200024 | Phase II | Recurrent | GBM n = 35 | PFS 12w (95% CI 8–14) OS 35w (95% CI 24–47) | ORR 5.9% (95% CI: 0.7–21%). SD 59%, PD 32% | NA | |
Pexidartinib (PLX3397) | CSF-1R, Kit (c-Kit), FLT3, PDGFRβ | 26449250 | Phase II | Recurrent | GBM n = 37 | PFS-6 8.8% (90% CI 3.5%, 21.6%) OS 9.4m (90% CI 6.67–NA) | CR 0%, PR 0% | PDGFRA amplification and gains did not correlate significantly with PFS6 or other parameters. | |
Ponatinib | Abl, PDGFRα, VEGFR2, FGFR1, Src | 31444999 | Phase II | Recurrent | GBM n = 15, Bevacizumab-refractory | PFS 28d (95% CI 27–30) OS 98d (95% CI 56–257) | SD 13.7%, PD 66.7% | NA | |
Temsirolimus | mTOR, induces autophagy | 16012795 | Phase II | Recurrent | GBM n = 43 | PFS 9w | PR 4.7%, SD 46.5% | NA | |
15998902 | Phase II | Recurrent | GBM n = 65 | TTP 2.3m (95% CI 1.9–3.2) OS 4.4m (95% CI 3.6–4.8) | ORR 0% | Significant association between neuroimaging response and p70s6 kinase phosphorylation in baseline tumour samples (p = 0.04) | |||
Vandetanib | VEGFR2, VEGFR3, EGFR, RET, induces autophagy by increasing the level of reactive oxygen species (ROS) | 23099652 | Phase I/II | Recurrent | GBM n = 32 | PFS 1.3m (95% CI 0.9–1.9) OS 6.3m (95% CI 3.8–8.5) | ORR 15%, CR 3.7% | NA | |
Vemurafenib | B-RafV600E, induces cell autophagy | 30351999 | Phase II | Recurrent | GBM n = 6, BRAFV600mt AA n = 5, BRAFV600mt | PFS 5.3m (95% CI 1.8–12.9), OS 11.9m (95% CI 8.3–40.1) | CR 0%, PR 9.1%, SD 45.5%, PD 27.3% | NA | |
Stemcell | RO4929097 | y-secretase, Aβ40 and Notch | 33027815 | Phase II | Recurrent | GBM n = 47 | PFS 1.7m (95% CI 1.2–1.8) OS 7.0m (95% CI 5.4–9.1) | CR 2%, PR 0%, SD 6%, PD 81% | NA |
NCT01122901 | Phase II | Recurrent | GBM n = 40 | PFS 1.7m (95% CI 1.1–1.8) OS 6.6m (95% CI 5.3–10.5) | CR 2.5%, PR 0%, SD 7.5%, PD 82.5% | NA |
Compounds | Targets Specified | PMID | Trial | De Novo/ Recurrent | Study Population | PFS/OS | Response Rate | Biomarker Analysis |
---|---|---|---|---|---|---|---|---|
Afatinib + TMZ | Afatinib: EGFR, HER2, HER4 | 25140039 | Phase II | Recurrent | GBM n = 39 | PFS 1.53m OS 8.0m | CR 2.6%, PR 5.1%, SD 35.9%, PD 43.6% | No statistically significant relation between EGFRvIII and treatment outcome |
Anlotinib + TMZ | VEGFR2/3, FGFR1-4, PDGFR α/β, c-Kit, and Ret | 37477938 | Phase II | Recurrent | GBM n = 21 | PFS 7.3m (95% CI 4.9–9.7) OS 16.9m (95% CI 7.8–26.0) | ORR 81% (95% CI 62.6–99.3), CR 43%, PR 38% | NA |
Bortezomib + bevacizumab | Bortezomib: 20S proteasome, inhibits NF-κB and induces ERK phosphorylation to suppress cathepsin B and inhibit the catalytic process of autophagy | NCT00611325 | Phase II | Recurrent | GBM n = 56 | EAIED: PFS 2m (95% CI 2–4) OS 8m (95% CI 5–11) Non-EAIED: PFS 2.5m (95% CI 1–4) OS 6m (95% CI 4–10) | EAIED: RRR 7.1% (95% CI 0–16.6) Non-EAIED: RRR 39.3% (95% CI 21.2–57.4) | NA |
Bortezomib + TMZ | Bortezomib: 20S proteasome, inhibits NF-κB and induces ERK phosphorylation to suppress cathepsin B and inhibit the catalytic process of autophagy | 27300524 | Phase II | Recurrent | GBM n = 9 AO grade III n = 1 | PFS 2.6m OS 8.9m | NA | NA |
32578964 | Phase Ib | Recurrent | GBM n = 10 | OS 21.4m | NA | NA | ||
Buparlisib + bevacizumab | Buparlisib: PI3K | 31392595 | Phase II | Recurrent | GBM n = 76 | PFS 4.0m (95% CI 3.4–5.4) Bevacizumab-naïve: OS 10.8m (95% CI 9.2–13.5) Bevacizumab treated: OS 6.6m (95% CI 4.0–14.6) | ORR 26%. CR 11%, PR 16%, SD 33%, PD 29% | PTEN and PIK3CA did not affect the treatment response. |
Buparlisib + lomustine | Buparlisib: PI3K | 32665311 | Phase Ib/II | Recurrent | GBM n = 18 | NA | CR 0%, PR 0%, SD 11.1%, PD 77.8% | NA |
CT-322 + irinotectan | CT-322: VEGFR-2 | 25388940 | Phase II | Recurrent | GBM n = 63 | PFS 8.8m | ORR 0% | NA |
Dasatinib + bevacizumab | Dasatinib: Abl, Src, c-Kit, induces autophagy | 31290996 | Phase II | Recurrent | GBM n = 83 | PFS 3.2m OS 7.3m | ORR 15.7%, SD 57.8% | No associations between VEGFR2, Y416.SRC (pSRC), CD31, LYN and YES and PFS or OS. |
Enzastaurin + bevacizumab | Enzastaurin: PKCβ, PKCα, PKCγ and PKCε | 26643807 | Phase II | De novo | GBM n = 37 | PFS 2.0m OS = 7.5m | ORR 22%, SD 54% | No correlation with treatment response and p-GSK-3 levels. |
Erlotinib + bevacizumab | Erlotinib: EGFR | 23132371 | NA | Recurrent | GBM n = 4 | PFS 10.5m OS 17.0m | Response rate 100% | NA |
20716591 | Phase II | Recurrent | GBM n = 25 | PFS 18w (95% CI 12.0–23.9) OS 44.6w (95% CI28.4–68.7) | CR 4%, PR 46%, SD 42%, PD 8% | Patients with positive pS6 had a 3.4 times greater risk of progression compared with patients with negative pS6 (p = 0.05). Patients with lower values for VEGFR-2 were more likely to survive more than 1 year than those with high values of VEGFR-2 (p = 0.0079) | ||
26476729 | Phase II | De novo after treatment RT and TMZ, no progression | GBM n = 46 | PFS 9.2m (95% CI 6.4–11.3) OS 13.2m (95% CI 10.8–19.6) | CR 8.7%, PR 26.1%, SD 60.9%, PD 0%, 4.3% unknown | NA | ||
Erlotinib + TMZ | Erlotinib: EGFR | 16443950 | Phase I | Stable or recurrent | GBM n=39 | NA | PR 2.6% | NA |
Everolimus + TMZ | Everolimus: mTOR inhibitor of FKBP12, autophagy | 22160854 | Phase I | De novo | GBM n = 17, non-EAIED GBM n = 11, EAIED | NA | Non-EIAED: ORR 17.6% (95% CI: 3.8–43.4%). CR 0%, PR 3/17, SD 9/17, PD 5/17 EIAED: CR 0%, PR 0%, SD 7/11, PD 4/11, | No differences in response and survival between patients with PTEN intact and deleted tumours. |
Imatinib + hydroxyurea | Imatinib: v-Abl, c-Kit and PDGFR, induces autophagy. | 16361636 | Phase II | Recurrent | GBM n = 33 | PFS 14.4w (95% CI 8.3–16.6) OS 48.9w (95% CI 25.7–71.1) | CR 3%, PR 6%, SD 42%, PD 48% | NA |
19904263 | Phase II | Recurrent | GBM n = 231 | PFS 5.6w (95% CI 4.1–7.9) OS 26w (95% CI 21.3–31.3) | CR 0.4%, PR 3.0%, SD 19.5%, PD 61.5% | Patients with increased c-KIT had significant longer PFS. | ||
19688297 | Phase III | Recurrent | GBM n = 120 | PFS 6w(95% CI 6–7) OS 21w | PD 40% | NA | ||
Imatinib mesylaat + TMZ | Imatinib: v-Abl, c-Kit and PDGFR, induces autophagy. | 18359865 | Phase I | Stable & recurrent | GBM n = 52 | PFS 26.6w (95% CI 9.9–36.4) OS 45.1w (95% CI 36.1–59.1) | CR 0%, PR 12%, SD 42% | NA |
Lapatinib + TMZ | Lapatinib: EGFR, ERBB2 | 23292205 | Phase I | Recurrent | GBM n = 14 AA n = 2 | PFS 2.4m OS 5.9m | CR 0%, PR 6.3%, SD 31.3% | NA |
Lonafarnib + TMZ | FPTase inhibitor for H-ras, K-ras-4B, N-ras | 23633392 | Phase I/Ib | Recurrent | GBM n = 35 | PFS 3.9m (95% CI 2.5–8.4) OS 13.7m (95% CI 8.9–22.1) | CR 5.9%, PR 17.6%, SD 47.1%, PD 29.4% | NA |
Olaparib + TMZ | Olaparib: PARP1, PARP2 | 32347934 | Phase I | Recurrent | GBM n = 36 | PFS6 39% (95% CI: 23.1–56.5%) | NA | NA |
Panobinostat + bevacizumab | Panobinostat: HDAC, autophagy | 25572329 | Phase II | Recurrent | GBM n = 24 | PFS 5m (95% CI 3–9) OS 9m (95% CI 6–19) | CR 0%, PR 29.2%, SD 58.3%, PD 12.5% | NA |
Sorafenib + bevacizumab | Sorafenib: Raf-1, B-Raf, VEGFR-2, VEGFR-3, PDGFR-β, Flt-3, c-KIT | 23833308 | Phase II | Recurrent | GBM n = 54 | PFS 2.9m (95% CI 2.3–3.6) OS 5.6m (95% CI 4.7–8.2) | ORR 18.5%, SD 63% | PFS6 success was increased for VEGFR promoter mutant rs699947 and rs833061 and PFS6 success decreased for mutant rs1005230 and rs1570360. PFS6 success was increased for VEGFR2 promoter heterozygous rs2071559. |
Sorafenib + TMZ | Sorafenib: Raf-1, B-Raf, VEGFR-2, VEGFR-3, PDGFR-β, Flt-3, c-KIT | 20443129 | Phase II | Recurrent | GBM n = 32 | PFS 6.4w (95% CI 3.9–11.7) OS 41.5w (95% CI 24.1–55.1) | CR 0%, PR 3%, SD 47%, PD 50% | NA |
23898124 | Phase II | Recurrent | GBM n = 43 | TTP 3.2m (95% CI 1.8–4.8) OS 7.4m (95% CI 5.6–9.0) | CR 0%, PR 12%, SD 43%, PD 48% | NA | ||
Sunitinib + irinotecan | Sunitinib: VEGFR2, PDGFRß, c-Kit, IRE1α | 21744079 | Phase I | Recurrent, | GBM n = 15 MG grade III n = 10 | PFS 6.9w (95% CI 5.7–17.7), OS 53.1w (95% CI 30.3–87.9) | CR 0%, PR 4%, SD 36%, PD 60% | NA |
27680966 | Phase II | Recurrent | GBM n = 6 | PFS-6 not reached | ORR 17% | NA | ||
Tandutinib + bevacizumab | Tandutinib: FLT3, c-Kit, PDGFR | 26860632 | Phase II | Recurrent | GBM n = 37 | PFS 4.1m OS 11m | PR 24% | NA |
Temsirolimus + bevacizumab | Temsirolimus: mTOR, induces autophagy | 23564811 | Phase II | Recurrent | GBM n = 10 | PFS 8w OS 15w | CR 0%, PR 0%, SD 20% | NA |
Trebananib + bevacizumab | Trebananib: Angiopoietin 1 and angiopoietin 2 blocking peptibody | 29266174 | Phase II | Recurrent | GBM n = 37 | PFS 3.6m (95% CI 1.9–5.5) OS 9.5m (95% CI 7.5–14.7) | ORR 27%, CR 0%, PR 27%, SD 41% | High plasma VEGF was associated with poor PFS and OS. High plasma IL-8 was associated with shorter OS (p < 0.05) |
32154928 | Phase II | Recurrent | GBM n = 57 | PFS 4.2m (95% CI 3.7–5.6) | CR 0%, PR 4.2%, SD 18.8% PD, 77.1% | NA | ||
NCT01290263 | Phase I/II | Recurrent | GBM n = 37 | PFS 108d OS 285d | CR 0%, PR 10.8%, SD 54%, PD 27% | NA | ||
Velparib + TMZ | Velparib: PARP1, PARP2, autophagy | 26508094 | Phase I/II | Recurrent | GBM n = 146, bevacizumab naïve GBM n = 69, bevacizumab failure | BEV-naïve: OS 10.3m low TMZ dose OS 10.7m high TMZ dose BEV failure: OS 4.7m low TMZ dose OS 4.7m high TMZ dose | BEV-naïve CR 1.9%, PR 1.9%, SD 1.9% BEV failure: CR 5.3%, PR 0% | NA |
Vorinostat + bevacizumab | Vorinostat: HDAC | 29133513 | Phase II | Recurrent | GBM n = 40 | PFS 3.7m (95% CI 2.9–4.8) OS 10.4m (95% CI 7.6–12.8) | RRR 22.5%, CR 0%, PR 22.5% | NA |
32166308 | Phase II | Recurrent | GBM n = 44 | PFS 3.68m (95% CI 2.33–3.94) OS 7.79m (95% CI 5.06–9.63) | NA | NA | ||
Vornistat + bevacizumab + TMZ | 29264836 | Phase I/II | Recurrent | GBM n = 39 | PFS 6.7m (95% CI 4.8–9.4) OS 12.5m (95% CI 8.8–14.3) | RRR 56% (95% CI 41–71) | NA |
Compounds | Targets Specified | PMID | Trial | De Novo/ Recurrent | Study Population | PFS/OS | Response Rate | Biomarker Analysis |
---|---|---|---|---|---|---|---|---|
Cediranib + cilengitide | Cediranib: VEGFR(KDR), Flt1/4, c-Kit, PDGFRβ, induces autophagic vacuole accumulation. Cilengitide: Integrins ανβ3 and ανβ5 | 26008604 | Phase I | Recurrent | GBM n = 45 | PFS 1.9m (95% CI 1.5–2.8) OS 6.5m (95% CI 5.2–7.6) | CR 4.4%, PR 4.4%, SD 28.9%, PD 46.7% | NA |
Cediranib + gefitinib | Cediranib: VEGFR(KDR), Flt1/4, c-Kit, PDGFRβ, induces autophagic vacuole accumulation. Gefitinib: EGFR | 27232884 | Phase II | Recurrent | GBM n = 19 | PFS 3.6m OS 7.2m | CR 0%, PR 42% | NA |
Erlotinib + sirolimus | Erlotinib: EGFR Sirolimus: mTOR | 19562254 | Phase II | Recurrent | GBM n = 32 | PFS 6.9w (95% CI 3.9–11) OS 33.8w (95% CI 21.9–53.6) | SD 27%, CR 0%, PR 0% | No association between EGFR, PTEN, EGFRvIII, pS6 and pMAPK PFS6, borderline significance with p-AKT (p = 0.045). |
Erlotinib + sorafenib | Erlotinib: EGFR Sorafenib: Raf-1, B-Raf, VEGFR-2, VEGFR-3, PDGFR-β, Flt-3, c-KIT | 23328813 | Phase II | Recurrent | GBM n = 56 | PFS 2.5m (95% CI 1.8–3.7) OS 5.7m (95% CI 4.5–7.9) | CR 0%, PR 5% (all unconfirmed), SD 41%, PD 45% | NA |
33235994 | Phase I/II | Recurrent | GBM n = 19 | PFS 1.8m OS 5m | CR 0%, PR 0% | NA | ||
Erlotinib + temsirolimus | Erlotinib: EGFR Temsirolimus: mTOR, induces autophagy | 24470557 | Phase I/II | Recurrent | GBM n = 42 | PFS 8w (95% CI 8–10) | CR 0%, PR 0%, SD 29% | No significant correlation between EGFRvIII, EGFR amplification PTEN, p-AKT or pS6S235/236 and PFS. |
Gefitinib + sirolimus | Sirolimus: mTOR Gefitinib: EGFR | 16467100 | Phase I | Recurrent | GBM n = 29 AG n = 5 | PFS 8.2w (95% CI 7.5–18.6) | PR 5.9%, SD 41% | NA |
Pazopanib + lapatinib | Pazopanib: EGFR1, VEGFR2, VEGFR3, PDGFR, FGFR, c-Kit, c-Fms/CSF1R, cathepsin B activation, autophagy. Lapatinib: EGFR, ERBB2 | 23363814 | Phase I/II | Recurrent | GBM n = 19, biomarker positive (PTEN and/or EGFRvIII) GBM n = 22, biomarker negative | Biomarker positive: PFS 56d (95% CI 45–113) Biomarker negative: PFS 62d (95% CI 56–90) | Overall: CR 0%, PR 5%, SD 34%, PD 61% Biomarker positive: CR 0%, PR 5%, SD 37%, PD 58% Biomarker negative: CR 0%, PR 5%, SD 32%, PD 64% | NA |
Temsirolimus + perifosine | Temsirolimus: mTOR, induces autophagy Perifosine: Akt | 32293798 | Phase I | Recurrent | GBM n = 17 Other MG n = 19 | PFS 2.7m (95%CI 1.8–9.2) OS 10.4m (95% CI 7.2–16.7) | PR 3.4%, SD 44.8%, PD 51.7% | NA |
Temsirolimus + sorafenib | Temsirolimus: mTOR, induces autophagy Sorafenib: Raf-1, B-Raf, VEGFR-2, VEGFR-3, PDGFR-β, Flt-3, c-KIT | 29313954 | Phase I + II | Recurrent | Arm B (anti-VEGF therapy naïve): GBM n = 49 Arm D (prior anti-VEGF therapy): GBM n = 44 | Arm B: PFS 2.7m OS 6.6m Arm D: PFS 1.9m OS 3.9m | Arm B: PR 2.4%, SD 64%, PD 27% Arm D: SD 46%, PD 51% | NA |
23099651 | Phase I/II | Recurrent | GBM n = 18 | PFS 8w (95% CI 5–9) | CR 0%, PR 11.8% | NA | ||
Tipifarnib + sorafenib | Tipifarnib: FTase Sorafenib: Raf-1, B-Raf, VEGFR-2, VEGFR-3, PDGFR-β, Flt-3, c-KIT | 28988377 | Phase I | Recurrent | GBM n = 24 | PFS 55d OS 4.38m | NA | NA |
Trametinib + dabrafenib | Trametinib: MEK 1/2, activates autophagy Dabrafenib: BRAFV600 | PMC6217670 | Phase II | Recurrent | HGG n = 45, BRAFV600-mutant | PFS 1.9m (95% CI 1.7–18.5) OS 11.7m (95% CI 6.4–not reached) | NA | NA |
34838156 | Phase II | Recurrent | GBM n = 31, BRAFV600E-mutant | PFS 2.8Mm OS 13.7m | ORR 32%, PD 45%, CR 6%, PR 26% | NA | ||
Vandetanib + sirolimus | Vandetanib: VEGFR2, VEGFR3, EGFR, induces autophagy by increasing the level of reactive oxygen species (ROS) Sirolimus: mTOR | 25503302 | Phase I | Recurrent | GBM n = 19 | PFS 2.1m (95% CI 0.9–3.1) OS 7.7m (95% CI 4.7–9.3) | PR 10.5% | NA |
Vatalanib + imatinib + hydroxyurea | Imatinib: v-Abl, c-Kit and PDGFR, induces autophagy. Vatalanib: VEGFR2/KDR, VEGFR1/Flt-1, VEGFR3/Flt-4. | 19248046 | Phase I | Recurrent | GBM n = 34 MG grade III n = 3 | PFS 12w OS 48w | PR 24%, SD 49%, PD 27% | NA |
Vorinostat + bortezomib | Vorinostat: HDAC Bortezomib: 20S proteasome, inhibits NF-κB and induces ERK phosphorylation to suppress cathepsin B and inhibit the catalytic process of autophagy | 22090453 | Phase II | Recurrent | GBM n = 34 | TTP 1.5m OS 3.2m | Partial objective response 2.7% | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoosemans, L.; Vooijs, M.; Hoeben, A. Opportunities and Challenges of Small Molecule Inhibitors in Glioblastoma Treatment: Lessons Learned from Clinical Trials. Cancers 2024, 16, 3021. https://doi.org/10.3390/cancers16173021
Hoosemans L, Vooijs M, Hoeben A. Opportunities and Challenges of Small Molecule Inhibitors in Glioblastoma Treatment: Lessons Learned from Clinical Trials. Cancers. 2024; 16(17):3021. https://doi.org/10.3390/cancers16173021
Chicago/Turabian StyleHoosemans, Linde, Marc Vooijs, and Ann Hoeben. 2024. "Opportunities and Challenges of Small Molecule Inhibitors in Glioblastoma Treatment: Lessons Learned from Clinical Trials" Cancers 16, no. 17: 3021. https://doi.org/10.3390/cancers16173021
APA StyleHoosemans, L., Vooijs, M., & Hoeben, A. (2024). Opportunities and Challenges of Small Molecule Inhibitors in Glioblastoma Treatment: Lessons Learned from Clinical Trials. Cancers, 16(17), 3021. https://doi.org/10.3390/cancers16173021